1
|
Chen J, Lee J, Dou W. How to correct Ehrenfest nonadiabatic dynamics in open quantum systems: Ehrenfest plus random force (E + σ) dynamics. J Chem Phys 2025; 162:044104. [PMID: 39846801 DOI: 10.1063/5.0245114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/04/2025] [Indexed: 01/24/2025] Open
Abstract
One key challenge in the study of nonadiabatic dynamics in open quantum systems is to balance computational efficiency and accuracy. Although Ehrenfest dynamics (ED) is computationally efficient and well-suited for large complex systems, ED often yields inaccurate results. To address these limitations, we improve the accuracy of the traditional ED by adding a random force (E + σ). In this work, the construction of random forces is considered in Markovian and non-Markovian scenarios, and we ensure the dynamics satisfy the detailed balance in both scenarios. By comparing our E + σ with existing methods such as the electronic friction model and surface hopping, we furthermore validate its reliability. In addition, the E + σ model still retains the high efficiency of ED and does not incur much additional computation. We believe that this method provides an alternative to accurately describe the mixed quantum-classical dynamics in open quantum systems, particularly for large complex systems.
Collapse
Affiliation(s)
- Jingqi Chen
- Department of Chemistry, School of Science, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Joonho Lee
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Wenjie Dou
- Department of Chemistry, School of Science, Westlake University, Hangzhou, Zhejiang 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
- Department of Physics, School of Science, Westlake University, Hangzhou 310024, Zhejiang, China
| |
Collapse
|
2
|
Smorka R, Rudge SL, Thoss M. Influence of nonequilibrium vibrational dynamics on spin selectivity in chiral molecular junctions. J Chem Phys 2025; 162:014304. [PMID: 39760295 DOI: 10.1063/5.0235411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/25/2024] [Indexed: 01/07/2025] Open
Abstract
We explore the role of molecular vibrations in the chirality-induced spin selectivity (CISS) effect in the context of charge transport through a molecular nanojunction. We employ a mixed quantum-classical approach that combines Ehrenfest dynamics for molecular vibrations with the hierarchical equations of motion method for the electronic degrees of freedom. This approach treats the molecular vibrations in a nonequilibrium manner, which is crucial for the dynamics of molecular nanojunctions. To explore the effect of vibrational dynamics on spin selectivity, we also introduce a new figure of merit, the displacement polarization, which quantifies the difference in vibrational displacements for opposing lead magnetizations. We analyze the dynamics of single trajectories, investigating how the spin selectivity depends on voltage and electronic-vibrational coupling. Furthermore, we investigate the dynamics and temperature dependence of ensemble-averaged observables. We demonstrate that spin selectivity is correlated in time with the vibrational polarization, indicating that the dynamics of molecular vibrations is the driving force of CISS in this model within the Ehrenfest approach.
Collapse
Affiliation(s)
- R Smorka
- Institute of Physics, University of Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg, Germany
| | - S L Rudge
- Institute of Physics, University of Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg, Germany
| | - M Thoss
- Institute of Physics, University of Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg, Germany
| |
Collapse
|
3
|
Padula D. Discriminating Clockwise and Counterclockwise Photoisomerization Paths in Achiral Photoswitches by Excited-State Electronic Circular Dichroism. J Phys Chem B 2024; 128:8303-8312. [PMID: 39171863 DOI: 10.1021/acs.jpcb.4c02384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Despite the numerous investigations of photoisomerization reactions from both the computational and experimental points of view, even in complex environments, to date there is no direct demonstration of the direction of rotation of the retinal chromophore, initiating the vision process in several organisms, occurring upon light irradiation. In the literature, many proposals have been formulated to shed light on the details of this process, most of which are extracted from semiclassical simulations. Although high hopes are held in the development of time-resolved X-ray spectroscopy, I argue in this work that simpler but less known techniques can be used to unravel the details of this fascinating photochemical process. In fact, chiroptical spectroscopy would unambiguously prove the direction of the rotatory motion of the chromophore during the photoisomerization process by probing excited state chirality, a piece of information that, so far, has been exclusively extracted from atomistic simulations. I demonstrate this statement by computing the expected chiroptical response along photoisomerization pathways for several models of the retinal chromophores that are found in nature bound to rhodopsins, including nuclear ensemble spectra from semiclassical dynamics simulations, that can be compared with time-resolved experiments.
Collapse
Affiliation(s)
- Daniele Padula
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, Siena 53100, Italy
| |
Collapse
|
4
|
Mäck M, Thoss M, Rudge SL. Nonadiabatic dynamics of molecules interacting with metal surfaces: Extending the hierarchical equations of motion and Langevin dynamics approach to position-dependent metal-molecule couplings. J Chem Phys 2024; 161:064106. [PMID: 39132787 DOI: 10.1063/5.0222076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024] Open
Abstract
Electronic friction and Langevin dynamics is a popular mixed quantum-classical method for simulating the nonadiabatic dynamics of molecules interacting with metal surfaces, as it can be computationally more efficient than fully quantum approaches. In this work, we extend the theory of electronic friction within the hierarchical equations of motion formalism to models with a position-dependent metal-molecule coupling. We show that the addition of a position-dependent metal-molecule coupling adds new contributions to the electronic friction and other forces, which are highly relevant for many physical processes. Our expressions for the electronic forces within the Langevin equation are valid both in and out of equilibrium and for molecular models containing strong interactions. We demonstrate the approach by applying it to different models of interest.
Collapse
Affiliation(s)
- Martin Mäck
- Institute of Physics, University of Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg, Germany
| | - Michael Thoss
- Institute of Physics, University of Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg, Germany
| | - Samuel L Rudge
- Institute of Physics, University of Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg, Germany
| |
Collapse
|
5
|
Kang M, Nuomin H, Chowdhury SN, Yuly JL, Sun K, Whitlow J, Valdiviezo J, Zhang Z, Zhang P, Beratan DN, Brown KR. Seeking a quantum advantage with trapped-ion quantum simulations of condensed-phase chemical dynamics. Nat Rev Chem 2024; 8:340-358. [PMID: 38641733 DOI: 10.1038/s41570-024-00595-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 04/21/2024]
Abstract
Simulating the quantum dynamics of molecules in the condensed phase represents a longstanding challenge in chemistry. Trapped-ion quantum systems may serve as a platform for the analog-quantum simulation of chemical dynamics that is beyond the reach of current classical-digital simulation. To identify a 'quantum advantage' for these simulations, performance analysis of both analog-quantum simulation on noisy hardware and classical-digital algorithms is needed. In this Review, we make a comparison between a noisy analog trapped-ion simulator and a few choice classical-digital methods on simulating the dynamics of a model molecular Hamiltonian with linear vibronic coupling. We describe several simple Hamiltonians that are commonly used to model molecular systems, which can be simulated with existing or emerging trapped-ion hardware. These Hamiltonians may serve as stepping stones towards the use of trapped-ion simulators for systems beyond the reach of classical-digital methods. Finally, we identify dynamical regimes in which classical-digital simulations seem to have the weakest performance with respect to analog-quantum simulations. These regimes may provide the lowest hanging fruit to make the most of potential quantum advantages.
Collapse
Affiliation(s)
- Mingyu Kang
- Duke Quantum Center, Duke University, Durham, NC, USA.
- Department of Physics, Duke University, Durham, NC, USA.
| | - Hanggai Nuomin
- Department of Chemistry, Duke University, Durham, NC, USA
| | | | - Jonathon L Yuly
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Ke Sun
- Duke Quantum Center, Duke University, Durham, NC, USA
- Department of Physics, Duke University, Durham, NC, USA
| | - Jacob Whitlow
- Duke Quantum Center, Duke University, Durham, NC, USA
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA
| | - Jesús Valdiviezo
- Kenneth S. Pitzer Theory Center, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- Departamento de Ciencias, Sección Química, Pontificia Universidad Católica del Perú, Lima, Peru
| | - Zhendian Zhang
- Department of Chemistry, Duke University, Durham, NC, USA
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, NC, USA
| | - David N Beratan
- Department of Physics, Duke University, Durham, NC, USA.
- Department of Chemistry, Duke University, Durham, NC, USA.
- Department of Biochemistry, Duke University, Durham, NC, USA.
| | - Kenneth R Brown
- Duke Quantum Center, Duke University, Durham, NC, USA.
- Department of Physics, Duke University, Durham, NC, USA.
- Department of Chemistry, Duke University, Durham, NC, USA.
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
6
|
Amati G, Mannouch JR, Richardson JO. Detailed balance in mixed quantum-classical mapping approaches. J Chem Phys 2023; 159:214114. [PMID: 38054513 DOI: 10.1063/5.0176291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023] Open
Abstract
The violation of detailed balance poses a serious problem for the majority of current quasiclassical methods for simulating nonadiabatic dynamics. In order to analyze the severity of the problem, we predict the long-time limits of the electronic populations according to various quasiclassical mapping approaches by applying arguments from classical ergodic theory. Our analysis confirms that regions of the mapping space that correspond to negative populations, which most mapping approaches introduce in order to go beyond the Ehrenfest approximation, pose the most serious issue for reproducing the correct thermalization behavior. This is because inverted potentials, which arise from negative electronic populations entering the nuclear force, can result in trajectories unphysically accelerating off to infinity. The recently developed mapping approach to surface hopping (MASH) provides a simple way of avoiding inverted potentials while retaining an accurate description of the dynamics. We prove that MASH, unlike any other quasiclassical approach, is guaranteed to describe the exact thermalization behavior of all quantum-classical systems, confirming it as one of the most promising methods for simulating nonadiabatic dynamics in real condensed-phase systems.
Collapse
Affiliation(s)
- Graziano Amati
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Jonathan R Mannouch
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Jeremy O Richardson
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
7
|
Miyazaki K, Ananth N. Nonadiabatic simulations of photoisomerization and dissociation in ethylene using ab initio classical trajectories. J Chem Phys 2023; 159:124110. [PMID: 38127384 DOI: 10.1063/5.0163371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/05/2023] [Indexed: 12/23/2023] Open
Abstract
We simulate the nonadiabatic dynamics of photo-induced isomerization and dissociation in ethylene using ab initio classical trajectories in an extended phase space of nuclear and electronic variables. This is achieved by employing the linearized semiclassical initial value representation method for nonadiabatic dynamics, where discrete electronic states are mapped to continuous classical variables using either the Meyer-Miller-Stock-Thoss representation or a more recently introduced spin mapping approach. Trajectory initial conditions are sampled by constraining electronic state variables to a single initial excited state and by drawing nuclear phase space configurations from a Wigner distribution at a finite temperature. An ensemble of classical ab initio trajectories is then generated to compute thermal population correlation functions and analyze the mechanisms of isomerization and dissociation. Our results serve as a demonstration that this parameter-free semiclassical approach is computationally efficient and accurate, identifying mechanistic pathways in agreement with previous theoretical studies and also uncovering dissociation pathways observed experimentally.
Collapse
Affiliation(s)
- K Miyazaki
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - N Ananth
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
8
|
Tully JC. Ehrenfest dynamics with quantum mechanical nuclei. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2023.140396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
9
|
Abstract
We present a nonadiabatic classical-trajectory approach that offers the best of both worlds between fewest-switches surface hopping (FSSH) and quasiclassical mapping dynamics. This mapping approach to surface hopping (MASH) propagates the nuclei on the active adiabatic potential-energy surface, such as in FSSH. However, unlike in FSSH, transitions between active surfaces are deterministic and occur when the electronic mapping variables evolve between specified regions of the electronic phase space. This guarantees internal consistency between the active surface and the electronic degrees of freedom throughout the dynamics. MASH is rigorously derivable from exact quantum mechanics as a limit of the quantum-classical Liouville equation (QCLE), leading to a unique prescription for momentum rescaling and frustrated hops. Hence, a quantum-jump procedure can, in principle, be used to systematically converge the accuracy of the results to that of the QCLE. This jump procedure also provides a rigorous framework for deriving approximate decoherence corrections similar to those proposed for FSSH. We apply MASH to simulate the nonadiabatic dynamics in various model systems and show that it consistently produces more accurate results than FSSH at a comparable computational cost.
Collapse
|
10
|
Amati G, Runeson JE, Richardson JO. On detailed balance in nonadiabatic dynamics: From spin spheres to equilibrium ellipsoids. J Chem Phys 2023; 158:064113. [PMID: 36792511 DOI: 10.1063/5.0137828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Trajectory-based methods that propagate classical nuclei on multiple quantum electronic states are often used to simulate nonadiabatic processes in the condensed phase. A long-standing problem of these methods is their lack of detailed balance, meaning that they do not conserve the equilibrium distribution. In this article, we investigate ideas for restoring detailed balance in mixed quantum-classical systems by tailoring the previously proposed spin-mapping approach to thermal equilibrium. We find that adapting the spin magnitude can recover the correct long-time populations but is insufficient to conserve the full equilibrium distribution. The latter can however be achieved by a more flexible mapping of the spin onto an ellipsoid, which is constructed to fulfill detailed balance for arbitrary potentials. This ellipsoid approach solves the problem of negative populations that has plagued previous mapping approaches and can therefore be applied also to strongly asymmetric and anharmonic systems. Because it conserves the thermal distribution, the method can also exploit efficient sampling schemes used in standard molecular dynamics, which drastically reduces the number of trajectories needed for convergence. The dynamics does however still have mean-field character, as is observed most clearly by evaluating reaction rates in the golden-rule limit. This implies that although the ellipsoid mapping provides a rigorous framework, further work is required to find an accurate classical-trajectory approximation that captures more properties of the true quantum dynamics.
Collapse
Affiliation(s)
- Graziano Amati
- Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Johan E Runeson
- Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | | |
Collapse
|
11
|
Lin K, Peng J, Xu C, Gu FL, Lan Z. Trajectory Propagation of Symmetrical Quasi-classical Dynamics with Meyer-Miller Mapping Hamiltonian Using Machine Learning. J Phys Chem Lett 2022; 13:11678-11688. [PMID: 36511563 DOI: 10.1021/acs.jpclett.2c02159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The long short-term memory recurrent neural network (LSTM-RNN) approach is applied to realize the trajectory-based nonadiabatic dynamics within the framework of the symmetrical quasi-classical dynamics method based on the Meyer-Miller mapping Hamiltonian (MM-SQC). After construction, the LSTM-RNN model allows us to propagate the entire trajectory evolutions of all involved degrees of freedoms (DOFs) from initial conditions. The proposed idea is proven to be reliable and accurate in the simulations of the dynamics of several site-exciton electron-phonon coupling models and three Tully's scattering models. It indicates that the LSTM-RNN model perfectly captures the dynamical information on the trajectory evolution in the MM-SQC dynamics. Our work proposes a novel machine learning approach in the simulation of trajectory-based nonadiabatic dynamic of complex systems with a large number of DOFs.
Collapse
Affiliation(s)
- Kunni Lin
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Jiawei Peng
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Chao Xu
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, P. R. China
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| | - Feng Long Gu
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, P. R. China
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| | - Zhenggang Lan
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, P. R. China
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| |
Collapse
|
12
|
Amati G, Saller MAC, Kelly A, Richardson JO. Quasiclassical approaches to the generalized quantum master equation. J Chem Phys 2022; 157:234103. [PMID: 36550031 DOI: 10.1063/5.0124028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The formalism of the generalized quantum master equation (GQME) is an effective tool to simultaneously increase the accuracy and the efficiency of quasiclassical trajectory methods in the simulation of nonadiabatic quantum dynamics. The GQME expresses correlation functions in terms of a non-Markovian equation of motion, involving memory kernels that are typically fast-decaying and can therefore be computed by short-time quasiclassical trajectories. In this paper, we study the approximate solution of the GQME, obtained by calculating the kernels with two methods: Ehrenfest mean-field theory and spin-mapping. We test the approaches on a range of spin-boson models with increasing energy bias between the two electronic levels and place a particular focus on the long-time limits of the populations. We find that the accuracy of the predictions of the GQME depends strongly on the specific technique used to calculate the kernels. In particular, spin-mapping outperforms Ehrenfest for all the systems studied. The problem of unphysical negative electronic populations affecting spin-mapping is resolved by coupling the method with the master equation. Conversely, Ehrenfest in conjunction with the GQME can predict negative populations, despite the fact that the populations calculated from direct dynamics are positive definite.
Collapse
Affiliation(s)
- Graziano Amati
- Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | | | - Aaron Kelly
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, Max Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science, 22761 Hamburg, Germany
| | | |
Collapse
|
13
|
Cofer-Shabica DV, Menger MFSJ, Ou Q, Shao Y, Subotnik JE, Faraji S. INAQS, a Generic Interface for Nonadiabatic QM/MM Dynamics: Design, Implementation, and Validation for GROMACS/Q-CHEM simulations. J Chem Theory Comput 2022; 18:4601-4614. [PMID: 35901266 DOI: 10.1021/acs.jctc.2c00204] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The accurate description of large molecular systems in complex environments remains an ongoing challenge for the field of computational chemistry. This problem is even more pronounced for photoinduced processes, as multiple excited electronic states and their corresponding nonadiabatic couplings must be taken into account. Multiscale approaches such as hybrid quantum mechanics/molecular mechanics (QM/MM) offer a balanced compromise between accuracy and computational burden. Here, we introduce an open-source software package (INAQS) for nonadiabatic QM/MM simulations that bridges the sampling capabilities of the GROMACS MD package and the excited-state infrastructure of the Q-CHEM electronic structure software. The interface is simple and can be adapted easily to other MD codes. The code supports a variety of different trajectory-based molecular dynamics, ranging from Born-Oppenheimer to surface hopping dynamics. To illustrate the power of this combination, we simulate electronic absorption spectra, free-energy surfaces along a reaction coordinate, and the excited-state dynamics of 1,3-cyclohexadiene in solution.
Collapse
Affiliation(s)
- D Vale Cofer-Shabica
- Department of Chemistry, University of Pennsylvania, 231 S. 34 Street, Cret Wing 141D, Philadelphia, Pennsylvania 19104-6243, United States
| | - Maximilian F S J Menger
- Zernike Institute for Advanced Materials, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Qi Ou
- AI for Science Institute, Beijing 100080, China
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Joseph E Subotnik
- Department of Chemistry, University of Pennsylvania, 231 S. 34 Street, Cret Wing 141D, Philadelphia, Pennsylvania 19104-6243, United States
| | - Shirin Faraji
- Zernike Institute for Advanced Materials, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| |
Collapse
|
14
|
Hu Z, Brian D, Sun X. Multi-state harmonic models with globally shared bath for nonadiabatic dynamics in the condensed phase. J Chem Phys 2021; 155:124105. [PMID: 34598571 DOI: 10.1063/5.0064763] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Model Hamiltonians constructed from quantum chemistry calculations and molecular dynamics simulations are widely used for simulating nonadiabatic dynamics in the condensed phase. The most popular two-state spin-boson model could be built by mapping the all-atom anharmonic Hamiltonian onto a two-level system bilinearly coupled to a harmonic bath using the energy gap time correlation function. However, for more than two states, there lacks a general strategy to construct multi-state harmonic (MSH) models since the energy gaps between different pairs of electronic states are not entirely independent and need to be considered consistently. In this paper, we extend the previously proposed approach for building three-state harmonic models for photoinduced charge transfer to the arbitrary number of electronic states with a globally shared bath and the system-bath couplings are scaled differently according to the reorganization energies between each pair of states. We demonstrate the MSH model construction for an organic photovoltaic carotenoid-porphyrin-C60 molecular triad dissolved in explicit tetrahydrofuran solvent. Nonadiabatic dynamics was simulated using mixed quantum-classical techniques, including the linearized semiclassical and symmetrical quasiclassical dynamics with the mapping Hamiltonians, mean-field Ehrenfest, and mixed quantum-classical Liouville dynamics in two-state, three-state, and four-state harmonic models of the triad system. The MSH models are shown to provide a general and flexible framework for simulating nonadiabatic dynamics in complex systems.
Collapse
Affiliation(s)
- Zhubin Hu
- Division of Arts and Sciences, NYU Shanghai, 1555 Century Avenue, Shanghai 200122, China
| | - Dominikus Brian
- Division of Arts and Sciences, NYU Shanghai, 1555 Century Avenue, Shanghai 200122, China
| | - Xiang Sun
- Division of Arts and Sciences, NYU Shanghai, 1555 Century Avenue, Shanghai 200122, China
| |
Collapse
|
15
|
Weight BM, Mandal A, Huo P. Ab initio symmetric quasi-classical approach to investigate molecular Tully models. J Chem Phys 2021; 155:084106. [PMID: 34470343 DOI: 10.1063/5.0061934] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We perform on-the-fly non-adiabatic molecular dynamics simulations using the symmetrical quasi-classical (SQC) approach with the recently suggested molecular Tully models: ethylene and fulvene. We attempt to provide benchmarks of the SQC methods using both the square and triangle windowing schemes as well as the recently proposed electronic zero-point-energy correction scheme (the so-called γ correction). We use the quasi-diabatic propagation scheme to directly interface the diabatic SQC methods with adiabatic electronic structure calculations. Our results showcase the drastic improvement of the accuracy by using the trajectory-adjusted γ-corrections, which outperform the widely used trajectory surface hopping method with decoherence corrections. These calculations provide useful and non-trivial tests to systematically investigate the numerical performance of various diabatic quantum dynamics approaches, going beyond simple diabatic model systems that have been used as the major workhorse in the quantum dynamics field. At the same time, these available benchmark studies will also likely foster the development of new quantum dynamics approaches based on these techniques.
Collapse
Affiliation(s)
- Braden M Weight
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - Arkajit Mandal
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| | - Pengfei Huo
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
16
|
Lang H, Vendrell O, Hauke P. Generalized discrete truncated Wigner approximation for nonadiabatic quantum-classical dynamics. J Chem Phys 2021; 155:024111. [PMID: 34266254 DOI: 10.1063/5.0054696] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Nonadiabatic molecular dynamics occur in a wide range of chemical reactions and femtochemistry experiments involving electronically excited states. These dynamics are hard to treat numerically as the system's complexity increases, and it is thus desirable to have accurate yet affordable methods for their simulation. Here, we introduce a linearized semiclassical method, the generalized discrete truncated Wigner approximation (GDTWA), which is well-established in the context of quantum spin lattice systems, into the arena of chemical nonadiabatic systems. In contrast to traditional continuous mapping approaches, e.g., the Meyer-Miller-Stock-Thoss and the spin mappings, GDTWA samples the electron degrees of freedom in a discrete phase space and thus forbids an unphysical unbounded growth of electronic state populations. The discrete sampling also accounts for an effective reduced but non-vanishing zero-point energy without an explicit parameter, which makes it possible to treat the identity operator and other operators on an equal footing. As numerical benchmarks on two linear vibronic coupling models and Tully's models show, GDTWA has a satisfactory accuracy in a wide parameter regime, independent of whether the dynamics is dominated by relaxation or by coherent interactions. Our results suggest that the method can be very adequate to treat challenging nonadiabatic dynamics problems in chemistry and related fields.
Collapse
Affiliation(s)
- Haifeng Lang
- Theoretical Chemistry, Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| | - Oriol Vendrell
- Theoretical Chemistry, Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| | - Philipp Hauke
- INO-CNR BEC Center and Department of Physics, University of Trento, Via Sommarive 14, I-38123 Trento, Italy
| |
Collapse
|
17
|
Hu D, Xie Y, Peng J, Lan Z. On-the-Fly Symmetrical Quasi-Classical Dynamics with Meyer-Miller Mapping Hamiltonian for the Treatment of Nonadiabatic Dynamics at Conical Intersections. J Chem Theory Comput 2021; 17:3267-3279. [PMID: 34028268 DOI: 10.1021/acs.jctc.0c01249] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The on-the-fly version of the symmetrical quasi-classical dynamics method based on the Meyer-Miller mapping Hamiltonian (SQC/MM) is implemented to study the nonadiabatic dynamics at conical intersections of polyatomic systems. The current on-the-fly implementation of the SQC/MM method is based on the adiabatic representation and the dressed momentum. To include the zero-point energy (ZPE) correction of the electronic mapping variables, we employ both the γ-adjusted and γ-fixed approaches. Nonadiabatic dynamics of the methaniminium cation (CH2NH2+) and azomethane are simulated using the on-the-fly SQC/MM method. For CH2NH2+, both ZPE correction approaches give reasonable and consistent results. However, for azomethane, the γ-adjusted version of the SQC/MM dynamics behaves much better than the γ-fixed version. Further analysis indicates that it is always recommended to use the γ-adjusted SQC/MM dynamics in the on-the-fly simulation of photoinduced dynamics of polyatomic systems, particularly when the excited state is well separated from the ground state in the Franck-Condon region. This work indicates that the on-the-fly SQC/MM method is a powerful simulation protocol to deal with the nonadiabatic dynamics of realistic polyatomic systems.
Collapse
Affiliation(s)
- Deping Hu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China.,School of Environment, South China Normal University, Guangzhou 510006, China
| | - Yu Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China.,School of Environment, South China Normal University, Guangzhou 510006, China
| | - Jiawei Peng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China.,School of Environment, South China Normal University, Guangzhou 510006, China
| | - Zhenggang Lan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China.,School of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
18
|
Peng J, Xie Y, Hu D, Lan Z. Analysis of bath motion in MM-SQC dynamics via dimensionality reduction approach: Principal component analysis. J Chem Phys 2021; 154:094122. [PMID: 33685149 DOI: 10.1063/5.0039743] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The system-plus-bath model is an important tool to understand the nonadiabatic dynamics of large molecular systems. Understanding the collective motion of a large number of bath modes is essential for revealing their key roles in the overall dynamics. Here, we applied principal component analysis (PCA) to investigate the bath motion in the basis of a large dataset generated from the symmetrical quasi-classical dynamics method based on the Meyer-Miller mapping Hamiltonian nonadiabatic dynamics for the excited-state energy transfer in the Frenkel-exciton model. The PCA method clearly elucidated that two types of bath modes, which either display strong vibronic coupling or have frequencies close to that of the electronic transition, are important to the nonadiabatic dynamics. These observations were fully consistent with the physical insights. The conclusions were based on the PCA of the trajectory data and did not involve significant pre-defined physical knowledge. The results show that the PCA approach, which is one of the simplest unsupervised machine learning dimensionality reduction methods, is a powerful one for analyzing complicated nonadiabatic dynamics in the condensed phase with many degrees of freedom.
Collapse
Affiliation(s)
- Jiawei Peng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Yu Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Deping Hu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Zhenggang Lan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
19
|
Esch MP, Levine BG. Decoherence-corrected Ehrenfest molecular dynamics on many electronic states. J Chem Phys 2020; 153:114104. [DOI: 10.1063/5.0022529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Michael P. Esch
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Benjamin G. Levine
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
20
|
Kim CW, Rhee YM. Toward monitoring the dissipative vibrational energy flows in open quantum systems by mixed quantum-classical simulations. J Chem Phys 2020; 152:244109. [PMID: 32610983 DOI: 10.1063/5.0009867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In open quantum system dynamics, rich information about the major energy relaxation channels and corresponding relaxation rates can be elucidated by monitoring the vibrational energy flow among individual bath modes. However, such calculations often become tremendously difficult as the complexity of the subsystem-bath coupling increases. In this paper, we attempt to make this task feasible by using a mixed quantum-classical method, the Poisson-bracket mapping equation with non-Hamiltonian modification (PBME-nH) [H. W. Kim and Y. M. Rhee, J. Chem. Phys. 140, 184106 (2014)]. For a quantum subsystem bilinearly coupled to harmonic bath modes, we derive an expression for the mode energy in terms of the classical positions and momenta of the nuclei, while keeping consistency with the energy of the quantum subsystem. The accuracy of the resulting expression is then benchmarked against a numerically exact method by using relatively simple models. Although our expression predicts a qualitatively correct dissipation rate for a range of situations, cases involving a strong vibronic resonance are quite challenging. This is attributed to the inherent lack of quantum back reaction in PBME-nH, which becomes significant when the subsystem strongly interacts with a small number of bath modes. A rigorous treatment of such an effect will be crucial for developing quantitative simulation methods that can handle generic subsystem-bath coupling.
Collapse
Affiliation(s)
- Chang Woo Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Young Min Rhee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| |
Collapse
|
21
|
Braver Y, Valkunas L, Gelzinis A. Benchmarking the forward–backward trajectory solution of the quantum-classical Liouville equation. J Chem Phys 2020; 152:214116. [DOI: 10.1063/5.0006538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yakov Braver
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio Ave. 9-III, LT-10222 Vilnius, Lithuania
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Leonas Valkunas
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio Ave. 9-III, LT-10222 Vilnius, Lithuania
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Andrius Gelzinis
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio Ave. 9-III, LT-10222 Vilnius, Lithuania
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
| |
Collapse
|
22
|
Runeson JE, Richardson JO. Generalized spin mapping for quantum-classical dynamics. J Chem Phys 2020; 152:084110. [DOI: 10.1063/1.5143412] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Johan E. Runeson
- Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | | |
Collapse
|
23
|
Smith B, Akimov AV. Modeling nonadiabatic dynamics in condensed matter materials: some recent advances and applications. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:073001. [PMID: 31661681 DOI: 10.1088/1361-648x/ab5246] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This review focuses on recent developments in the field of nonadiabatic molecular dynamics (NA-MD), with particular attention given to condensed-matter systems. NA-MD simulations for small molecular systems can be performed using high-level electronic structure (ES) calculations, methods accounting for the quantization of nuclear motion, and using fewer approximations in the dynamical methodology itself. Modeling condensed-matter systems imposes many limitations on various aspects of NA-MD computations, requiring approximations at various levels of theory-from the ES, to the ways in which the coupling of electrons and nuclei are accounted for. Nonetheless, the approximate treatment of NA-MD in condensed-phase materials has gained a spin lately in many applied studies. A number of advancements of the methodology and computational tools have been undertaken, including general-purpose methods, as well as those tailored to nanoscale and condensed matter systems. This review summarizes such methodological and software developments, puts them into the broader context of existing approaches, and highlights some of the challenges that remain to be solved.
Collapse
Affiliation(s)
- Brendan Smith
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States of America
| | | |
Collapse
|
24
|
Gelzinis A, Valkunas L. Analytical derivation of equilibrium state for open quantum system. J Chem Phys 2020; 152:051103. [PMID: 32035455 DOI: 10.1063/1.5141519] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Calculation of the equilibrium state of an open quantum system interacting with a bath remains a challenge to this day, mostly due to a huge number of bath degrees of freedom. Here, we present an analytical expression for the reduced density operator in terms of an effective Hamiltonian for a high temperature case. Comparing with numerically exact results, we show that our theory is accurate for slow baths and up to intermediate system-bath coupling strengths. Our results demonstrate that the equilibrium state does not depend on the shape of spectral density in the slow bath regime. The key quantity in our theory is the effective coupling between the states, which depends exponentially on the ratio of the reorganization energy to temperature and, thus, has opposite temperature dependence than could be expected from the small polaron transformation.
Collapse
Affiliation(s)
- Andrius Gelzinis
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Sauletekio 9-III, 10222 Vilnius, Lithuania
| | - Leonas Valkunas
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Sauletekio 9-III, 10222 Vilnius, Lithuania
| |
Collapse
|
25
|
Abstract
Dynamics at molecule-metal interfaces are a subject of intense current interest and come in many different flavors of experiments: gas-phase scattering, chemisorption, electrochemistry, nanojunction transport, and heterogeneous catalysis, to name a few. These dynamics involve nuclear degrees of freedom entangled with many electronic degrees of freedom (in the metal), and as such there is always the possibility for nonadiabatic phenomena to appear: the nuclei do not necessarily need to move slower than the electrons to break the Born-Oppenheimer (BO) approximation. In this Feature Article, we review a set of dynamical methods developed recently to deal with such nonadiabatic phenomena at a metal surface, methods that serve as alternatives to Tully's independent electron surface hopping (IESH) model. In the weak molecule-metal coupling regime, a classical master equation (CME) can be derived and a simple surface hopping approach is proposed to propagate nuclear and electronic dynamics stochastically. In the strong molecule-metal interaction regime, a Fokker-Planck equation can be derived for the nuclear dynamics, with electronic DoFs incorporated into the overall friction and random force. Lastly, a broadened classical master equation (BCME) can interpolate between the weak and strong molecule-metal interactions. Here, we briefly review these methods and the relevant benchmarking data, showing in particular how the methods can be used to calculate nonequilibrium transport properties. We highlight several open questions and pose several avenues for future study.
Collapse
Affiliation(s)
- Wenjie Dou
- Department of Chemistry , University of California, Berkeley , Berkeley , California 94720 , United States
| | - Joseph E Subotnik
- Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
26
|
Zheng J, Xie Y, Jiang S, Long Y, Ning X, Lan Z. Initial sampling in symmetrical quasiclassical dynamics based on Li-Miller mapping Hamiltonian. Phys Chem Chem Phys 2019; 21:26502-26514. [PMID: 31777888 DOI: 10.1039/c9cp03975a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A symmetrical quasiclassical (SQC) dynamics approach based on the Li-Miller (LM) mapping Hamiltonian (SQC-LM) was employed to describe nonadiabatic dynamics. In principle, the different initial sampling procedures may be applied in the SQC-LM dynamics, and the results may be dependent on different initial sampling. We provided various initial sampling approaches and checked their influence. We selected two groups of models including site-exciton models for exciton dynamics and linear vibronic coupling models for conical intersections to test the performance of SQC-LM dynamics with the different initial sampling methods. The results were examined with respect to those of the accurate multiconfigurational time-dependent Hartree (MCTDH) quantum dynamics. For both the models, the SQC-LM method more-or-less gives a reasonable description of the population dynamics, while the influence of the initial sampling approaches on the final results is noticeable. It seems that the suitable initial sampling methods should be determined by the system under study. This indicates that the combination of the SQC-LM method with a suitable sampling approach may be a potential method in the description of nonadiabatic dynamics.
Collapse
Affiliation(s)
- Jie Zheng
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles Clothing, Qingdao University, Qingdao 266071, China.
| | | | | | | | | | | |
Collapse
|
27
|
Runeson JE, Richardson JO. Spin-mapping approach for nonadiabatic molecular dynamics. J Chem Phys 2019; 151:044119. [DOI: 10.1063/1.5100506] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Johan E. Runeson
- Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | | |
Collapse
|
28
|
Miao G, Subotnik J. Revisiting the Recoherence Problem in the Fewest Switches Surface Hopping Algorithm. J Phys Chem A 2019; 123:5428-5435. [DOI: 10.1021/acs.jpca.9b03188] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gaohan Miao
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Joseph Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
29
|
Cotton SJ, Miller WH. Trajectory-adjusted electronic zero point energy in classical Meyer-Miller vibronic dynamics: Symmetrical quasiclassical application to photodissociation. J Chem Phys 2019; 150:194110. [DOI: 10.1063/1.5094458] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Stephen J. Cotton
- Department of Chemistry and Kenneth S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - William H. Miller
- Department of Chemistry and Kenneth S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
30
|
Polley K, Loring RF. Two-dimensional vibronic spectra from classical trajectories. J Chem Phys 2019; 150:164114. [DOI: 10.1063/1.5093911] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Kritanjan Polley
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA
| | - Roger F. Loring
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
31
|
Peng J, Xie Y, Hu D, Lan Z. Performance of trajectory surface hopping method in the treatment of ultrafast intersystem crossing dynamics. J Chem Phys 2019; 150:164126. [PMID: 31042919 DOI: 10.1063/1.5079426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We carried out extensive studies to examine the performance of the fewest-switches surface hopping method in the description of the ultrafast intersystem crossing dynamic of various singlet-triplet (S-T) models by comparison with the results of the exact full quantum dynamics. Different implementation details and some derivative approaches were examined. As expected, it is better to perform the trajectory surface hopping calculations in the spin-adiabatic representation or by the local diabatization approach, instead of in the spin-diabatic representation. The surface hopping method provides reasonable results for the short-time dynamics in the S-T model with weak spin-orbital coupling (diabatic coupling), although it does not perform well in the models with strong spin-orbital coupling (diabatic coupling). When the system accesses the S-T potential energy crossing with rather high kinetic energy, the trajectory surface hopping method tends to produce a good description of the nonadiabatic intersystem crossing dynamics. The impact of the decoherence correction on the performance of the trajectory surface hopping is system dependent. It improves the result accuracy in many cases, while its influence may also be minor for other cases.
Collapse
Affiliation(s)
- Jiawei Peng
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China
| | - Yu Xie
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China
| | - Deping Hu
- MOE Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhenggang Lan
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
32
|
Cotton SJ, Miller WH. A symmetrical quasi-classical windowing model for the molecular dynamics treatment of non-adiabatic processes involving many electronic states. J Chem Phys 2019; 150:104101. [PMID: 30876359 DOI: 10.1063/1.5087160] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the previous work of Cotton and Miller [J. Chem. Phys. 145, 144108 (2016)], an improved symmetrical quasi-classical (SQC) windowing model for the molecular dynamics treatment of electronically non-adiabatic processes was developed in order to extend the original SQC approach to the regime of weak-coupling between the electronic states. The improved SQC model-based on triangular-shaped window functions-handled the weak-coupling limit as intended and, as a bonus, was shown to be universally superior to the original square/histogram SQC windowing model over all coupling regimes, but only for treating systems of two electronic states, as no higher-dimensional generalization was evident. This paper, therefore, provides a generalized version for treating an arbitrary number of electronic states. By construction, the benefits of the two-state triangle model-seamless treatment of weak-coupling and improved accuracy in all coupling regimes-carry over to the generalized version. Far more significant, however, is that the new model provides vastly improved windowing statistics in higher dimensions, enabling the SQC simulation of electronically non-adiabatic processes involving many more relevant electronic states than was previously practical. Capabilities are demonstrated with respect to a 24 pigment trimer model of the Fenna-Matthews-Olson light-harvesting complex, as well as treating similar 48- and 96-electronic state model problems, illustrating the scaling properties of the new method.
Collapse
Affiliation(s)
- Stephen J Cotton
- Department of Chemistry and Kenneth S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - William H Miller
- Department of Chemistry and Kenneth S. Pitzer Center for Theoretical Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
33
|
Mandal A, Sandoval C. JS, Shakib FA, Huo P. Quasi-Diabatic Propagation Scheme for Direct Simulation of Proton-Coupled Electron Transfer Reaction. J Phys Chem A 2019; 123:2470-2482. [DOI: 10.1021/acs.jpca.9b00077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Arkajit Mandal
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| | - Juan S. Sandoval C.
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| | - Farnaz A. Shakib
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| | - Pengfei Huo
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| |
Collapse
|
34
|
Chen HT, Li TE, Sukharev M, Nitzan A, Subotnik JE. Ehrenfest+R dynamics. I. A mixed quantum-classical electrodynamics simulation of spontaneous emission. J Chem Phys 2019; 150:044102. [PMID: 30709254 DOI: 10.1063/1.5057365] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The dynamics of an electronic system interacting with an electromagnetic field is investigated within mixed quantum-classical theory. Beyond the classical path approximation (where we ignore all feedback from the electronic system on the photon field), we consider all electron-photon interactions explicitly according to Ehrenfest (i.e., mean-field) dynamics and a set of coupled Maxwell-Liouville equations. Because Ehrenfest dynamics cannot capture certain quantum features of the photon field correctly, we propose a new Ehrenfest+R method that can recover (by construction) spontaneous emission while also distinguishing between electromagnetic fluctuations and coherent emission.
Collapse
Affiliation(s)
- Hsing-Ta Chen
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Tao E Li
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Maxim Sukharev
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| | - Abraham Nitzan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Joseph E Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
35
|
Xie Y, Zheng J, Lan Z. Performance evaluation of the symmetrical quasi-classical dynamics method based on Meyer-Miller mapping Hamiltonian in the treatment of site-exciton models. J Chem Phys 2018; 149:174105. [DOI: 10.1063/1.5047002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yu Xie
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
- The Environmental Research Institute; MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Jie Zheng
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
| | - Zhenggang Lan
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
- The Environmental Research Institute; MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
36
|
Sandoval C. JS, Mandal A, Huo P. Symmetric quasi-classical dynamics with quasi-diabatic propagation scheme. J Chem Phys 2018; 149:044115. [DOI: 10.1063/1.5036787] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
| | - Arkajit Mandal
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, USA
| | - Pengfei Huo
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, USA
| |
Collapse
|
37
|
Provazza J, Coker DF. Communication: Symmetrical quasi-classical analysis of linear optical spectroscopy. J Chem Phys 2018; 148:181102. [DOI: 10.1063/1.5031788] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Justin Provazza
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA
| | - David F. Coker
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA
| |
Collapse
|
38
|
Kananenka AA, Hsieh CY, Cao J, Geva E. Nonadiabatic Dynamics via the Symmetrical Quasi-Classical Method in the Presence of Anharmonicity. J Phys Chem Lett 2018; 9:319-326. [PMID: 29239614 DOI: 10.1021/acs.jpclett.7b03002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The symmetrical quasi-classical (SQC) method recently proposed by Miller and Cotton allows one to simulate nonadiabatic dynamics based on an algorithm with classical-like scaling with respect to system size. This is made possible by casting the electronic degrees of freedom in terms of mapping variables that can be propagated in a classical-like manner. While SQC was shown to be rather accurate when applied to benchmark models with harmonic electronic potential energy surfaces, it was also found to become inaccurate and to suffer numerical instabilities when applied to anharmonic systems. In this paper, we propose an extended SQC (E-SQC) methodology for overcoming those discrepancies by describing the anharmonic nuclear modes, which are coupled to the electronic degrees of freedom, in terms of classical-like mapping variables. The accuracy of E-SQC relative to standard SQC is demonstrated on benchmark models with quartic and Morse potential energy surfaces.
Collapse
Affiliation(s)
- Alexei A Kananenka
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Chang-Yu Hsieh
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02319, United States
- Singapore-MIT Alliance for Research and Technology (SMART) Center , Singapore 487373
| | - Jianshu Cao
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02319, United States
- Singapore-MIT Alliance for Research and Technology (SMART) Center , Singapore 487373
| | | |
Collapse
|
39
|
Jain A, Subotnik JE. Vibrational Energy Relaxation: A Benchmark for Mixed Quantum–Classical Methods. J Phys Chem A 2017; 122:16-27. [DOI: 10.1021/acs.jpca.7b09018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Amber Jain
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Joseph E. Subotnik
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
40
|
Dou W, Subotnik JE. A Generalized Surface Hopping Algorithm To Model Nonadiabatic Dynamics near Metal Surfaces: The Case of Multiple Electronic Orbitals. J Chem Theory Comput 2017; 13:2430-2439. [DOI: 10.1021/acs.jctc.7b00094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wenjie Dou
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Joseph E. Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
41
|
Abstract
This paper summarizes the contributions to the Faraday Discussion on reaction rate theory. The topics range from contemporary usage of transition state theory, including rare event sampling, to instantons and non-adiabatic dynamics.
Collapse
Affiliation(s)
- David Chandler
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - David E Manolopoulos
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, UK
| |
Collapse
|
42
|
Schubert A, Falvo C, Meier C. Mixed quantum-classical simulations of the vibrational relaxation of photolyzed carbon monoxide in a hemoprotein. J Chem Phys 2016; 145:054108. [DOI: 10.1063/1.4959859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Alexander Schubert
- Laboratoire Collisions Agrégats et Réactivité, IRSAMC, UMR CNRS 5589, Université Paul Sabatier, 31062 Toulouse, France
| | - Cyril Falvo
- Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Christoph Meier
- Laboratoire Collisions Agrégats et Réactivité, IRSAMC, UMR CNRS 5589, Université Paul Sabatier, 31062 Toulouse, France
| |
Collapse
|
43
|
Dou W, Subotnik JE. A many-body states picture of electronic friction: The case of multiple orbitals and multiple electronic states. J Chem Phys 2016; 145:054102. [DOI: 10.1063/1.4959604] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Wenjie Dou
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Joseph E. Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
44
|
Miller WH, Cotton SJ. Classical molecular dynamics simulation of electronically non-adiabatic processes. Faraday Discuss 2016; 195:9-30. [DOI: 10.1039/c6fd00181e] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Both classical and quantum mechanics (as well as hybrids thereof, i.e., semiclassical approaches) find widespread use in simulating dynamical processes in molecular systems. For large chemical systems, however, which involve potential energy surfaces (PES) of general/arbitrary form, it is usually the case that only classical molecular dynamics (MD) approaches are feasible, and their use is thus ubiquitous nowadays, at least for chemical processes involving dynamics on a single PES (i.e., within a single Born–Oppenheimer electronic state). This paper reviews recent developments in an approach which extends standard classical MD methods to the treatment of electronically non-adiabatic processes, i.e., those that involve transitions between different electronic states. The approach treats nuclear and electronic degrees of freedom (DOF) equivalently (i.e., by classical mechanics, thereby retaining the simplicity of standard MD), and provides “quantization” of the electronic states through a symmetrical quasi-classical (SQC) windowing model. The approach is seen to be capable of treating extreme regimes of strong and weak coupling between the electronic states, as well as accurately describing coherence effects in the electronic DOF (including the de-coherence of such effects caused by coupling to the nuclear DOF). A survey of recent applications is presented to illustrate the performance of the approach. Also described is a newly developed variation on the original SQC model (found universally superior to the original) and a general extension of the SQC model to obtain the full electronic density matrix (at no additional cost/complexity).
Collapse
Affiliation(s)
- William H. Miller
- Department of Chemistry and Kenneth S. Pitzer Center for Theoretical Chemistry
- University of California
- and Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
| | - Stephen J. Cotton
- Department of Chemistry and Kenneth S. Pitzer Center for Theoretical Chemistry
- University of California
- and Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
| |
Collapse
|