1
|
Fajiculay E, Hsu CP. Localization of Noise in Biochemical Networks. ACS OMEGA 2023; 8:3043-3056. [PMID: 36713703 PMCID: PMC9878546 DOI: 10.1021/acsomega.2c06113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/27/2022] [Indexed: 06/18/2023]
Abstract
Noise, or uncertainty in biochemical networks, has become an important aspect of many biological problems. Noise can arise and propagate from external factors and probabilistic chemical reactions occurring in small cellular compartments. For species survival, it is important to regulate such uncertainties in executing vital cell functions. Regulated noise can improve adaptability, whereas uncontrolled noise can cause diseases. Simulation can provide a detailed analysis of uncertainties, but parameters such as rate constants and initial conditions are usually unknown. A general understanding of noise dynamics from the perspective of network structure is highly desirable. In this study, we extended the previously developed law of localization for characterizing noise in terms of (co)variances and developed noise localization theory. With linear noise approximation, we can expand a biochemical network into an extended set of differential equations representing a fictitious network for pseudo-components consisting of variances and covariances, together with chemical species. Through localization analysis, perturbation responses at the steady state of pseudo-components can be summarized into a sensitivity matrix that only requires knowledge of network topology. Our work allows identification of buffering structures at the level of species, variances, and covariances and can provide insights into noise flow under non-steady-state conditions in the form of a pseudo-chemical reaction. We tested noise localization in various systems, and here we discuss its implications and potential applications. Results show that this theory is potentially applicable in discriminating models, scanning network topologies with interesting noise behavior, and designing and perturbing networks with the desired response.
Collapse
Affiliation(s)
- Erickson Fajiculay
- Institute
of Chemistry, Academia Sinica, Taipei115201, Taiwan
- Bioinformatics
Program, Institute of Information Science, Taiwan International Graduate
Program, Academia Sinica, Taipei115201, Taiwan
- Institute
of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu300044, Taiwan
| | - Chao-Ping Hsu
- Institute
of Chemistry, Academia Sinica, Taipei115201, Taiwan
- Bioinformatics
Program, Institute of Information Science, Taiwan International Graduate
Program, Academia Sinica, Taipei115201, Taiwan
- Physics
Division, National Center for Theoretical
Sciences, Taipei106319, Taiwan
- Genome
and Systems Biology Degree Program, National
Taiwan University, Taipei106319, Taiwan
| |
Collapse
|
2
|
Röckner M, Sun X, Xie Y. Strong convergence order for slow–fast McKean–Vlasov stochastic differential equations. ANNALES DE L'INSTITUT HENRI POINCARÉ, PROBABILITÉS ET STATISTIQUES 2021. [DOI: 10.1214/20-aihp1087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Michael Röckner
- Fakultät für Mathematik, Universität Bielefeld, D-33501 Bielefeld, Germany, and Academy of Mathematics and Systems Science, Chinese Academy of Sciences (CAS), Beijing, 100190, China
| | - Xiaobin Sun
- School of Mathematics and Statistics and Research Institute of Mathematical Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yingchao Xie
- School of Mathematics and Statistics and Research Institute of Mathematical Science, Jiangsu Normal University, Xuzhou, 221116, China
| |
Collapse
|
3
|
Vastola JJ, Holmes WR. Chemical Langevin equation: A path-integral view of Gillespie's derivation. Phys Rev E 2020; 101:032417. [PMID: 32289899 DOI: 10.1103/physreve.101.032417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/25/2020] [Indexed: 12/16/2022]
Abstract
In 2000, Gillespie rehabilitated the chemical Langevin equation (CLE) by describing two conditions that must be satisfied for it to yield a valid approximation of the chemical master equation (CME). In this work, we construct an original path-integral description of the CME and show how applying Gillespie's two conditions to it directly leads to a path-integral equivalent to the CLE. We compare this approach to the path-integral equivalent of a large system size derivation and show that they are qualitatively different. In particular, both approaches involve converting many sums into many integrals, and the difference between the two methods is essentially the difference between using the Euler-Maclaurin formula and using Riemann sums. Our results shed light on how path integrals can be used to conceptualize coarse-graining biochemical systems and are readily generalizable.
Collapse
Affiliation(s)
- John J Vastola
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, USA and Quantitative Systems Biology Center, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - William R Holmes
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, USA; Quantitative Systems Biology Center, Vanderbilt University, Nashville, Tennessee 37235, USA; and Department of Mathematics, Vanderbilt University, Nashville, Tennessee 37235, USA
| |
Collapse
|
4
|
Han X, Valorani M, Najm HN. Explicit time integration of the stiff chemical Langevin equations using computational singular perturbation. J Chem Phys 2019; 150:194101. [PMID: 31117798 DOI: 10.1063/1.5093207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A stable explicit time-scale splitting algorithm for stiff chemical Langevin equations (CLEs) is developed, based on the concept of computational singular perturbation. The drift term of the CLE is projected onto basis vectors that span the fast and slow subdomains. The corresponding fast modes exhaust quickly, in the mean sense, and the system state then evolves, with a mean drift controlled by slow modes, on a random manifold. The drift-driven time evolution of the state due to fast exhausted modes is modeled algebraically as an exponential decay process, while that due to slow drift modes and diffusional processes is integrated explicitly. This allows time integration step sizes much larger than those required by typical explicit numerical methods for stiff stochastic differential equations. The algorithm is motivated and discussed, and extensive numerical experiments are conducted to illustrate its accuracy and stability with a number of model systems.
Collapse
Affiliation(s)
- Xiaoying Han
- Department of Mathematics and Statistics, Auburn University, Auburn, Alabama 36849, USA
| | - Mauro Valorani
- Department of Mechanical and Aerospace Engineering, Sapienza University, 18-00184 Rome, Italy
| | - Habib N Najm
- Sandia National Laboratories, P.O. Box 969, MS 9051, Livermore, California 94551, USA
| |
Collapse
|
5
|
Avanzini F, Moro GJ. Quantum Stochastic Trajectories: The Fokker-Planck-Bohm Equation Driven by the Reduced Density Matrix. J Phys Chem A 2018; 122:2751-2763. [PMID: 29466006 DOI: 10.1021/acs.jpca.7b11943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The quantum molecular trajectory is the deterministic trajectory, arising from the Bohm theory, that describes the instantaneous positions of the nuclei of molecules by assuring the agreement with the predictions of quantum mechanics. Therefore, it provides the suitable framework for representing the geometry and the motions of molecules without neglecting their quantum nature. However, the quantum molecular trajectory is extremely demanding from the computational point of view, and this strongly limits its applications. To overcome such a drawback, we derive a stochastic representation of the quantum molecular trajectory, through projection operator techniques, for the degrees of freedom of an open quantum system. The resulting Fokker-Planck operator is parametrically dependent upon the reduced density matrix of the open system. Because of the pilot role played by the reduced density matrix, this stochastic approach is able to represent accurately the main features of the open system motions both at equilibrium and out of equilibrium with the environment. To verify this procedure, the predictions of the stochastic and deterministic representation are compared for a model system of six interacting harmonic oscillators, where one oscillator is taken as the open quantum system of interest. The undeniable advantage of the stochastic approach is that of providing a simplified and self-contained representation of the dynamics of the open system coordinates. Furthermore, it can be employed to study the out of equilibrium dynamics and the relaxation of quantum molecular motions during photoinduced processes, like photoinduced conformational changes and proton transfers.
Collapse
Affiliation(s)
- Francesco Avanzini
- Dipartimento di Scienze Chimiche , Università di Padova , via Marzolo 1 , 35131 Padova , Italy
| | - Giorgio J Moro
- Dipartimento di Scienze Chimiche , Università di Padova , via Marzolo 1 , 35131 Padova , Italy
| |
Collapse
|
6
|
Herath N, Del Vecchio D. Reduced linear noise approximation for biochemical reaction networks with time-scale separation: The stochastic tQSSA+. J Chem Phys 2018. [DOI: 10.1063/1.5012752] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Narmada Herath
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Domitilla Del Vecchio
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
7
|
Avanzini F, Moro GJ. Quantum stochastic trajectories: the Smoluchowski-Bohm equation. Phys Chem Chem Phys 2018; 20:165-179. [PMID: 29181466 DOI: 10.1039/c7cp06071h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Molecular systems are quantum systems, but the complete characterization of molecular motions within a fully quantum framework might appear to be an unfeasible task because it would require that the actual nuclear positions are established at any time. One would like to use a quantum molecular trajectory that defines the instantaneous nuclear positions and satisfies the predictions of quantum mechanics in terms of its statistical properties. Even though it can be proven that the single Bohm trajectory provides a representation of the quantum molecular trajectory, this solves the issue only on a theoretical ground: exact solutions of the Schrödinger-Bohm dynamical system are extremely computationally demanding. Therefore, we derive a stochastic equation of Smoluchowski type from the Schrödinger-Bohm dynamics, through projection operator techniques, in order to characterize the molecular motions of open quantum systems. The main quantum features of the motions emerge from the equilibrium distribution, i.e., the wave function's squared modulus integrated on the environment degrees of freedom. Furthermore, we verify the accuracy of the stochastic equation by comparing its predictions with those of the deterministic dynamics for a model system of six interacting harmonic oscillators. The indisputable advantage of this full quantum mechanical approach is that of representing the molecular dynamics, which controls important phenomena like vibrational relaxation, conformational transitions and activated processes, in a self consistent way and at the low computational cost of solving simple stochastic equations.
Collapse
Affiliation(s)
- Francesco Avanzini
- Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, 35131 Padova, Italy.
| | | |
Collapse
|