1
|
Kirschbaum T, Wang X, Bande A. Ground and excited state charge transfer at aqueous nanodiamonds. J Comput Chem 2024; 45:710-718. [PMID: 38109424 DOI: 10.1002/jcc.27279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/03/2023] [Accepted: 11/25/2023] [Indexed: 12/20/2023]
Abstract
Nanodiamonds (NDs) are unique carbonaceous materials with exceptionally high stability, hardness, and notable electronic properties. Their applications in photocatalysis, biomedicine, and energy materials are usually carried out in aqueous environments, where they interact with aqueous adsorbates. Especially, electron density may rearrange from the diamond material toward oxidative adsorbates such as oxygen, which is known as charge transfer doping. In this article, we quantify the charge transfer doping for NDs with inhomogeneous surface coverings (hydroxyl, fluorine, and amorphous carbon), as well as NDs doped with heteroatoms (B, Si, N) using hybrid density functional theory (DFT) calculations. The transfer doping magnitude is largely determined by the NDs' highest occupied molecular orbital energies, which can in turn be modified by the surface covering and doping. However, local modifications of the ND structures do not have any local effects on the magnitude of the charge transfer. We furthermore analyze the impact of aqueous adsorbates on the excited states of an aqueous ND in the context of photocatalysis via time-dependent DFT. Here, we find that the excited electrons are biased to move in the direction of the respective oxidative adsorbate. Surprisingly, we find that also unreactive species such as nitrous oxide may attract the excited electrons, which is probably due to the positive partial charge that is induced by the local N2 O solvation geometry.
Collapse
Affiliation(s)
- Thorren Kirschbaum
- Theory of Electron Dynamics and Spectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
| | - Xiangfei Wang
- Theory of Electron Dynamics and Spectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Annika Bande
- Theory of Electron Dynamics and Spectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
- Institute of Inorganic Chemistry, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
2
|
Wang X, Krause P, Kirschbaum T, Palczynski K, Dzubiella J, Bande A. Photo-excited charge transfer from adamantane to electronic bound states in water. Phys Chem Chem Phys 2024; 26:8158-8176. [PMID: 38380443 DOI: 10.1039/d3cp04602h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Aqueous nanodiamonds illuminated by UV light produce free solvated electrons, which may drive high-energy reduction reactions in water. However, the influence of water conformations on the excited-state electron-transfer mechanism are still under debate. In this work, we offer a theoretical study of charge-transfer states in adamantane-water structures obtained by linear-response time-dependent density-functional theory. Small water clusters with broken hydrogen bonds are found to efficiently bind the electron from adamantane. A distinction is made with respect to the nature of the water clusters: some bind the electron in a water cavity, others along a strong permanent total dipole. These two types of bound states are more strongly binding, the higher their electron affinity and their positive electrostatic potential, the latter being dominated by the energy of the lowest unoccupied molecular orbital of the isolated water clusters. Structural sampling in a thermal equilibrium at room temperature via molecular dynamics snapshots confirms under which conditions the underlying waters clusters can occur and verifies that broken hydrogen bonds in the water network close to adamantane can create traps for the solvated electron.
Collapse
Affiliation(s)
- Xiangfei Wang
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Pascal Krause
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.
| | - Thorren Kirschbaum
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.
- Institute of Mathematics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Karol Palczynski
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.
| | - Joachim Dzubiella
- Applied Theoretical Physics - Computational Physics, Albert-Ludwigs-Universität Freiburg, Hermann-Herder Straße 3, 79104 Freiburg, Germany.
| | - Annika Bande
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstr. 9, 30167 Hannover, Germany
| |
Collapse
|
3
|
Tremblay JC, Blanc A, Krause P, Giri S, Dixit G. Probing Electronic Symmetry Reduction during Charge Migration via Time-Resolved X-Ray Diffraction. Chemphyschem 2023; 24:e202200463. [PMID: 36166371 DOI: 10.1002/cphc.202200463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/19/2022] [Indexed: 01/19/2023]
Abstract
The present work focuses on probing ultrafast charge migration after symmetry-breaking excitation using ultrashort laser pulses. LiCN is chosen as prototypical system because it can be oriented in the laboratory frame and it possesses optically-accessible charge transfer states at low energies. The charge migration is simulated within the hybrid time-dependent density functional theory/configuration interaction framework. Time-resolved electronic current densities and simulated time-resolved x-ray diffraction signals are used to unravel the mechanism of charge migration. Our simulations demonstrate that specific choices of laser polarization lead to a control over the symmetry of the induced charge migration. Moreover, time-resolved x-ray diffraction signals are shown to encode transient symmetry reduction at intermediate times.
Collapse
Affiliation(s)
| | - Ambre Blanc
- CNRS-Université de Lorraine, LPCT, 57070, Metz, France
| | - Pascal Krause
- Theory of Electron Dynamics and Spectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner Platz 1, 14109, Berlin, Germany
| | - Sucharita Giri
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Gopal Dixit
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
4
|
Gemeri D, Tremblay J, Pastore M, Bahmann H. Electronic structure, optical properties, and electron dynamics in organic dye-sensitized TiO2 interfaces by local hybrid density functionals. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Langkabel F, Albrecht PA, Bande A, Krause P. Making Optical Excitations Visible - an Exciton Wavefunction Extension to the Time-dependent Configuration Interaction Method. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Krause P, Tremblay JC, Bande A. Atomistic Simulations of Laser-Controlled Exciton Transfer and Stabilization in Symmetric Double Quantum Dots. J Phys Chem A 2021; 125:4793-4804. [PMID: 34047560 DOI: 10.1021/acs.jpca.1c02501] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The creation, transfer, and stabilization of localized excitations are studied in a donor-acceptor Frenkel exciton model in an atomistic treatment of reduced-size double quantum dots (QDs) of various sizes. The explicit time-dependent dynamics simulations carried out by hybrid time-dependent density functional theory/configuration interaction show that laser-controlled hole trapping in stacked, coupled germanium/silicon quantum dots can be achieved by a UV/IR pump-dump pulse sequence. The first UV excitation creates an exciton localized on the topmost QD and after some coherent transfer time, an IR pulse dumps and localizes an exciton in the bottom QD. While hole trapping is observed in each excitation step, we show that the stability of the localized electron depends on its multiexcitonic character. We present how size and geometry variations of three Ge/Si nanocrystals influence transfer times and thus the efficiency of laser-driven populations of the electron-hole pair states.
Collapse
Affiliation(s)
- Pascal Krause
- Theory of Electron Dynamics and Spectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner Platz 1, 14109 Berlin, Germany.,Physical and Theoretical Chemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Jean Christophe Tremblay
- Laboratoire de Physique et Chimie Théoriques, UMR7019, CNRS-Université de Lorraine, 1 Bd Arago, 57070 Metz, France
| | - Annika Bande
- Theory of Electron Dynamics and Spectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner Platz 1, 14109 Berlin, Germany
| |
Collapse
|
7
|
Tremblay JC, Pohl V, Hermann G, Dixit G. Time-resolved imaging of correlation-driven charge migration in light-induced molecular magnets by X-ray scattering. Faraday Discuss 2021; 228:82-103. [PMID: 33564806 DOI: 10.1039/d0fd00116c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this contribution, we investigate the effect of correlation-induced charge migration on the stability of light-induced ring currents, with potential application as molecular magnets. Laser-driven electron dynamics is simulated using density-matrix based time-dependent configuration interaction. The time-dependent many-electron wave packet is used to reconstruct the transient electronic current flux density after excitation of different target states. These reveal ultrafast correlation-driven fluctuations of the charge migration over the molecular scaffold, sometimes leading to large variations of the induced magnetic field. The effect of electron correlation and non-local pure dephasing on the charge migration pattern is further investigated by means of time-resolved X-ray scattering, providing a connection between theoretical predictions of the charge migration mechanism and experimental observables.
Collapse
Affiliation(s)
- Jean Christophe Tremblay
- CNRS/Université de Lorraine, Laboratoire de Physique et Chimie Théoriques, 1 Bd Arago, 57070 Metz, France.
| | - Vincent Pohl
- QoD Technologies GmbH, c/o Freie Universität Berlin, Altensteinstr. 40, 14195 Berlin, Germany
| | - Gunter Hermann
- QoD Technologies GmbH, c/o Freie Universität Berlin, Altensteinstr. 40, 14195 Berlin, Germany
| | - Gopal Dixit
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
8
|
Liu C, Manz J, Tremblay JC. Laser-Induced Electron Symmetry Restoration in Oriented Molecules Made Simple. J Phys Chem Lett 2021; 12:4421-4427. [PMID: 33950690 DOI: 10.1021/acs.jpclett.1c00645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Electron symmetry determines many important properties of molecules, from selection rules for photoelectron spectroscopy to symmetry selection rules for chemical reactions. The original electron symmetry is broken if a laser pulse changes the initial state, typically the ground state g, to a superposition of g and an excited state e with different irreducible representations (IRREPs). Quantum dynamics simulations for two examples, the oriented benzene and LiCN molecules, show that the original electron symmetry can be restored by means of a reoptimized π-laser pulse which transfers the component in the excited state e to another state e', or to several others with the same IRREP as the ground state. This method lends itself to much easier experimental applications than all previous ones because it allows the healing of electron symmetry immediately, without any attosecond constraint on the timing of the second pulse.
Collapse
Affiliation(s)
- ChunMei Liu
- College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jörn Manz
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Jean Christophe Tremblay
- Laboratoire de Physique et Chimie Théoriques, CNRS-Université de Lorraine, UMR 7019, 57070 Metz, France
| |
Collapse
|
9
|
Electron Symmetry Breaking during Attosecond Charge Migration Induced by Laser Pulses: Point Group Analyses for Quantum Dynamics. Symmetry (Basel) 2021. [DOI: 10.3390/sym13020205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Quantum simulations of the electron dynamics of oriented benzene and Mg-porphyrin driven by short (<10 fs) laser pulses yield electron symmetry breaking during attosecond charge migration. Nuclear motions are negligible on this time domain, i.e., the point group symmetries G = D6h and D4h of the nuclear scaffolds are conserved. At the same time, the symmetries of the one-electron densities are broken, however, to specific subgroups of G for the excited superposition states. These subgroups depend on the polarization and on the electric fields of the laser pulses. They can be determined either by inspection of the symmetry elements of the one-electron density which represents charge migration after the laser pulse, or by a new and more efficient group-theoretical approach. The results agree perfectly with each other. They suggest laser control of symmetry breaking. The choice of the target subgroup is restricted, however, by a new theorem, i.e., it must contain the symmetry group of the time-dependent electronic Hamiltonian of the oriented molecule interacting with the laser pulse(s). This theorem can also be applied to confirm or to falsify complementary suggestions of electron symmetry breaking by laser pulses.
Collapse
|
10
|
Haase D, Manz J, Tremblay JC. Attosecond Charge Migration Can Break Electron Symmetry While Conserving Nuclear Symmetry. J Phys Chem A 2020; 124:3329-3334. [DOI: 10.1021/acs.jpca.0c00404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dietrich Haase
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Jörn Manz
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Jean Christophe Tremblay
- Laboratoire de Physique et Chimie Théoriques, CNRS-Université de Lorraine, UMR7019, 57070 Metz, France
| |
Collapse
|
11
|
Saalfrank P, Bedurke F, Heide C, Klamroth T, Klinkusch S, Krause P, Nest M, Tremblay JC. Molecular attochemistry: Correlated electron dynamics driven by light. ADVANCES IN QUANTUM CHEMISTRY 2020. [DOI: 10.1016/bs.aiq.2020.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Coccia E, Troiani F, Corni S. Probing quantum coherence in ultrafast molecular processes: Anab initioapproach to open quantum systems. J Chem Phys 2018; 148:204112. [DOI: 10.1063/1.5022976] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Emanuele Coccia
- Department of Chemical Sciences, University of Padova, via Marzolo 1, Padova, Italy
- CNR Institute of Nanoscience, via Campi 213/A, Modena, Italy
| | - Filippo Troiani
- CNR Institute of Nanoscience, via Campi 213/A, Modena, Italy
| | - Stefano Corni
- Department of Chemical Sciences, University of Padova, via Marzolo 1, Padova, Italy
- CNR Institute of Nanoscience, via Campi 213/A, Modena, Italy
| |
Collapse
|
13
|
Ulusoy IS, Stewart Z, Wilson AK. The role of the CI expansion length in time-dependent studies. J Chem Phys 2018; 148:014107. [DOI: 10.1063/1.5004412] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Inga S. Ulusoy
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824-1322, USA
| | - Zachary Stewart
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824-1322, USA
| | - Angela K. Wilson
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824-1322, USA
| |
Collapse
|
14
|
Hermann G, Pohl V, Tremblay JC. An open-source framework for analyzing N
-electron dynamics. II. Hybrid density functional theory/configuration interaction methodology. J Comput Chem 2017; 38:2378-2387. [DOI: 10.1002/jcc.24896] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Gunter Hermann
- Institut für Chemie und Biochemie, Freie Universität Berlin; Takustraße 3, Berlin 14195 Germany
| | - Vincent Pohl
- Institut für Chemie und Biochemie, Freie Universität Berlin; Takustraße 3, Berlin 14195 Germany
| | | |
Collapse
|
15
|
Pohl V, Hermann G, Tremblay JC. An open-source framework for analyzing N
-electron dynamics. I. Multideterminantal wave functions. J Comput Chem 2017; 38:1515-1527. [DOI: 10.1002/jcc.24792] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Vincent Pohl
- Institut für Chemie und Biochemie, Freie Universität Berlin; Takustraße 3 Berlin 14195 Germany
| | - Gunter Hermann
- Institut für Chemie und Biochemie, Freie Universität Berlin; Takustraße 3 Berlin 14195 Germany
| | | |
Collapse
|
16
|
Hermann G, Tremblay JC. Ultrafast photoelectron migration in dye-sensitized solar cells: Influence of the binding mode and many-body interactions. J Chem Phys 2016; 145:174704. [PMID: 27825243 DOI: 10.1063/1.4966260] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In the present contribution, the ultrafast photoinduced electron migration dynamics at the interface between an alizarin dye and an anatase TiO2 thin film is investigated from first principles. Comparison between a time-dependent many-electron configuration interaction ansatz and a single active electron approach sheds light on the importance of many-body effects, stemming from uniquely defined initial conditions prior to photoexcitation. Particular emphasis is put on understanding the influence of the binding mode on the migration process. The dynamics is analyzed on the basis of a recently introduced toolset in the form of electron yields, electronic fluxes, and flux densities, to reveal microscopic details of the electron migration mechanism. From the many-body perspective, insight into the nature of electron-electron and hole-hole interactions during the charge transfer process is obtained. The present results reveal that the single active electron approach yields quantitatively and phenomenologically similar results as the many-electron ansatz. Furthermore, the charge migration processes in the dye-TiO2 model clusters with different binding modes exhibit similar mechanistic pathways but on largely different time scales.
Collapse
Affiliation(s)
- G Hermann
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - J C Tremblay
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| |
Collapse
|