1
|
Loos PF, Jacquemin D. A mountaineering strategy to excited states: Accurate vertical transition energies and benchmarks for substituted benzenes. J Comput Chem 2024; 45:1791-1805. [PMID: 38661240 DOI: 10.1002/jcc.27358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 04/26/2024]
Abstract
In an effort to expand the existing QUEST database of accurate vertical transition energies [Véril et al. WIREs Comput. Mol. Sci. 2021, 11, e1517], we have modeled more than 100 electronic excited states of different natures (local, charge-transfer, Rydberg, singlet, and triplet) in a dozen of mono- and di-substituted benzenes, including aniline, benzonitrile, chlorobenzene, fluorobenzene, nitrobenzene, among others. To establish theoretical best estimates for these vertical excitation energies, we have employed advanced coupled-cluster methods including iterative triples (CC3 and CCSDT) and, when technically possible, iterative quadruples (CC4). These high-level computational approaches provide a robust foundation for benchmarking a series of popular wave function methods. The evaluated methods all include contributions from double excitations (ADC(2), CC2, CCSD, CIS(D), EOM-MP2, STEOM-CCSD), along with schemes that also incorporate perturbative or iterative triples (ADC(3), CCSDR(3), CCSD(T)(a) ⋆ , and CCSDT-3). This systematic exploration not only broadens the scope of the QUEST database but also facilitates a rigorous assessment of different theoretical approaches in the framework of a homologous chemical series, offering valuable insights into the accuracy and reliability of these methods in such cases. We found that both ADC(2.5) and CCSDT-3 can provide very consistent estimates, whereas among less expensive methods SCS-CC2 is likely the most effective approach. Importantly, we show that some lower order methods may offer reasonable trends in the homologous series while providing quite large average errors, and vice versa. Consequently, benchmarking the accuracy of a model based solely on absolute transition energies may not be meaningful for applications involving a series of similar compounds.
Collapse
Affiliation(s)
- Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, France
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, Nantes, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
2
|
Palmer MH, Hoffmann SV, Jones NC, Coreno M, de Simone M, Grazioli C, Aitken RA, Perrault L, Patterson ILJ. The ultraviolet and vacuum ultraviolet absorption spectrum of gamma-pyrone; the singlet states studied by configuration interaction and density functional calculations. J Chem Phys 2024; 160:054305. [PMID: 38341687 DOI: 10.1063/5.0186919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/05/2024] [Indexed: 02/13/2024] Open
Abstract
A synchrotron based vacuum ultraviolet absorption spectrum for γ-pyrone has been interpreted in terms of singlet excited electronic states using a variety of coupled cluster, configuration interaction, and density functional calculations. The extremely weak spectral onset at 3.557 eV shows eight vibrational peaks, which following previous analyses, are attributed to a forbidden 1A2 state. A contrasting broad peak with a maximum at 5.381 eV has a relatively high cross-section of 30 Mb; this arises from three overlapping states, where a 1A1 state dominates over progressively weaker 1B2 and 1B1 states. After fitting the second band to a polynomial Gaussian function and plotting the regular residuals over 20 vibrational peaks, we have had limited success in analyzing this fine structure. However, the small separation between these three states clearly shows that their vibrational satellites must overlap. Singlet valence and Rydberg state vibrational profiles were determined by configuration interaction using the CAM-B3LYP density functional. Vibrational analysis using both the Franck-Condon and Herzberg-Teller procedures showed that both procedures contributed to the profiles. Theoretical Rydberg states were evaluated by a highly focused CI procedure. The superposition of the lowest photoelectron spectral band on the vacuum ultraviolet spectrum near 6.4 eV shows that the 3s and 3p Rydberg states based on the 2B2 ionic state are present; those based on the other low-lying ionic state (X2B1) are destroyed by broadening; this is a dramatic extension of the broadening previously witnessed in our studies of halogenobenzenes.
Collapse
Affiliation(s)
- Michael H Palmer
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ Scotland, United Kingdom
| | - Søren Vrønning Hoffmann
- ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
| | - Nykola C Jones
- ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
| | - Marcello Coreno
- ISM-CNR, Instituto di Struttura della Materia, LD2 Unit, 34149 Trieste, Italy
| | - Monica de Simone
- IOM-CNR, Istituto Officina dei Materiali, Basovizza SS-14, Km 163.5, 34149 Trieste, Italy
| | - Cesare Grazioli
- IOM-CNR, Istituto Officina dei Materiali, Basovizza SS-14, Km 163.5, 34149 Trieste, Italy
| | - R Alan Aitken
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST Scotland, United Kingdom
| | - Loëlia Perrault
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST Scotland, United Kingdom
| | - Iain L J Patterson
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST Scotland, United Kingdom
| |
Collapse
|
3
|
Wang W, Wang F, Cui H, Fan J. Quantitative acquisition of differential absorption cross sections of chlorobenzenes at different temperatures. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122108. [PMID: 36423419 DOI: 10.1016/j.saa.2022.122108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Chlorobenzene is considered an essential organic synthesis intermediate and a precursor for the generation of persistent organic compounds in the waste disposal process, for which accurate detection of gaseous chlorobenzene can further help understand and control various chemical processes and effectively reduce pollution. Differential optical absorption spectroscopy is a reliable online method for detecting gaseous chlorobenzenes. It is crucial to investigate the effect of temperature on the optical absorption of the chlorobenzenes to quantify chlorobenzenes more precisely at various temperatures. A method to fix the effect of temperature variation on absorption spectra of chlorobenzene is initially proposed in this study, and it gave accurate concentrations. The proposed method can effectively improve the accuracy of chlorobenzene concentration measurements with an inverse concentration deviation of 3.2 % or less. The differential absorption cross sections at various temperatures are studied to understand how chlorobenzene absorption cross sections vary with temperature. Such a study is also helpful in reducing the concentration inversion errors induced by the variation of absorption cross sections of chlorobenzene with temperature. A novel method of introducing the binary function of the differential absorption cross sections with respect to wavelength and temperature is also proposed. The fitting of the binary function is done by downscaling functions at fixed wavelength and fixed temperature,respectively. Both fitting approaches obtained continuous differential absorption cross sections in the 201-220 nm wavelength band and 288-473 K temperature range, along with less than 2.74 % deviation in the concentration inversion measurements. Finally,based on the temperature specificity of the shape of the differential absorption cross sections,we developed another method using differential absorption spectroscopy for the simultaneous measurement of temperature and concentration, with a temperature prediction error of less than 1.89 %. This method is favorable to the applications of differential absorption spectroscopy in simultaneous measurement of temperature and concentration.
Collapse
Affiliation(s)
- Wenyuan Wang
- Key Laboratory of Clean Energy and Carbon Neutrality of Zhejiang Province, State Key Laboratory of Clean Energy Utilization (Zhejiang University), Hangzhou 310027, China
| | - Fei Wang
- Key Laboratory of Clean Energy and Carbon Neutrality of Zhejiang Province, State Key Laboratory of Clean Energy Utilization (Zhejiang University), Hangzhou 310027, China.
| | - Haibin Cui
- Key Laboratory of Clean Energy and Carbon Neutrality of Zhejiang Province, State Key Laboratory of Clean Energy Utilization (Zhejiang University), Hangzhou 310027, China
| | - Jinhui Fan
- Key Laboratory of Clean Energy and Carbon Neutrality of Zhejiang Province, State Key Laboratory of Clean Energy Utilization (Zhejiang University), Hangzhou 310027, China
| |
Collapse
|
4
|
Palmer MH, Coreno M, de Simone M, Grazioli C, Jones NC, Hoffmann SV, Aitken RA, Sonecha DK. The ionic and ground states of gamma-pyrone. The photoionization spectrum studied by synchrotron radiation and interpreted by configuration interaction and density functional calculations. J Chem Phys 2023; 158:014304. [PMID: 36610975 DOI: 10.1063/5.0128764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A synchrotron-based photoionization spectrum up to 27 eV represents a considerable improvement in resolution over early He(I) and He(II) spectra. Symmetry-adapted coupled cluster calculations of the ionic state sequence give the sequence of state vertical ionization energies (VIE) as 12B2 < 12B1 < 12A2 < 22B1 < 12A1. Generally, these symmetry-adapted cluster configuration interactions VIE match reasonably well with the experimental spectrum over this wide energy range. Density functional calculations of the corresponding adiabatic terms (AIE) were also performed. Higher energy ionic states were determined by complete active space self-consistent field methods; these include all π-ionizations and some σ-ionic states. These were analyzed by Franck-Condon (FC) procedures and compared with an experiment. The spectral onset is complex, where two states, later shown to be the 12B2 and 12B1 states, are strongly overlapping. The superposition of the FC vibrational structure in the 12B2 and 12B1 states accounts for most of the peaks arising at the onset of the photoelectron spectra. However, the small separation between these two ionic states makes vibronic interaction fairly inevitable. In the absence of Herzberg-Teller analyses for ionic states, we have sought and determined a transition state between the 12B2 and 12B1 states, showing that vibronic coupling does occur. The lack of degradation in the vibrational envelope of the higher of the two states contrasts with our previous work on the halogenobenzenes, where overlapping state envelopes led to considerable widening of the line width at half-height of the higher energy states.
Collapse
Affiliation(s)
- Michael H Palmer
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, Scotland, United Kingdom
| | - Marcello Coreno
- ISM-CNR, Instituto di Struttura della Materia, LD2 Unit, 34149 Trieste, Italy
| | - Monica de Simone
- IOM-CNR, Istituto Officina dei Materiali, Basovizza SS-14, Km 163.5, 34149 Trieste, Italy
| | - Cesare Grazioli
- IOM-CNR, Istituto Officina dei Materiali, Basovizza SS-14, Km 163.5, 34149 Trieste, Italy
| | - Nykola C Jones
- ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK, 8000 Aarhus C, Denmark
| | - Søren Vrønning Hoffmann
- ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK, 8000 Aarhus C, Denmark
| | - R Alan Aitken
- School of Chemistry, University of St. Andrews, North Haugh, St. Andrews, Fife, KY16 9ST, Scotland, United Kingdom
| | - Dheirya K Sonecha
- School of Chemistry, University of St. Andrews, North Haugh, St. Andrews, Fife, KY16 9ST, Scotland, United Kingdom
| |
Collapse
|
5
|
Köse ME. Estimation of Excited-State Geometries of Benzene and Fluorobenzene through Vibronic Analyses of Absorption Spectra. ACS OMEGA 2022; 7:32764-32774. [PMID: 36120020 PMCID: PMC9476181 DOI: 10.1021/acsomega.2c04615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
The parameters used in theoretical modeling of vibrational patterns within Franck-Condon (FC) approximation can be adjusted to match the vibrationally well-resolved experimental absorption spectrum of molecules. These simulation parameters can then be used to reveal the structural changes occurring between the initial and final states assuming the harmonic oscillator approximation holds for both states. Such a theoretical approach has been applied to benzene and fluorobenzene to disclose the first excited-state geometries of both compounds. The carbon-carbon bond length of benzene in the 1B2u state has been calculated as 1.430 Å, which is in very good agreement with the experimental bond length of 1.432 Å. The FC spectral fit method has been exploited to reveal the 1B2 state of fluorobenzene as well. Commonly employed density functional theory (DFT) and time-dependent DFT methods have been used to calculate the ground- and excited-state geometries of both compounds, respectively. The comparison of geometrical parameters and vibrational frequencies at the relevant states shows that frequently used hybrid functionals perform quite well in the ground state, whereas their performances drop considerably while predicting the excited-state properties. Among the hybrid functionals studied, TD-B3LYP with 6-31+G(d) basis set can be chosen to calculate the excited-state properties of molecules, albeit with much less anticipation of accuracy from the performance that B3LYP usually shows at the ground state.
Collapse
|
6
|
Palmer MH, Hoffmann SV, Jones NC, Coreno M, de Simone M, Grazioli C, Peterson KA, Baiardi A, Zhang T, Biczysko M. A combined theoretical and experimental study of the valence and Rydberg states of iodopentafluorobenzene. J Chem Phys 2018; 146:174301. [PMID: 28477584 DOI: 10.1063/1.4981919] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A new ultraviolet (UV) and vacuum ultraviolet (VUV) spectrum for iodopentafluorobenzene (C6F5I) using synchrotron radiation is reported. The measurements have been combined with those from a recent high-resolution photoelectron spectroscopic study. A major theoretical study, which includes both Franck-Condon (FC) and Herzberg-Teller (HT) analyses, leads to conclusions, which are compatible with both experimental studies. Our observation that the VUV multiplet at 7.926 eV in the VUV spectrum is a Rydberg state rather than a valence state leads to a fundamental reassignment of the VUV Rydberg spectrum over previous studies and removes an anomaly where some previously assigned Rydberg states were to optically forbidden states. Adiabatic excitation energies (AEEs) were determined from equations-of-motion coupled cluster with singles and doubles excitation; these were combined with time dependent density functional theoretical methods. Frequencies from these two methods are very similar, and this enabled the evaluation of both FC and HT contributions in the lower valence states. Multi-reference multi-root configuration interaction gave a satisfactory account of the principal UV+VUV spectral profile of C6F5I, with vertical band positions and intensities. The UV spectral onset consists of two very weak transitions assigned to 11B1 (πσ*) and 11B2 (σσ*) symmetries. The lowest unoccupied molecular orbital of a σ*(a1) symmetry has a significant C-I* antibonding character. This results in considerable lengthening of the C-I bond for both these excited states. The vibrational intensity of the lowest 11B1 state is dominated by HT contributions; the 11B2 state contains both HT and FC contributions; the third band, which contains three states, two ππ*(11A1, 21B2) and one πσ*(21B1), is dominated by FC contributions in the 1A1 state. In this 1A1 state, and the spectrally dominant bands near 6.7 (1A1) and 7.3 eV (1A1 + 1B2), the C-I bond length is in the normal range, and FC components dominate.
Collapse
Affiliation(s)
- Michael H Palmer
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ Scotland, United Kingdom
| | - Søren Vrønning Hoffmann
- ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
| | - Nykola C Jones
- ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
| | | | | | | | - Kirk A Peterson
- Department of Chemistry, Washington State University, Pullman, Washington 99164-4630, USA
| | - Alberto Baiardi
- Scuola Normale Superiore, Piazza Cavalieri 7, 56126 Pisa, Italy
| | - Teng Zhang
- Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
| | - Malgorzata Biczysko
- International Centre for Quantum and Molecular Structures, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| |
Collapse
|
7
|
A comparative study of the structures and electronic properties of graphene fragments: A DFT and MP2 survey. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2017.11.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Kaminský J, Chalupský J, Štěpánek P, Kříž J, Bouř P. Vibrational Structure in Magnetic Circular Dichroism Spectra of Polycyclic Aromatic Hydrocarbons. J Phys Chem A 2017; 121:9064-9073. [PMID: 29112435 DOI: 10.1021/acs.jpca.7b10120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Absorption and magnetic circular dichroism (MCD) spectroscopies are powerful and simple methods to discriminate among various compounds. Polycyclic aromatic hydrocarbons provide particularly strong signal, which, for example, facilitates their detection in the environment. However, interpretation of the spectra is often based on quantum-chemical simulations, providing a limited precision only. In the present work, we use time-dependent density functional theory and complete active space second-order perturbation theories to understand spectral features observed in a series of naphthalene, anthracene, phenanthrene, and three larger compounds. The electronic computations provided reasonable agreement with the experiment for the smaller molecules, while a large error persisted for the bigger ones. However, many discrepancies could be explained by vibrational splitting of the electronic transitions across the entire spectral range. Compared to plain absorption, MCD spectral bands and their vibrational splitting were more specific for each aromatic molecule. The computational tools allowing simulations of detailed vibrational features in the electronic spectra thus promise to open a qualitatively new chapter in the spectroscopy of aromatic compounds.
Collapse
Affiliation(s)
- Jakub Kaminský
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences , Flemingovo náměstí 2, 16610 Prague, Czech Republic
| | - Jakub Chalupský
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences , Flemingovo náměstí 2, 16610 Prague, Czech Republic
| | - Petr Štěpánek
- NMR Research Unit, Faculty of Science, University of Oulu , P.O. Box 3000, 90014 Oulu, Finland
| | - Jan Kříž
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences , Flemingovo náměstí 2, 16610 Prague, Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences , Flemingovo náměstí 2, 16610 Prague, Czech Republic
| |
Collapse
|
9
|
Palmer MH, Biczysko M, Baiardi A, Coreno M, de Simone M, Grazioli C, Hoffmann SV, Jones NC, Peterson KA. The ionic states of difluoromethane: A reappraisal of the low energy photoelectron spectrum including ab initio configuration interaction computations. J Chem Phys 2017; 147:074305. [PMID: 28830186 DOI: 10.1063/1.4998150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A new synchrotron-based study of the photoelectron spectrum (PES) of difluoromethane is interpreted by an ab initio analysis of the ionic states, which includes Franck-Condon (FC) factors. Double differentiation of the spectrum leads to significant spectral sharpening; the vibrational structure observed is now measured with greater accuracy than in previous studies. Several electronic structure methods are used, including equation of motion coupled cluster calculations with single and double excitations (EOM-CCSD), its ionization potential variant EOM-IP-CCSD, 4th order Møller-Plesset perturbation theory (MP4SDQ) configuration interaction (CI), and complete active space self-consistent-field (CASSCF) methods. The adiabatic ionization energies (AIEs) confirm the assignments as band I, one state 12B1 (12.671 eV); band II, three states, 12B2 (14.259) < 12A1 (15.030) < 12A2 (15.478 eV); and band III, three states, 22B2 (18.055) < 22A1 (18.257) < 22B1 (18.808 eV). The three ionizations in each of the bands II and III lead to selective line broadening of the PES structure, which is attributed to vibronic overlap. The apparent lack of a vibrational structure attributable to both the 12A1 and 22A1 states in the PES arises from line broadening with the preceding states 12B2 and 22B2, respectively. Although these 2A1 states clearly overlap with their adjacent higher IE, some vibrational structure is observed on the higher IE. The effects of vibronic coupling are evident since the observed structure does not fit closely with the calculated Born-Oppenheimer FC profiles. Correlation of the lowest group of four AIEs in the PES of other members of the CH2X2 group, where X = F, Cl, Br, and I, clearly indicate these effects are more general.
Collapse
Affiliation(s)
- Michael H Palmer
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, Scotland, United Kingdom
| | - Malgorzata Biczysko
- International Centre for Quantum and Molecular Structures, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Alberto Baiardi
- Scuola Normale Superiore, Piazza Cavalieri 7, 56126 Pisa, Italy
| | - Marcello Coreno
- ISM-CNR, Istituto di Struttura della Materia, LD2 Unit, 34149 Trieste, Italy
| | | | - Cesare Grazioli
- ISM-CNR, Istituto di Struttura della Materia, LD2 Unit, 34149 Trieste, Italy
| | - Søren Vrønning Hoffmann
- ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
| | - Nykola C Jones
- ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
| | - Kirk A Peterson
- Department of Chemistry, Washington State University, Pullman, Washington 99164-4630, USA
| |
Collapse
|
10
|
Kaminský J, Kříž J, Bouř P. On the magnetic circular dichroism of benzene. A density-functional study. J Chem Phys 2017; 146:144301. [PMID: 28411621 DOI: 10.1063/1.4979570] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Spectroscopy of magnetic circular dichroism (MCD) provides enhanced information on molecular structure and a more reliable assignment of spectral bands than absorption alone. Theoretical modeling can significantly enhance the information obtained from experimental spectra. In the present study, the time dependent density functional theory is employed to model the lowest-energy benzene transitions, in particular to investigate the role of the Rydberg states and vibrational interference in spectral intensities. The effect of solvent is explored on model benzene-methane clusters. For the lowest-energy excitation, the vibrational sub-structure of absorption and MCD spectra is modeled within the harmonic approximation, providing a very good agreement with the experiment. The simulations demonstrate that the Rydberg states have a much stronger effect on the MCD intensities than on the absorption, and a very diffuse basis set must be used to obtain reliable results. The modeling also indicates that the Rydberg-like states and associated transitions may persist in solutions. Continuum-like solvent models are thus not suitable for their modeling; solvent-solute clusters appear to be more appropriate, providing they are large enough.
Collapse
Affiliation(s)
- Jakub Kaminský
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo Náměstí 2, 16610 Prague, Czech Republic
| | - Jan Kříž
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo Náměstí 2, 16610 Prague, Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo Náměstí 2, 16610 Prague, Czech Republic
| |
Collapse
|
11
|
Palmer MH, Coreno M, de Simone M, Hoffmann SV, Jones NC, Grazioli C, Peterson KA, Baiardi A, Zhang T, Biczysko M. A combined theoretical and experimental study of the ionic states of iodopentafluorobenzene. J Chem Phys 2017; 146:084302. [PMID: 28249445 DOI: 10.1063/1.4975672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A new synchrotron radiation photoelectron spectral (PES) study of iodopentafluorobenzene, together with a theoretical analysis of the spectrum, where Franck-Condon factors are discussed, gives detailed insight into the ionization processes, and this exposes the need for a reinvestigation of the vacuum ultraviolet spectral (VUV) assignments. We have calculated adiabatic ionization energies (AIEs) for several ionic states, using the equation-of-motion coupled cluster method for ionic states combined with multi-configuration self-consistent field calculation study. The AIE sequence is: X2B1 < A2A2 < B2B2 < C22B1 < D2A1 < E32B1. This symmetry sequence has a major impact on previous VUV spectral assignments, which now appear to be to optically forbidden states. Changes in the equilibrium structures for these ionic states are relatively small, but a significant decrease and increase in the C-I bond length relative to the X1A1 structure occurs for the X2B1 and C2B1 states, respectively. The PES shows major vibrational overlaps between pairs of ionic states, X with A, and A with B. The result of these overlaps is the loss of vibrational structure and considerable broadening of the higher energy PES state. Although the baseline is nearly re-established between the A and B states, where the two bands are nearly separate, the B state is also broadened by the A state. Only the C ionic state, which shows the most highly developed vibrational structure, can be regarded as free from vibrational coupling to a neighbor state. The Franck-Condon analysis of the PES bands X, A, B, and C is described in detail; the apparent simplicity of some of these bands is illusory, since almost all the observed peaks arise from super-position of several calculated vibrational states. The experimental AIE of the A state, which is submerged under the X state envelope, has been determined by the subtraction of the calculated X state envelope from the observed PES spectrum. The overlap of these PES bands and the apparent closeness of the potential energy curves describing them have been investigated, using the state-averaged, complete active space self-consistent field method. We have identified two structures, one where the potential energy curves for the X and A states cross and another for the A and B states. At these two conical intersections (ConInts), there is zero-energy difference within each pair of states. Although similar in energy, the ConInt for the crossing of the X with A states, and that for the A with B states, shows that the open-shell occupancies correspond to the 4 lowest AIE states, and all four states that are quite different from each other.
Collapse
Affiliation(s)
- Michael H Palmer
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, Scotland, United Kingdom
| | - Marcello Coreno
- CNR-IMIP, Montelibretti, c/o Laboratorio Elettra, Trieste, Italy
| | | | - Søren Vrønning Hoffmann
- ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
| | - Nykola C Jones
- ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
| | - Cesare Grazioli
- CNR-IMIP, Montelibretti, c/o Laboratorio Elettra, Trieste, Italy
| | - Kirk A Peterson
- Department of Chemistry, Washington State University, Pullman, Washington 99164-4630, USA
| | - Alberto Baiardi
- Scuola Normale Superiore, Piazza Cavalieri 7, 56126 Pisa, Italy
| | - Teng Zhang
- Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
| | - Malgorzata Biczysko
- International Centre for Quantum and Molecular Structures, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| |
Collapse
|
12
|
Tang S, Vinerot N, Bulatov V, Yavetz-Chen Y, Schechter I. Multiphoton electron extraction spectroscopy and its comparison with other spectroscopies for direct detection of solids under ambient conditions. Anal Bioanal Chem 2016; 408:8037-8051. [PMID: 27585917 DOI: 10.1007/s00216-016-9904-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 08/19/2016] [Accepted: 08/24/2016] [Indexed: 11/27/2022]
Abstract
Multiphoton electron extraction spectroscopy (MEES) is an analytical method for direct analysis of solids under ambient conditions in which the samples are irradiated by short UV laser pulses and the photocharges emitted are recorded as a function of the laser wavelength. The method is very sensitive, and many peaks are observed at wavelengths that are in resonance with the surface molecules. The analytical capabilities of MEES have recently been demonstrated, and here we perform a systematic comparison with some traditional spectroscopies that are commonly applied to material analysis. These include absorption, reflection, excitation and emission fluorescence, Raman, Fourier transform IR, and Fourier transform near-IR spectroscopies. The comparison is conducted for powders and for thin films of compounds that are active in all spectroscopies tested. Besides the obvious spectral parameters (signal-to-noise ratio, peak density, and resulting limits of detection), we introduce two additional variables-the spectral quality and the spectral quality density-that represent our intuitive perception of the analytical value of a spectrum. It is shown that by most parameters MEES is a superior analytical tool to the other methods tested for both sample morphologies.
Collapse
Affiliation(s)
- Shisong Tang
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, China
| | - Nataly Vinerot
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200, Israel
| | - Valery Bulatov
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, China
| | - Yehuda Yavetz-Chen
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, China
| | - Israel Schechter
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200, Israel.
| |
Collapse
|