2
|
Kühne TD, Iannuzzi M, Del Ben M, Rybkin VV, Seewald P, Stein F, Laino T, Khaliullin RZ, Schütt O, Schiffmann F, Golze D, Wilhelm J, Chulkov S, Bani-Hashemian MH, Weber V, Borštnik U, Taillefumier M, Jakobovits AS, Lazzaro A, Pabst H, Müller T, Schade R, Guidon M, Andermatt S, Holmberg N, Schenter GK, Hehn A, Bussy A, Belleflamme F, Tabacchi G, Glöß A, Lass M, Bethune I, Mundy CJ, Plessl C, Watkins M, VandeVondele J, Krack M, Hutter J. CP2K: An electronic structure and molecular dynamics software package - Quickstep: Efficient and accurate electronic structure calculations. J Chem Phys 2020; 152:194103. [PMID: 33687235 DOI: 10.1063/5.0007045] [Citation(s) in RCA: 997] [Impact Index Per Article: 249.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
CP2K is an open source electronic structure and molecular dynamics software package to perform atomistic simulations of solid-state, liquid, molecular, and biological systems. It is especially aimed at massively parallel and linear-scaling electronic structure methods and state-of-the-art ab initio molecular dynamics simulations. Excellent performance for electronic structure calculations is achieved using novel algorithms implemented for modern high-performance computing systems. This review revisits the main capabilities of CP2K to perform efficient and accurate electronic structure simulations. The emphasis is put on density functional theory and multiple post-Hartree-Fock methods using the Gaussian and plane wave approach and its augmented all-electron extension.
Collapse
Affiliation(s)
- Thomas D Kühne
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, Paderborn University, Warburger Str. 100, D-33098 Paderborn, Germany
| | - Marcella Iannuzzi
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Mauro Del Ben
- Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Vladimir V Rybkin
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Patrick Seewald
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Frederick Stein
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Teodoro Laino
- IBM Research Europe, CH-8803 Rüschlikon, Switzerland
| | - Rustam Z Khaliullin
- Department of Chemistry, McGill University, CH-801 Sherbrooke St. West, Montreal, Quebec H3A 0B8, Canada
| | - Ole Schütt
- Department of Materials, ETH Zürich, CH-8092 Zürich, Switzerland
| | | | - Dorothea Golze
- Department of Applied Physics, Aalto University, Otakaari 1, FI-02150 Espoo, Finland
| | - Jan Wilhelm
- Institute of Theoretical Physics, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Sergey Chulkov
- School of Mathematics and Physics, University of Lincoln, Brayford Pool, Lincoln, United Kingdom
| | | | - Valéry Weber
- IBM Research Europe, CH-8803 Rüschlikon, Switzerland
| | | | | | | | | | - Hans Pabst
- Intel Extreme Computing, Software and Systems, Zürich, Switzerland
| | - Tiziano Müller
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Robert Schade
- Department of Computer Science and Paderborn Center for Parallel Computing, Paderborn University, Warburger Str. 100, D-33098 Paderborn, Germany
| | - Manuel Guidon
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Samuel Andermatt
- Integrated Systems Laboratory, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Nico Holmberg
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Gregory K Schenter
- Physical Science Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA
| | - Anna Hehn
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Augustin Bussy
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Fabian Belleflamme
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Gloria Tabacchi
- Department of Science and High Technology, University of Insubria and INSTM, via Valleggio 9, I-22100 Como, Italy
| | - Andreas Glöß
- BASF SE, Carl-Bosch-Straße 38, D-67056 Ludwigshafen am Rhein, Germany
| | - Michael Lass
- Department of Computer Science and Paderborn Center for Parallel Computing, Paderborn University, Warburger Str. 100, D-33098 Paderborn, Germany
| | - Iain Bethune
- Hartree Centre, Science and Technology Facilities Council, Sci-Tech Daresbury, Warrington WA4 4AD, United Kingdom
| | - Christopher J Mundy
- Physical Science Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA
| | - Christian Plessl
- Department of Computer Science and Paderborn Center for Parallel Computing, Paderborn University, Warburger Str. 100, D-33098 Paderborn, Germany
| | - Matt Watkins
- School of Mathematics and Physics, University of Lincoln, Brayford Pool, Lincoln, United Kingdom
| | - Joost VandeVondele
- Swiss National Supercomputing Centre (CSCS), ETH Zürich, Zürich, Switzerland
| | - Matthias Krack
- Laboratory for Scientific Computing and Modelling, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Jürg Hutter
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
3
|
Dragoni D, Bernasconi M. Structural and electronic properties of liquid, amorphous, and supercooled liquid phases of In 2Te 5 from first-principles. J Chem Phys 2019; 151:134503. [PMID: 31594330 DOI: 10.1063/1.5117781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In2Te5 is a stoichiometric compound in the In-Te system of interest for applications in phase change electronic memories and thermoelectrics. Here, we perform a computational study of the structural, dynamical, and electronic properties of the liquid, supercooled liquid, and amorphous phases of this compound by means of density functional molecular dynamics simulations. Models of the supercooled liquid and amorphous phases have been generated by quenching from the melt. The structure of the liquid phase is characterized by a mixture of defective octahedral and tetrahedral local environments of In atoms, while the amorphous phase displays a mostly tetrahedral local geometry for In atoms with corner and edge sharing tetrahedra similar to those found in the crystalline phases of the In2Te5, InTe, and In2Te3 compounds. Comparison with our previous results on liquid and amorphous In2Te3 and further data on the structural properties of liquid In2Te3 are also discussed. The analysis of the electronic properties highlights the opening of a mobility gap in In2Te5 at about 150 K below the liquidus temperature.
Collapse
Affiliation(s)
- Daniele Dragoni
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, Via R. Cozzi 55, I-20125 Milano, Italy
| | - Marco Bernasconi
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, Via R. Cozzi 55, I-20125 Milano, Italy
| |
Collapse
|