1
|
De PK, Jain A. Exciton energy transfer inside cavity-A benchmark study of polaritonic dynamics using the surface hopping method. J Chem Phys 2024; 161:054117. [PMID: 39105549 DOI: 10.1063/5.0216787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024] Open
Abstract
Strong coupling between the molecular system and photon inside the cavity generates polaritons, which can alter reaction rates by orders of magnitude. In this work, we benchmark the surface hopping method to simulate non-adiabatic dynamics in a cavity. The comparison is made against a numerically exact method (the hierarchical equations of motion) for a model system investigating excitonic energy transfer for a broad range of parameters. Surface hopping captures the effects of the radiation mode well, both at resonance and off-resonance. We have further investigated parameters that can increase or decrease the rate of population transfer, and we find that surface hopping in general can capture both effects well. Finally, we show that the dipole self-energy term within our parameter regime does not significantly affect the system's dynamics.
Collapse
Affiliation(s)
- Priyam Kumar De
- Department of Chemistry, Indian Institute of Technology, Mumbai 400076, India
| | - Amber Jain
- Department of Chemistry, Indian Institute of Technology, Mumbai 400076, India
| |
Collapse
|
2
|
Gumber S, Prezhdo OV. Energy-Conserving Surface Hopping for Auger Processes. J Chem Theory Comput 2024; 20:5408-5417. [PMID: 38902855 PMCID: PMC11238531 DOI: 10.1021/acs.jctc.4c00562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Auger-type processes are ubiquitous in nanoscale materials because quantum confinement enhances Coulomb interactions, and there exist large densities of states. Modeling Auger processes requires the modification of nonadiabatic (NA) molecular dynamics algorithms to include transitions caused by both NA and Coulomb couplings. The system is split into quantum and classical subsystems, e.g., electrons and vibrations, and as a result, energy conservation becomes nontrivial. In surface hopping, an electronic transition induced by NA coupling is accompanied by a classical velocity readjustment to ensure conservation of the total quantum-classical energy. A different treatment is needed for Auger transitions driven by Coulomb interactions. We develop a nonadiabatic molecular dynamics methodology that meticulously differentiates the energy redistribution accompanying hops induced by the NA coupling and the Coulomb interaction and correctly conserves the total energy at each transition. If the transition is driven by a Coulomb interaction, the hop energy is redistributed within the quantum electronic subsystem only. If the transition is NA, the energy is redistributed between the quantum and classical subsystems. Properly maintaining energy conservation for both types of transitions is crucial to generate a correct order of events, obtain accurate transition times, maintain a proper statistical distribution of state populations, and reach thermodynamic equilibrium. We test the method with biexciton annihilation and Auger-assisted hot electron relaxation in a CdSe quantum dot. The sequence of Auger and phonon-driven processes and the calculated time scales are in excellent agreement with the experimental results. The developed approach can be coupled with any surface-hopping method and provides a crucial practical advance to study charge-carrier dynamics in the nanoscale and condensed matter systems.
Collapse
Affiliation(s)
- Shriya Gumber
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
3
|
Lawrence JE, Mannouch JR, Richardson JO. A size-consistent multi-state mapping approach to surface hopping. J Chem Phys 2024; 160:244112. [PMID: 38940540 DOI: 10.1063/5.0208575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024] Open
Abstract
We develop a multi-state generalization of the recently proposed mapping approach to surface hopping (MASH) for the simulation of electronically nonadiabatic dynamics. This new approach extends the original MASH method to be able to treat systems with more than two electronic states. It differs from previous approaches in that it is size consistent and rigorously recovers the original two-state MASH in the appropriate limits. We demonstrate the accuracy of the method by applying it to a series of model systems for which exact benchmark results are available, and we find that the method is well suited to the simulation of photochemical relaxation processes.
Collapse
Affiliation(s)
- Joseph E Lawrence
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
- Simons Center for Computational Physical Chemistry, New York University, New York, New York 10003, USA
- Department of Chemistry, New York University, New York, New York 10003, USA
| | - Jonathan R Mannouch
- Hamburg Center for Ultrafast Imaging, Universität Hamburg and the Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Jeremy O Richardson
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
4
|
Shu Y, Truhlar DG. Generalized Semiclassical Ehrenfest Method: A Route to Wave Function-Free Photochemistry and Nonadiabatic Dynamics with Only Potential Energies and Gradients. J Chem Theory Comput 2024; 20:4396-4426. [PMID: 38819014 DOI: 10.1021/acs.jctc.4c00424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
We reconsider recent methods by which direct dynamics calculations of electronically nonadiabatic processes can be carried out while requiring only adiabatic potential energies and their gradients. We show that these methods can be understood in terms of a new generalization of the well-known semiclassical Ehrenfest method. This is convenient because it eliminates the need to evaluate electronic wave functions and their matrix elements along the mixed quantum-classical trajectories. The new approximations and procedures enabling this advance are the curvature-driven approximation to the time-derivative coupling, the generalized semiclassical Ehrenfest method, and a new gradient correction scheme called the time-derivative matrix (TDM) scheme. When spin-orbit coupling is present, one can carry out dynamics calculations in the fully adiabatic basis using potential energies and gradients calculated without spin-orbit coupling plus the spin-orbit coupling matrix elements. Even when spin-orbit coupling is neglected, the method is useful because it allows calculations by electronic structure methods for which nonadiabatic coupling vectors are unavailable. In order to place the new considerations in context, the article starts out with a review of background material on trajectory surface hopping, the semiclassical Ehrenfest scheme, and methods for incorporating decoherence. We consider both internal conversion and intersystem crossing. We also review several examples from our group of successful applications of the curvature-driven approximation.
Collapse
Affiliation(s)
- Yinan Shu
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
5
|
Limbu DK, Shakib FA. Real-Time Dynamics and Detailed Balance in Ring Polymer Surface Hopping: The Impact of Frustrated Hops. J Phys Chem Lett 2023; 14:8658-8666. [PMID: 37732811 DOI: 10.1021/acs.jpclett.3c02085] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Ring polymer surface hopping (RPSH) has been recently introduced as a well-tailored method for incorporating nuclear quantum effects, such as zero-point energy and tunneling, into nonadiabatic molecular dynamics simulations. The practical widespread usage of RPSH demands a comprehensive benchmarking of different reaction regimes and conditions with equal emphasis on demonstrating both the cons and the pros of the method. Here, we investigate the fundamental questions related to the conservation of energy and detailed balance in the context of RPSH. Using Tully's avoided crossing model as well as a 2-state quantum system coupled to a classical bath undergoing Langevin dynamics, we probe the critical problem of the proper treatment of the classically forbidden transitions stemming from the surface hopping algorithm. We show that proper treatment of these frustrated hops is key to the accurate description of real-time dynamics as well as reproducing the correct quantum Boltzmann populations.
Collapse
Affiliation(s)
- Dil K Limbu
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Farnaz A Shakib
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| |
Collapse
|
6
|
Abstract
We present a nonadiabatic classical-trajectory approach that offers the best of both worlds between fewest-switches surface hopping (FSSH) and quasiclassical mapping dynamics. This mapping approach to surface hopping (MASH) propagates the nuclei on the active adiabatic potential-energy surface, such as in FSSH. However, unlike in FSSH, transitions between active surfaces are deterministic and occur when the electronic mapping variables evolve between specified regions of the electronic phase space. This guarantees internal consistency between the active surface and the electronic degrees of freedom throughout the dynamics. MASH is rigorously derivable from exact quantum mechanics as a limit of the quantum-classical Liouville equation (QCLE), leading to a unique prescription for momentum rescaling and frustrated hops. Hence, a quantum-jump procedure can, in principle, be used to systematically converge the accuracy of the results to that of the QCLE. This jump procedure also provides a rigorous framework for deriving approximate decoherence corrections similar to those proposed for FSSH. We apply MASH to simulate the nonadiabatic dynamics in various model systems and show that it consistently produces more accurate results than FSSH at a comparable computational cost.
Collapse
|
7
|
Jain A, Sindhu A. Pedagogical Overview of the Fewest Switches Surface Hopping Method. ACS OMEGA 2022; 7:45810-45824. [PMID: 36570264 PMCID: PMC9773185 DOI: 10.1021/acsomega.2c04843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
The fewest switches surface hopping method continues to grow in popularity to capture electronic nonadiabaticity and quantum nuclear effects due to its simplicity and accuracy. Knowing the basics of the method is essential for the correct implementation and interpretation of results. This review covers the fundamentals of the fewest switches surface hopping method with a detailed discussion of the nuances such as decoherence schemes and frustrated hops and the correct approach to calculating populations. The consequences of incorrect implementation are further discussed toward calculating kinetic and thermodynamic properties. Some tips for practitioners and a step-by-step algorithm for developers are provided. Finally, some of the finer technicalities of the fewest switches surface hopping method that are buried deep in the literature are pointed out to help graduate students better appreciate this method.
Collapse
|
8
|
Pradhan CS, Jain A. Detailed Balance and Independent Electron Surface-Hopping Method: The Importance of Decoherence and Correct Calculation of Diabatic Populations. J Chem Theory Comput 2022; 18:4615-4626. [PMID: 35880817 DOI: 10.1021/acs.jctc.2c00320] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We benchmark and improve the independent electron surface-hopping (IESH) method developed by J. C. Tully's group for nonadiabatic simulations near metal surfaces. We have incorporated decoherence within the IESH method as well as implemented a scheme for the accurate calculation of diabatic populations. We benchmark the original IESH method with the above inclusions for a model system to calculate rate constants and long-time populations. The original IESH method fails to capture the detailed balance for some of the parameters, which is corrected with the inclusion of decoherence and accurate calculation of diabatic populations. Total rate constants are well captured both within the original IESH method as well as within our modified IESH.
Collapse
Affiliation(s)
- Chinmay S Pradhan
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Amber Jain
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
9
|
Interpretation of Adiabatic and Diabatic Populations from Trajectories of Branching Corrected Surface Hopping. CHINESE J CHEM PHYS 2022. [DOI: 10.1063/1674-0068/cjcp2201023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
10
|
Sindhu A, Jain A. Benchmarking the Surface Hopping Method to Include Nuclear Quantum Effects. J Chem Theory Comput 2021; 17:655-665. [PMID: 33432812 DOI: 10.1021/acs.jctc.0c01065] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have benchmarked the surface hopping method to capture nuclear quantum effects in the spin-Boson model in the deep tunneling regime. The thermal populations and the rate constants calculated using the surface hopping method are compared with those calculated using Boltzmann theory and Fermi's golden rule, respectively. Additionally, we have proposed a simple kinetic model that partially includes nuclear quantum effects within Marcus theory, and the results of the surface hopping method are analyzed under the framework of this simple kinetic model. A broad range of parameters are investigated to identify the regimes for the successes and failures of the surface hopping method. This work shows that with the accurate treatment of decoherence and velocity reversal, surface hopping can generally capture the nuclear quantum effects in the deep tunneling and weak diabatic coupling regime.
Collapse
Affiliation(s)
- Aarti Sindhu
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Amber Jain
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
11
|
Stolyarov EV, White AJ, Mozyrsky D. Mixed quantum-classical approach to model non-adiabatic electron-nuclear dynamics: Detailed balance and improved surface hopping method. J Chem Phys 2020; 153:074116. [PMID: 32828087 DOI: 10.1063/5.0014284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We develop a density matrix formalism to describe coupled electron-nuclear dynamics. To this end, we introduce an effective Hamiltonian formalism that describes electronic transitions and small (quantum) nuclear fluctuations along a classical trajectory of the nuclei. Using this Hamiltonian, we derive equations of motion for the electronic occupation numbers and for the nuclear coordinates and momenta. We show that, in the limit, when the number of nuclear degrees of freedom coupled to a given electronic transition is sufficiently high (i.e., the strong decoherence limit), the equations of motion for the electronic occupation numbers become Markovian. Furthermore, the transition rates in these (rate) equations are asymmetric with respect to the lower-to-higher energy transitions and vice versa. In thermal equilibrium, such asymmetry corresponds to the detailed balance condition. We also study the equations for the electronic occupations in the non-Markovian regime and develop a surface hopping algorithm based on our formalism. To treat the decoherence effects, we introduce additional "virtual" nuclear wave packets whose interference with the "real" (physical) wave packets leads to the reduction in coupling between the electronic states (i.e., decoherence) as well as to the phase shifts that improve the accuracy of the numerical approach. Remarkably, the same phase shifts lead to the detailed balance condition in the strong decoherence limit.
Collapse
Affiliation(s)
- E V Stolyarov
- Institute of Physics of the National Academy of Sciences of Ukraine, pr. Nauky 46, 03028 Kyiv, Ukraine
| | - A J White
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - D Mozyrsky
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
12
|
Xie W, Holub D, Kubař T, Elstner M. Performance of Mixed Quantum-Classical Approaches on Modeling the Crossover from Hopping to Bandlike Charge Transport in Organic Semiconductors. J Chem Theory Comput 2020; 16:2071-2084. [PMID: 32176844 DOI: 10.1021/acs.jctc.9b01271] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In the present study, several mixed quantum-classical (MQC) methods are applied to on-the-fly nonadiabatic molecular dynamics simulations of hole transport in molecular organic semiconductors (OSCs). The tested MQC methods contain the mean-field Ehrenfest (MFE), trajectory surface hopping (TSH) approaches based on Tully's fewest switches surface hopping (FSSH) and the global flux surface hopping (GFSH), the latter in the diabatic/adiabatic representation, and a Landau-Zener type trajectory surface hopping (LZSH). We also tested several correction schemes which were proposed to identify trivial crossings and to remove unphysical long-range charge transfers due to decoherence corrections. In addition, several cost-effective approaches for the nuclear velocity adjustment after an energy-allowed/energy-forbidden hop are investigated with respect to detailed balance and internal consistency conditions. To model a broad spectrum of OSCs with different charge transport characteristics, we derived from the anthracene structural model the construction of two additional models by uniformly scaling down the electronic couplings by the factors of 0.1 and 0.5. Anthracene shows a bandlike charge transport mechanism, characterized by slightly delocalized charge carriers 'diffusing' through the crystal. For smaller couplings, the mechanism changes to a hopping type, characteristically differing in the charge delocalization and temperature dependence. The MFE and corrected adiabatic TSH approaches are able to quantitatively reproduce the expected behavior, while the diabatic LZSH method fails for large couplings, as do approaches which are based on the hopping of localized charge between neighboring sites. Moreover, we find that while the hole mobility of the anthracene crystal simulated using the celebrated Marcus theory is in good agreement with the experimental value, its agreement has to be regarded as an accident due to the overestimation of the prefactor in the Marcus rate equation.
Collapse
Affiliation(s)
- Weiwei Xie
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Daniel Holub
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Tomáš Kubař
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Marcus Elstner
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany.,Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| |
Collapse
|
13
|
Smith B, Akimov AV. Modeling nonadiabatic dynamics in condensed matter materials: some recent advances and applications. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:073001. [PMID: 31661681 DOI: 10.1088/1361-648x/ab5246] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This review focuses on recent developments in the field of nonadiabatic molecular dynamics (NA-MD), with particular attention given to condensed-matter systems. NA-MD simulations for small molecular systems can be performed using high-level electronic structure (ES) calculations, methods accounting for the quantization of nuclear motion, and using fewer approximations in the dynamical methodology itself. Modeling condensed-matter systems imposes many limitations on various aspects of NA-MD computations, requiring approximations at various levels of theory-from the ES, to the ways in which the coupling of electrons and nuclei are accounted for. Nonetheless, the approximate treatment of NA-MD in condensed-phase materials has gained a spin lately in many applied studies. A number of advancements of the methodology and computational tools have been undertaken, including general-purpose methods, as well as those tailored to nanoscale and condensed matter systems. This review summarizes such methodological and software developments, puts them into the broader context of existing approaches, and highlights some of the challenges that remain to be solved.
Collapse
Affiliation(s)
- Brendan Smith
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States of America
| | | |
Collapse
|
14
|
Carof A, Giannini S, Blumberger J. How to calculate charge mobility in molecular materials from surface hopping non-adiabatic molecular dynamics - beyond the hopping/band paradigm. Phys Chem Chem Phys 2019; 21:26368-26386. [PMID: 31793569 DOI: 10.1039/c9cp04770k] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Charge transport in high mobility organic semiconductors is in an intermediate regime between small polaron hopping and band transport limits. We have recently shown that surface hopping non-adiabatic molecular dynamics is a powerful method for prediction of charge transport mechanisms in organic materials and for near-quantitative prediction of charge mobilities at room temperature where the effects of nuclear zero-point motion and tunneling are still relatively small [S. Giannini et al., Nat. Commun., 2019, 10, 3843]. Here we assess and critically discuss the extensions to Tully's original method that have led to this success: (i) correction for missing electronic decoherence, (ii) detection of trivial crossings and (iii) removal of decoherence correction-induced spurious charge transfer. If any one of these corrections is not included, the charge mobility diverges with system size, each for different physical reasons. Yet if they are included, convergence with system size, detailed balance and good internal consistency are achieved.
Collapse
Affiliation(s)
- Antoine Carof
- Department of Physics and Astronomy, University College London, London WC1E 6BT, UK.
| | - Samuele Giannini
- Department of Physics and Astronomy, University College London, London WC1E 6BT, UK.
| | - Jochen Blumberger
- Department of Physics and Astronomy, University College London, London WC1E 6BT, UK. and Institute for Advanced Study, Technische Universität München, Lichtenbergstrasse 2 a, D-85748 Garching, Germany
| |
Collapse
|
15
|
Song B, Liu L, Yam C. Suppressed Carrier Recombination in Janus MoSSe Bilayer Stacks: A Time-Domain Ab Initio Study. J Phys Chem Lett 2019; 10:5564-5570. [PMID: 31475829 DOI: 10.1021/acs.jpclett.9b02048] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Janus transition metal dichalcogenides (TMDs) have recently emerged as a new class of two-dimensional materials with a vertical dipole moment. Here, using time-domain ab initio simulations, we show that electron-hole recombination can be substantially suppressed via different stacking orientations of bilayer MoSSe. Despite having a larger net dipole moment, a S-Se/S-Se oriented MoSSe bilayer has a shorter carrier lifetime due to strong nonadiabatic coupling and a small band gap. The electron-hole recombination is coupled to the interlayer out-of-plane motion. In contrast, the opposite vertical dipoles weaken interlayer interactions in symmetric oriented MoSSe bilayers. Consequently, initial and final states are localized within different layers, and this significantly suppresses carrier recombination, resulting in an order of magnitude longer excited carrier lifetime in Se-S/S-Se oriented MoSSe bilayers. Our simulations provide theoretical insights into the carrier dynamics and suggest a way to enhance the carrier lifetime in Janus TMDs for efficient energy harvesting.
Collapse
Affiliation(s)
- Bing Song
- Beijing Computational Science Research Center , Haidian District, Beijing 100193 , China
| | - Limin Liu
- Beijing Computational Science Research Center , Haidian District, Beijing 100193 , China
- School of Physics , Beihang University , Beijing 100083 , China
| | - ChiYung Yam
- Beijing Computational Science Research Center , Haidian District, Beijing 100193 , China
| |
Collapse
|
16
|
Wang L, Qiu J, Bai X, Xu J. Surface hopping methods for nonadiabatic dynamics in extended systems. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2019. [DOI: 10.1002/wcms.1435] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Linjun Wang
- Center for Chemistry of Novel & High‐Performance Materials, Department of Chemistry Zhejiang University Hangzhou China
| | - Jing Qiu
- Center for Chemistry of Novel & High‐Performance Materials, Department of Chemistry Zhejiang University Hangzhou China
| | - Xin Bai
- Center for Chemistry of Novel & High‐Performance Materials, Department of Chemistry Zhejiang University Hangzhou China
| | - Jiabo Xu
- Center for Chemistry of Novel & High‐Performance Materials, Department of Chemistry Zhejiang University Hangzhou China
| |
Collapse
|
17
|
Sifain AE, Wang L, Tretiak S, Prezhdo OV. Numerical tests of coherence-corrected surface hopping methods using a donor-bridge-acceptor model system. J Chem Phys 2019; 150:194104. [DOI: 10.1063/1.5092999] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Andrew E. Sifain
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0485, USA
- Theoretical Division, Center for Nonlinear Studies and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Angeles, New Mexico 87545, USA
| | - Linjun Wang
- Center for Chemistry of Novel and High-Performance Materials and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Sergei Tretiak
- Theoretical Division, Center for Nonlinear Studies and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Angeles, New Mexico 87545, USA
- Skolkovo Institute of Science and Technology, Moscow 143026, Russia
| | - Oleg V. Prezhdo
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0485, USA
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, USA
| |
Collapse
|
18
|
Zhang J, Guan M, Lischner J, Meng S, Prezhdo OV. Coexistence of Different Charge-Transfer Mechanisms in the Hot-Carrier Dynamics of Hybrid Plasmonic Nanomaterials. NANO LETTERS 2019; 19:3187-3193. [PMID: 30995064 DOI: 10.1021/acs.nanolett.9b00647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Hot-carrier dynamics at the interfaces of semiconductors and nanoclusters is of significant importance for photovoltaic and photocatalytic applications. Plasmon-driven charge separation processes are considered to be only dependent on the type of donor-acceptor interactions, that is, the conventional hot-electron-transfer mechanism for van der Waals interactions and the plasmon-induced interfacial charge-transfer transition mechanism for chemical bonds. Here, we demonstrate that the two mechanisms can coexist in a nanoparticle-semiconductor hybrid nanomaterial, both leading to faster transfer than carrier relaxation. The origin of the two mechanisms is attributed to the spatial polarization of the excited hot carriers, where the longitudinal state couples to semiconductors more strongly than the transverse state. Our findings provide a new insight into the photoinduced carrier dynamics, which is relevant for many applications in solar energy conversion, including efficient water splitting, photocatalysis, and photovoltaics.
Collapse
Affiliation(s)
- Jin Zhang
- Departments of Materials and Physics and the Thomas Young Centre for Theory and Simulation of Materials , Imperial College London , London SW7 2AZ , United Kingdom
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , P.R. China
- School of Physical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Mengxue Guan
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , P.R. China
- School of Physical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Johannes Lischner
- Departments of Materials and Physics and the Thomas Young Centre for Theory and Simulation of Materials , Imperial College London , London SW7 2AZ , United Kingdom
| | - Sheng Meng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , P.R. China
- School of Physical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Oleg V Prezhdo
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , United States
| |
Collapse
|
19
|
Peng J, Xie Y, Hu D, Lan Z. Performance of trajectory surface hopping method in the treatment of ultrafast intersystem crossing dynamics. J Chem Phys 2019; 150:164126. [PMID: 31042919 DOI: 10.1063/1.5079426] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We carried out extensive studies to examine the performance of the fewest-switches surface hopping method in the description of the ultrafast intersystem crossing dynamic of various singlet-triplet (S-T) models by comparison with the results of the exact full quantum dynamics. Different implementation details and some derivative approaches were examined. As expected, it is better to perform the trajectory surface hopping calculations in the spin-adiabatic representation or by the local diabatization approach, instead of in the spin-diabatic representation. The surface hopping method provides reasonable results for the short-time dynamics in the S-T model with weak spin-orbital coupling (diabatic coupling), although it does not perform well in the models with strong spin-orbital coupling (diabatic coupling). When the system accesses the S-T potential energy crossing with rather high kinetic energy, the trajectory surface hopping method tends to produce a good description of the nonadiabatic intersystem crossing dynamics. The impact of the decoherence correction on the performance of the trajectory surface hopping is system dependent. It improves the result accuracy in many cases, while its influence may also be minor for other cases.
Collapse
Affiliation(s)
- Jiawei Peng
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China
| | - Yu Xie
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China
| | - Deping Hu
- MOE Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhenggang Lan
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
20
|
Xu J, Wang L. Branching corrected surface hopping: Resetting wavefunction coefficients based on judgement of wave packet reflection. J Chem Phys 2019; 150:164101. [DOI: 10.1063/1.5090927] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Jiabo Xu
- Department of Chemistry, Center for Chemistry of Novel and High-Performance Materials, Zhejiang University, Hangzhou 310027, China
| | - Linjun Wang
- Department of Chemistry, Center for Chemistry of Novel and High-Performance Materials, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
21
|
Martens CC. Surface Hopping without Momentum Jumps: A Quantum-Trajectory-Based Approach to Nonadiabatic Dynamics. J Phys Chem A 2019; 123:1110-1128. [DOI: 10.1021/acs.jpca.8b10487] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Craig C. Martens
- University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
22
|
Carof A, Giannini S, Blumberger J. Detailed balance, internal consistency, and energy conservation in fragment orbital-based surface hopping. J Chem Phys 2018; 147:214113. [PMID: 29221382 DOI: 10.1063/1.5003820] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have recently introduced an efficient semi-empirical non-adiabatic molecular dynamics method for the simulation of charge transfer/transport in molecules and molecular materials, denoted fragment orbital-based surface hopping (FOB-SH) [J. Spencer et al., J. Chem. Phys. 145, 064102 (2016)]. In this method, the charge carrier wavefunction is expanded in a set of charge localized, diabatic electronic states and propagated in the time-dependent potential due to classical nuclear motion. Here we derive and implement an exact expression for the non-adiabatic coupling vectors between the adiabatic electronic states in terms of nuclear gradients of the diabatic electronic states. With the non-adiabatic coupling vectors (NACVs) available, we investigate how different flavours of fewest switches surface hopping affect detailed balance, internal consistency, and total energy conservation for electron hole transfer in a molecular dimer with two electronic states. We find that FOB-SH satisfies detailed balance across a wide range of diabatic electronic coupling strengths provided that the velocities are adjusted along the direction of the NACV to satisfy total energy conservation upon a surface hop. This criterion produces the right fraction of energy-forbidden (frustrated) hops, which is essential for correct population of excited states, especially when diabatic couplings are on the order of the thermal energy or larger, as in organic semiconductors and DNA. Furthermore, we find that FOB-SH is internally consistent, that is, the electronic surface population matches the average quantum amplitudes, but only in the limit of small diabatic couplings. For large diabatic couplings, inconsistencies are observed as the decrease in excited state population due to frustrated hops is not matched by a corresponding decrease in quantum amplitudes. The derivation provided here for the NACV should be generally applicable to any electronic structure approach where the electronic Hamiltonian is constructed in a diabatic electronic state basis.
Collapse
Affiliation(s)
- Antoine Carof
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Samuele Giannini
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Jochen Blumberger
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
23
|
Zhang Z, Liu L, Fang WH, Long R, Tokina MV, Prezhdo OV. Plasmon-Mediated Electron Injection from Au Nanorods into MoS2: Traditional versus Photoexcitation Mechanism. Chem 2018. [DOI: 10.1016/j.chempr.2018.02.025] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
24
|
Kananenka AA, Sun X, Schubert A, Dunietz BD, Geva E. A comparative study of different methods for calculating electronic transition rates. J Chem Phys 2018; 148:102304. [DOI: 10.1063/1.4989509] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Alexei A. Kananenka
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Xiang Sun
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Alexander Schubert
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, USA
| | - Barry D. Dunietz
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, USA
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
25
|
Liu L, Fang WH, Long R, Prezhdo OV. Lewis Base Passivation of Hybrid Halide Perovskites Slows Electron-Hole Recombination: Time-Domain Ab Initio Analysis. J Phys Chem Lett 2018; 9:1164-1171. [PMID: 29461842 DOI: 10.1021/acs.jpclett.8b00177] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nonradiative electron-hole recombination plays a key role in determining photon conversion efficiencies in solar cells. Experiments demonstrate significant reduction in the recombination rate upon passivation of methylammonium lead iodide perovskite with Lewis base molecules. Using nonadiabatic molecular dynamics combined with time-domain density functional theory, we find that the nonradiative charge recombination is decelerated by an order of magnitude upon adsorption of the molecules. Thiophene acts by the traditional passivation mechanism, forcing electron density away from the surface. In contrast, pyridine localizes the electron at the surface while leaving it energetically near the conduction band edge. This is because pyridine creates a stronger coordinative bond with a lead atom of the perovskite and has a lower energy unoccupied orbital compared with thiophene due to the more electronegative nitrogen atom relative to thiophene's sulfur. Both molecules reduce two-fold the nonadiabatic coupling and electronic coherence time. A broad range of vibrational modes couple to the electronic subsystem, arising from inorganic and organic components. The simulations reveal the atomistic mechanisms underlying the enhancement of the excited-state lifetime achieved by the perovskite passivation, rationalize the experimental results, and advance our understanding of charge-phonon dynamics in perovskite solar cells.
Collapse
Affiliation(s)
- Lihong Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University , Beijing 100875, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University , Beijing 100875, China
| | - Run Long
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University , Beijing 100875, China
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| |
Collapse
|
26
|
Jansen TLC. Simple Quantum Dynamics with Thermalization. J Phys Chem A 2018; 122:172-183. [PMID: 29199829 PMCID: PMC5770886 DOI: 10.1021/acs.jpca.7b10380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/04/2017] [Indexed: 02/05/2023]
Abstract
In this paper, we introduce two simple quantum dynamics methods. One is based on the popular surface-hopping method, and the other is based on rescaling of the propagation on the bath ground-state potential surface. The first method is special, as it avoids specific feedback from the simulated quantum system to the bath and can be applied for precalculated classical trajectories. It is based on the equipartition theorem to determine if hops between different potential energy surfaces are allowed. By comparing with the formally exact Hierarchical Equations Of Motion approach for four model systems we find that the method generally approximates the quantum dynamics toward thermal equilibrium very well. The second method is based on rescaling of the nonadiabatic coupling and also neglect the effect of the state of the quantum system on the bath. By the nature of the approximations, they cannot reproduce the effect of bath relaxation following excitation. However, the methods are both computationally more tractable than the conventional fewest switches surface hopping, and we foresee that the methods will be powerful for simulations of quantum dynamics in systems with complex bath dynamics, where the system-bath coupling is not too strong compared to the thermal energy.
Collapse
Affiliation(s)
- Thomas L. C. Jansen
- Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
27
|
Akimov AV. Stochastic and Quasi-Stochastic Hamiltonians for Long-Time Nonadiabatic Molecular Dynamics. J Phys Chem Lett 2017; 8:5190-5195. [PMID: 28985075 DOI: 10.1021/acs.jpclett.7b02185] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In the condensed-matter environments, the vibronic Hamiltonian that describes nonadiabatic dynamics often appears as an erratic entity, and one may assume it can be generated stochastically. This property is utilized to formulate novel stochastic and quasi-stochastic vibronic Hamiltonian methodologies, which open a new route to long-time excited state dynamics in atomistic solid-state systems at negligible computational cost. Using a model mimicking a typical solid-state material in noisy environment, general conclusions regarding the simulation of nonadiabatic dynamics are obtained: (1) including bath is critical to complete excited state relaxation; (2) a totally stochastic modulation of energies and couplings has a net effect of no bath and inhibits relaxation; (3) including a single or several dominant electron-phonon modes may be insufficient to complete the excited state relaxation; (4) only the multiple modes, even those that have negligible weights, can represent both the deterministic modulation of system's Hamiltonian and stochastic effects of bath.
Collapse
Affiliation(s)
- Alexey V Akimov
- Department of Chemistry, University at Buffalo, The State University of New York , Buffalo, New York 14260, United States
| |
Collapse
|
28
|
Jain A, Alguire E, Subotnik JE. An Efficient, Augmented Surface Hopping Algorithm That Includes Decoherence for Use in Large-Scale Simulations. J Chem Theory Comput 2016; 12:5256-5268. [PMID: 27715036 DOI: 10.1021/acs.jctc.6b00673] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We propose and implement a highly efficient augmented surface hopping algorithm that (i) can be used for large simulations (with many nuclei and many electronic states) and (ii) includes the effects of decoherence without parametrization. Our protocol is based on three key modifications of the surface hopping methodology: (a) a novel separation of classical and quantum degrees of freedom that treats avoided and trivial crossings efficiently, (b) a multidimensional approximation of the time derivative matrix that avoids explicit construction of the derivative coupling at most time steps, and (c) an efficient approximation for the augmented fewest-switches surface hopping decoherence rate. We will show that this protocol can be several orders of magnitude more efficient than the traditional protocol for large multidimensional problems. Furthermore, the marginal cost for including decoherence effects is now negligible.
Collapse
Affiliation(s)
- Amber Jain
- Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Ethan Alguire
- Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Joseph E Subotnik
- Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
29
|
Schubert A, Falvo C, Meier C. Mixed quantum-classical simulations of the vibrational relaxation of photolyzed carbon monoxide in a hemoprotein. J Chem Phys 2016; 145:054108. [DOI: 10.1063/1.4959859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Alexander Schubert
- Laboratoire Collisions Agrégats et Réactivité, IRSAMC, UMR CNRS 5589, Université Paul Sabatier, 31062 Toulouse, France
| | - Cyril Falvo
- Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Christoph Meier
- Laboratoire Collisions Agrégats et Réactivité, IRSAMC, UMR CNRS 5589, Université Paul Sabatier, 31062 Toulouse, France
| |
Collapse
|
30
|
Spencer J, Scalfi L, Carof A, Blumberger J. Confronting surface hopping molecular dynamics with Marcus theory for a molecular donor–acceptor system. Faraday Discuss 2016; 195:215-236. [DOI: 10.1039/c6fd00107f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We investigate the performance of fewest switches surface hopping (SH) in describing electron transfer (ET) for a molecular donor–acceptor system. Computer simulations are carried out for a wide range of reorganisation energy (λ), electronic coupling strength (Hab) and driving force using our recently developed fragment orbital-based SH approach augmented with a simple decoherence correction. This methodology allows us to compute SH ET rates over more than four orders of magnitude, from the sub-picosecond to the nanosecond time regime. We find good agreement with semi-classical ET theory in the non-adiabatic ET regime. The correct scaling of the SH ET rate with electronic coupling strength is obtained and the Marcus inverted regime is reproduced, in line with previously reported results for a spin-boson model. Yet, we find that the SH ET rate falls below the semi-classical ET rate in the adiabatic regime, where the free energy barrier is in the order of kBT in our simulations. We explain this by first signatures of non-exponential population decay of the initial charge state. For even larger electronic couplings (Hab = λ/2), the free energy barrier vanishes and ET rates are no longer defined. At this point we observe a crossover from ET on the vibronic time scale to charge relaxation on the femtosecond time scale that is well described by thermally averaged Rabi oscillations. The extension of the analysis from the non-adiabatic limit to large electronic couplings and small or even vanishing activation barriers is relevant for our understanding of charge transport in organic semiconductors.
Collapse
Affiliation(s)
- Jacob Spencer
- Department of Physics and Astronomy
- University College London
- London WC1E 6BT
- UK
| | - Laura Scalfi
- Department of Physics and Astronomy
- University College London
- London WC1E 6BT
- UK
- Department of Chemistry
| | - Antoine Carof
- Department of Physics and Astronomy
- University College London
- London WC1E 6BT
- UK
| | - Jochen Blumberger
- Department of Physics and Astronomy
- University College London
- London WC1E 6BT
- UK
| |
Collapse
|