1
|
Ochmann M, Harich J, Ma R, Freibert A, Kim Y, Gopannagari M, Hong DH, Nam D, Kim S, Kim M, Eom I, Lee JH, Yorke BA, Kim TK, Huse N. UV photochemistry of the L-cystine disulfide bridge in aqueous solution investigated by femtosecond X-ray absorption spectroscopy. Nat Commun 2024; 15:8838. [PMID: 39397016 PMCID: PMC11471820 DOI: 10.1038/s41467-024-52748-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024] Open
Abstract
The photolysis of disulfide bonds is implicated in denaturation of proteins exposed to ultraviolet light. Despite this biological relevance in stabilizing the structure of many proteins, the mechanisms of disulfide photolysis are still contested after decades of research. Herein, we report new insight into the photochemistry of L-cystine in aqueous solution by femtosecond X-ray absorption spectroscopy at the sulfur K-edge. We observe homolytic bond cleavage upon ultraviolet irradiation and the formation of thiyl radicals as the single primary photoproduct. Ultrafast thiyl decay due to geminate recombination proceeds at a quantum yield of >80 % within 20 ps. These dynamics coincide with the emergence of a secondary product, attributed to the generation of perthiyl radicals. From these findings, we suggest a mechanism of perthiyl radical generation from a vibrationally excited parent molecule that asymmetrically fragments along a carbon-sulfur bond. Our results point toward a dynamic photostability of the disulfide bridge in condensed-phase.
Collapse
Affiliation(s)
- Miguel Ochmann
- Department of Physics, University of Hamburg and Center for Free-Electron Laser Science, Hamburg, Germany
| | - Jessica Harich
- Department of Physics, University of Hamburg and Center for Free-Electron Laser Science, Hamburg, Germany
| | - Rory Ma
- Pohang Accelerator Laboratory, POSTECH, Pohang, Republic of Korea
| | - Antonia Freibert
- Department of Physics, University of Hamburg and Center for Free-Electron Laser Science, Hamburg, Germany.
| | - Yujin Kim
- Pohang Accelerator Laboratory, POSTECH, Pohang, Republic of Korea
| | - Madhusudana Gopannagari
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Da Hye Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Daewoong Nam
- Pohang Accelerator Laboratory, POSTECH, Pohang, Republic of Korea
- Photon Science Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Sangsoo Kim
- Pohang Accelerator Laboratory, POSTECH, Pohang, Republic of Korea
| | - Minseok Kim
- Pohang Accelerator Laboratory, POSTECH, Pohang, Republic of Korea
| | - Intae Eom
- Pohang Accelerator Laboratory, POSTECH, Pohang, Republic of Korea
- Photon Science Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jae Hyuk Lee
- Pohang Accelerator Laboratory, POSTECH, Pohang, Republic of Korea
- Photon Science Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Briony A Yorke
- School of Chemistry, University of Leeds, Leeds, United Kingdom
| | - Tae Kyu Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| | - Nils Huse
- Department of Physics, University of Hamburg and Center for Free-Electron Laser Science, Hamburg, Germany.
| |
Collapse
|
2
|
McGinnis KR, McGee CJ, Jarrold CC. Isomer-Dependent Electron Affinities of Fluorophenyl Radicals, •C 6H 5-xF x (2 ≤ x ≤ 4). J Am Chem Soc 2024; 146:7063-7075. [PMID: 38440870 DOI: 10.1021/jacs.4c00556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Di-, tri-, and tetrafluorophenyl radicals each have three regioisomers, several of which can form multiple distinct radical structures. We present the photoelectron spectra of the di-, tri-, and tetrafluorophenide regioisomer anions generated from their associated fluorobenzene precursors. By comparing the spectra to the results of density functional theory calculations, we determine that in cases where more than one possible radical isomer is possible for a given regioisomer (radicals formed from 1,2-difluorobenzene, 1,3-difluorobenzene, 1,2,3-trifluorobenzene, and 1,2,4-trifluorobenzene) the most stable anion corresponds to a less stable neutral, suggesting that the reactive C-center on these fluorine-substituted phenyl groups can be controlled by charge state. Full analyses of the spectra and computational results yield further insights into the differences between the electronic and molecular structures of the fluorophenyl radicals and their associated anions.
Collapse
Affiliation(s)
- Kristen Rose McGinnis
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Conor J McGee
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Caroline Chick Jarrold
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
3
|
McGee CJ, McGinnis KR, Jarrold CC. Trend in the Electron Affinities of Fluorophenyl Radicals ·C 6H 5-xF x (1 ≤ x ≤ 4). J Phys Chem A 2023; 127:7264-7273. [PMID: 37603043 DOI: 10.1021/acs.jpca.3c04327] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
The electron affinities (EAs) of a series of ·C6H5-xFx (1 ≤ x ≤ 4) fluorophenyl radicals are determined from the photoelectron spectra of their associated fluorophenide anions generated from C6H6-xFx (1 ≤ x ≤ 4) fluorobenzene precursors. The spectra show a near-linear incremental increase in EA of 0.4 eV/x. The spectra exhibit vibrationally unresolved and broad detachment transitions consistent with significant differences in the molecular structures of the anion and neutral radical species. The experimental EAs and broad spectra are consistent with density functional theory calculations on these species. While the anion detachment transitions all involve an electron in a non-bonding orbital, the differences in structure between the neutral and anion are in part due to repulsion between the lone pair on the C-center on which the excess charge is localized and neighboring F atoms. The C6H5-xFx- (2 ≤ x ≤ 4) spectra show features at lower binding energy that appear to be due to constitutional isomers formed in the ion source.
Collapse
Affiliation(s)
- Conor J McGee
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Kristen Rose McGinnis
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Caroline Chick Jarrold
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
4
|
Gao H. Molecular photodissociation in the vacuum ultraviolet region: implications for astrochemistry and planetary atmospheric chemistry. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1861354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Hong Gao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
5
|
Nichols B, Sullivan EN, Neumark DM. Photodissociation dynamics of the tert-butyl perthiyl radical. J Chem Phys 2020; 152:244301. [DOI: 10.1063/5.0006913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Bethan Nichols
- Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Erin N. Sullivan
- Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Daniel M. Neumark
- Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
6
|
Sullivan EN, Saric S, Neumark DM. Photodissociation of iso-propoxy (i-C 3H 7O) radical at 248 nm. Phys Chem Chem Phys 2020; 22:17738-17748. [DOI: 10.1039/d0cp02493g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photodissociation of the i-C3H7O radical is investigated using fast beam photofragment translational spectroscopy.
Collapse
Affiliation(s)
- Erin N. Sullivan
- Department of Chemistry
- University of California
- Berkeley
- USA
- Chemical Sciences Division
| | - Steven Saric
- Department of Chemistry
- University of California
- Berkeley
- USA
- Chemical Sciences Division
| | - Daniel M. Neumark
- Department of Chemistry
- University of California
- Berkeley
- USA
- Chemical Sciences Division
| |
Collapse
|
7
|
Sullivan EN, Nichols B, von Kugelgen S, da Silva G, Neumark DM. Multiphoton dissociation dynamics of the indenyl radical at 248 nm and 193 nm. J Chem Phys 2019; 151:174303. [PMID: 31703498 PMCID: PMC7043848 DOI: 10.1063/1.5121294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/10/2019] [Indexed: 11/14/2022] Open
Abstract
Photofragment translational spectroscopy is used to investigate the unimolecular photodissociation of the indenyl radical (C9H7). C9H7 radicals are generated by photodetachment of C9H7 - anions and are dissociated at 248 nm (5.00 eV) and 193 nm (6.42 eV). The following product channels are definitively observed at both wavelengths: C2H2 + C7H5, C2H2 + C3H3 + C4H2, and C2H2 + C2H2 + C5H3. The three-body product channels are energetically inaccessible from single photon excitation at either dissociation wavelength. This observation, in combination with calculated dissociation rates and laser power studies, implies that all dissociation seen in this experiment occurs exclusively through multiphoton processes in which the initial C9H7 radical absorbs two photons sequentially prior to dissociation to two or three fragments. The corresponding translational energy distributions for each product channel peak well below the maximum available energy for two photons and exhibit similar behavior regardless of dissociation wavelength. These results suggest that all products are formed by internal conversion to the ground electronic state, followed by dissociation.
Collapse
Affiliation(s)
- Erin N. Sullivan
- Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Bethan Nichols
- Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Stephen von Kugelgen
- Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Gabriel da Silva
- Department of Chemical Engineering, University of Melbourne, Victoria 3010 Australia
| | - Daniel M. Neumark
- Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
8
|
Sullivan EN, Nichols B, Neumark DM. Fast beam photofragment translational spectroscopy of the phenoxy radical at 225 nm, 290 nm, and 533 nm. Phys Chem Chem Phys 2019; 21:14270-14277. [PMID: 30566134 DOI: 10.1039/c8cp06818f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photodissociation of the phenoxy radical (C6H5O) is investigated using fast beam photofragment translational spectroscopy. Phenoxy radicals are generated through photodetachment of phenoxide anions (C6H5O-) at 532 nm. Following photoexcitation of the radicals at 225 nm (5.51 eV), 290 nm (4.27 eV), or 533 nm (2.33 eV), photofragments are collected in coincidence to determine their masses, translational energy, and scattering angle for each dissociation event. Two-body dissociation yields exclusively CO + C5H5, and three-body dissociation to CO + C2H2 + C3H3 and CO + C5H4 + H is also seen at the two higher energies. The translational energy distributions for two-body dissociation suggest that dissociation occurs via internal conversion to the ground electronic state followed by statistical dissociation. The absorption of an additional 532 nm photon in the photodetachment region provides some C6H5O radicals with an additional 2.33 eV of energy, leading to much of the two-body dissociation observed at 533 nm and the three-body dissociation at the two higher excitation energies.
Collapse
Affiliation(s)
- Erin N Sullivan
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| | | | | |
Collapse
|
9
|
Toscano J, Hejduk M, McGhee HG, Heazlewood BR. Manipulating hydrogen atoms using permanent magnets: Characterisation of a velocity-filtering guide. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:033201. [PMID: 30927814 DOI: 10.1063/1.5078573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
A Halbach array composed of 12 permanent magnets in a hexapole configuration is employed to deflect hydrogen atoms as they exit a Zeeman decelerator. The ability to preferentially manipulate H atoms is very useful, as there are currently very few techniques that are appropriate for purifying a beam of H atoms from precursor molecules (such as molecular hydrogen or ammonia), seed gases, and other contaminant species. The extent to which hydrogen atoms are deflected by a single Halbach array when it is tilted or shifted off the main beam axis is characterised experimentally and interpreted with the aid of a simple mathematical model. A radical beam filter is subsequently introduced, where four Halbach arrays arranged in series serve to deflect H atoms away from the main beam axis and around skimming blades; all other components of the incoming beam are blocked by the blades and are thus not transmitted through the magnetic guide. The properties of the guide, as established by experimental measurements and complemented by detailed simulations, confirm that it is a highly effective beam filter-successfully generating a pure and velocity-selected beam of H atoms.
Collapse
Affiliation(s)
- Jutta Toscano
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Michal Hejduk
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Henry G McGhee
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Brianna R Heazlewood
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
10
|
Ochmann M, Hussain A, von Ahnen I, Cordones AA, Hong K, Lee JH, Ma R, Adamczyk K, Kim TK, Schoenlein RW, Vendrell O, Huse N. UV-Photochemistry of the Disulfide Bond: Evolution of Early Photoproducts from Picosecond X-ray Absorption Spectroscopy at the Sulfur K-Edge. J Am Chem Soc 2018; 140:6554-6561. [PMID: 29771112 DOI: 10.1021/jacs.7b13455] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We have investigated dimethyl disulfide as the basic moiety for understanding the photochemistry of disulfide bonds, which are central to a broad range of biochemical processes. Picosecond time-resolved X-ray absorption spectroscopy at the sulfur K-edge provides unique element-specific insight into the photochemistry of the disulfide bond initiated by 267 nm femtosecond pulses. We observe a broad but distinct transient induced absorption spectrum which recovers on at least two time scales in the nanosecond range. We employed RASSCF electronic structure calculations to simulate the sulfur-1s transitions of multiple possible chemical species, and identified the methylthiyl and methylperthiyl radicals as the primary reaction products. In addition, we identify disulfur and the CH2S thione as the secondary reaction products of the perthiyl radical that are most likely to explain the observed spectral and kinetic signatures of our experiment. Our study underscores the importance of elemental specificity and the potential of time-resolved X-ray spectroscopy to identify short-lived reaction products in complex reaction schemes that underlie the rich photochemistry of disulfide systems.
Collapse
Affiliation(s)
- Miguel Ochmann
- Department of Physics , University of Hamburg and Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science , 22761 Hamburg , Germany
| | - Abid Hussain
- Department of Physics , University of Hamburg and Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science , 22761 Hamburg , Germany
| | - Inga von Ahnen
- Department of Physics , University of Hamburg and Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science , 22761 Hamburg , Germany
| | - Amy A Cordones
- Ultrafast X-ray Science Lab, Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Kiryong Hong
- Department of Chemistry and Chemistry Institute of Functional Materials , Pusan National University , Busan 46241 , South Korea
| | - Jae Hyuk Lee
- Ultrafast X-ray Science Lab, Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Rory Ma
- Department of Chemistry and Chemistry Institute of Functional Materials , Pusan National University , Busan 46241 , South Korea
| | - Katrin Adamczyk
- Department of Physics , University of Hamburg and Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science , 22761 Hamburg , Germany
| | - Tae Kyu Kim
- Department of Chemistry and Chemistry Institute of Functional Materials , Pusan National University , Busan 46241 , South Korea
| | - Robert W Schoenlein
- Ultrafast X-ray Science Lab, Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Oriol Vendrell
- Center for Free-Electron Laser Science , DESY and The Hamburg Centre for Ultrafast Imaging , 22607 Hamburg , Germany
| | - Nils Huse
- Department of Physics , University of Hamburg and Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science , 22761 Hamburg , Germany
| |
Collapse
|
11
|
Sullivan EN, Nichols B, Neumark DM. Photodissociation dynamics of the simplest alkyl peroxy radicals, CH 3OO and C 2H 5OO, at 248 nm. J Chem Phys 2018; 148:044309. [PMID: 29390832 DOI: 10.1063/1.5011985] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The photodissociation dynamics of the simplest alkyl peroxy radicals, methyl peroxy (CH3OO) and ethyl peroxy (C2H5OO), are investigated using fast beam photofragment translational spectroscopy. A fast beam of CH3OO- or C2H5OO- anions is photodetached to generate neutral radicals that are subsequently dissociated using 248 nm photons. The coincident detection of the photofragment positions and arrival times allows for the determination of mass, translational energy, and angular distributions for both two-body and three-body dissociation events. CH3OO exhibits repulsive O loss resulting in the formation of O(1D) + CH3O with high translational energy release. Minor two-body channels leading to OH + CH2O and CH3O + O(3P) formation are also detected. In addition, small amounts of H + O(3P) + CH2O are observed and attributed to O loss followed by CH3O dissociation. C2H5OO exhibits more complex dissociation dynamics, in which O loss and OH loss occur in roughly equivalent amounts with O(1D) formed as the dominant O atom electronic state via dissociation on a repulsive surface. Minor two-body channels leading to the formation of O2 + C2H5 and HO2 + C2H4 are also observed and attributed to a ground state dissociation pathway following internal conversion. Additionally, C2H5OO dissociation yields a three-body product channel, CH3 + O(3P) + CH2O, for which the proposed mechanism is repulsive O loss followed by the dissociation of C2H5O over a barrier. These results are compared to a recent study of tert-butyl peroxy (t-BuOO) in which 248 nm excitation results in three-body dissociation and ground state two-body dissociation but no O(1D) production.
Collapse
Affiliation(s)
- Erin N Sullivan
- Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Bethan Nichols
- Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Daniel M Neumark
- Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
12
|
Abstract
Slow photoelectron velocity-map imaging spectroscopy of cryogenically cooled anions (cryo-SEVI) is a powerful technique for elucidating the vibrational and electronic structure of neutral radicals, clusters, and reaction transition states. SEVI is a high-resolution variant of anion photoelectron spectroscopy based on photoelectron imaging that yields spectra with energy resolution as high as 1-2 cm-1. The preparation of cryogenically cold anions largely eliminates hot bands and dramatically narrows the rotational envelopes of spectral features, enabling the acquisition of well-resolved photoelectron spectra for complex and spectroscopically challenging species. We review the basis and history of the SEVI method, including recent experimental developments that have improved its resolution and versatility. We then survey recent SEVI studies to demonstrate the utility of this technique in the spectroscopy of aromatic radicals, metal and metal oxide clusters, nonadiabatic interactions between excited states of small molecules, and transition states of benchmark bimolecular reactions.
Collapse
Affiliation(s)
- Marissa L Weichman
- Department of Chemistry, University of California, Berkeley, California 94720, USA; , .,Current affiliation: JILA, National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | - Daniel M Neumark
- Department of Chemistry, University of California, Berkeley, California 94720, USA; , .,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
13
|
Nichols B, Sullivan EN, Ryazanov M, Hong CM, Neumark DM. Investigation of the two- and three-fragment photodissociation of the tert-butyl peroxy radical at 248 nm. J Chem Phys 2017; 147:134304. [DOI: 10.1063/1.4994713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Bethan Nichols
- Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Erin N. Sullivan
- Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Mikhail Ryazanov
- Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Cynthia M. Hong
- Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Daniel M. Neumark
- Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
14
|
Nichols B, Sullivan EN, Ryazanov M, Neumark DM. Photodissociation Dynamics of the i-Methylvinoxy Radical at 308, 248, and 225 nm Using Fast Beam Photofragment Translational Spectroscopy. J Phys Chem A 2017; 121:579-586. [PMID: 27992214 DOI: 10.1021/acs.jpca.6b10570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The photodissociation dynamics of the i-methylvinoxy (CH3COCH2) radical have been studied by means of fast beam coincidence translational spectroscopy. The radical was produced by photodetachment of the i-methylvinoxide anion at 700 nm, followed by dissociation at 225 nm (5.51 eV), 248 nm (5.00 eV), and 308 nm (4.03 eV). At all three dissociation energies, the major products were found to be CH3 + CH2CO, with a small amount of CO + C2H5 produced at the higher dissociation energies. Photofragment mass distributions and translational energy distributions were recorded for each wavelength. Comparison of the mass distributions with dissociation of fully deuterated i-methylvinoxy aided the assignment of the observed channels. Electronic structure calculations were performed to determine the relative energies of minima and transition states involved in the dissociation and to aid interpretation of the experimental results. The proposed dissociation mechanism involves internal conversion from the initially excited electronic state, followed by dissociation over a barrier on the ground state.
Collapse
Affiliation(s)
- Bethan Nichols
- Department of Chemistry, University of California , Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Erin N Sullivan
- Department of Chemistry, University of California , Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Mikhail Ryazanov
- Department of Chemistry, University of California , Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Daniel M Neumark
- Department of Chemistry, University of California , Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| |
Collapse
|
15
|
Harrison AW, Ryazanov M, Sullivan EN, Neumark DM. Photodissociation dynamics of the methyl perthiyl radical at 248 and 193 nm using fast-beam photofragment translational spectroscopy. J Chem Phys 2016; 145:024305. [PMID: 27421403 DOI: 10.1063/1.4955195] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The photodissociation dynamics of the methyl perthiyl radical (CH3SS) have been investigated using fast-beam coincidence translational spectroscopy. Methyl perthiyl radicals were produced by photodetachment of the CH3SS(-) anion followed by photodissociation at 248 nm (5.0 eV) and 193 nm (6.4 eV). Photofragment mass distributions and translational energy distributions were measured at each dissociation wavelength. Experimental results show S atom loss as the dominant (96%) dissociation channel at 248 nm with a near parallel, anisotropic angular distribution and translational energy peaking near the maximal energy available to ground state CH3S and S fragments, indicating that the dissociation occurs along a repulsive excited state. At 193 nm, S atom loss remains the major fragmentation channel, although S2 loss becomes more competitive and constitutes 32% of the fragmentation. The translational energy distributions for both channels are very broad at this wavelength, suggesting the formation of the S2 and S atom products in several excited electronic states.
Collapse
Affiliation(s)
- Aaron W Harrison
- Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Mikhail Ryazanov
- Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Erin N Sullivan
- Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Daniel M Neumark
- Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|