1
|
Ma KH, Guo YJ, Wang L, Tong NH. Projective-truncation-approximation study of the one-dimensional ϕ^{4} lattice model. Phys Rev E 2022; 106:014110. [PMID: 35974601 DOI: 10.1103/physreve.106.014110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
In this paper, we first develop the projective truncation approximation (PTA) in the Green's function equation of motion (EOM) formalism for classical statistical models. To implement PTA for a given Hamiltonian, we choose a set of basis variables and projectively truncate the hierarchical EOM. We apply PTA to the one-dimensional ϕ^{4} lattice model. Phonon dispersion and static correlation functions are studied in detail. Using one- and two-dimensional bases, we obtain results identical to and beyond the quadratic variational approximation, respectively. In particular, we analyze the power-law temperature dependence of the static averages in the low- and high-temperature limits, and we give exact exponents.
Collapse
Affiliation(s)
- Kou-Han Ma
- Department of Physics, Renmin University of China, 100872 Beijing, China
| | - Yan-Jiang Guo
- Department of Physics, Renmin University of China, 100872 Beijing, China
| | - Lei Wang
- Department of Physics, Renmin University of China, 100872 Beijing, China
| | - Ning-Hua Tong
- Department of Physics, Renmin University of China, 100872 Beijing, China
| |
Collapse
|
2
|
Wu J. Understanding the Electric Double-Layer Structure, Capacitance, and Charging Dynamics. Chem Rev 2022; 122:10821-10859. [PMID: 35594506 DOI: 10.1021/acs.chemrev.2c00097] [Citation(s) in RCA: 131] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Significant progress has been made in recent years in theoretical modeling of the electric double layer (EDL), a key concept in electrochemistry important for energy storage, electrocatalysis, and multitudes of other technological applications. However, major challenges remain in understanding the microscopic details of the electrochemical interface and charging mechanisms under realistic conditions. This review delves into theoretical methods to describe the equilibrium and dynamic responses of the EDL structure and capacitance for electrochemical systems commonly deployed for capacitive energy storage. Special emphasis is given to recent advances that intend to capture the nonclassical EDL behavior such as oscillatory ion distributions, polarization of nonmetallic electrodes, charge transfer, and various forms of phase transitions in the micropores of electrodes interfacing with an organic electrolyte or ionic liquid. This comprehensive analysis highlights theoretical insights into predictable relationships between materials characteristics and electrochemical performance and offers a perspective on opportunities for further development toward rational design and optimization of electrochemical systems.
Collapse
Affiliation(s)
- Jianzhong Wu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| |
Collapse
|
3
|
Hvozd M, Patsahan O, Patsahan T, Holovko M. Fluid-fluid phase behaviour in the explicit hard spherocylinder solvent ionic model confined in a disordered porous medium. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Hennequin T, Manghi M, Palmeri J. Competition between Born solvation, dielectric exclusion, and Coulomb attraction in spherical nanopores. Phys Rev E 2021; 104:044601. [PMID: 34781526 DOI: 10.1103/physreve.104.044601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/15/2021] [Indexed: 11/07/2022]
Abstract
The recent measurement of a very low dielectric constant, ε, of water confined in nanometric slit pores leads us to reconsider the physical basis of ion partitioning into nanopores. For confined ions in chemical equilibrium with a bulk of dielectric constant ε_{b}>ε, three physical mechanisms, at the origin of ion exclusion in nanopores, are expected to be modified due to this dielectric mismatch: dielectric exclusion at the water-pore interface (with membrane dielectric constant, ε_{m}<ε), the solvation energy related to the difference in Debye-Hückel screening parameters in the pore, κ, and in the bulk κ_{b}, and the classical Born solvation self-energy proportional to ε^{-1}-ε_{b}^{-1}. Our goal is to clarify the interplay between these three mechanisms and investigate the role played by the Born contribution in ionic liquid-vapor (LV) phase separation in confined geometries. We first compute analytically the potential of mean force (PMF) of an ion of radius R_{i} located at the center of a nanometric spherical pore of radius R. Computing the variational grand potential for a solution of confined ions, we then deduce the partition coefficients of ions in the pore versus R and the bulk electrolyte concentration ρ_{b}. We show how the ionic LV transition, directly induced by the abrupt change of the dielectric contribution of the PMF with κ, is favored by the Born self-energy and explore the decrease of the concentration in the pore with ε both in the vapor and liquid states. Phase diagrams are established for various parameter values and we show that a signature of this phase transition can be detected by monitoring the total osmotic pressure as a function of R. For charged nanopores, these exclusion effects compete with the electrostatic attraction that imposes the entry of counterions into the pore to enforce electroneutrality. This study will therefore help in deciphering the respective roles of the Born self-energy and dielectric mismatch in experiments and simulations of ionic transport through nanopores.
Collapse
Affiliation(s)
- Théo Hennequin
- Laboratoire de Physique Théorique, Université de Toulouse, CNRS, UPS, 31062 Toulouse cedex 4, France
| | - Manoel Manghi
- Laboratoire de Physique Théorique, Université de Toulouse, CNRS, UPS, 31062 Toulouse cedex 4, France
| | - John Palmeri
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier cedex 5, France
| |
Collapse
|
5
|
Liu K, Wu J. Wettability of ultra-small pores of carbon electrodes by size-asymmetric ionic fluids. J Chem Phys 2020; 152:054708. [PMID: 32035459 DOI: 10.1063/1.5131450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recently, we studied the phase behavior of ionic fluids under confinement using the classical density functional theory within the framework of the restricted primitive model. The theoretical results indicate that narrowing the pore size may lead to a drastic reduction in the electric double layer capacitance, while increasing the surface electrical potential would improve the ionic accessibility of micropores. In this work, we extend the theoretical investigation to systems containing size-asymmetric electrolytes that may exhibit a vapor-liquid like phase transition in the bulk phase. The effects of pore size and surface electric potential on the phase diagram and microscopic structures of the confined electrolytes were studied over a broad range of parameters. We found that decreasing the pore size or increasing the surface potential could destabilize the liquid phase in micropores, and capillary evaporation could occur regardless of the size asymmetry between cations and anions. Compared to that in a symmetric ionic system, the vapor-liquid phase separation is more likely to take place as the size asymmetry becomes more pronounced. The phase transition would alter the "accessibility" of ions to micropores and lead to coexisting micropores with different surface charge densities as identified by Monte Carlo simulation.
Collapse
Affiliation(s)
- Kun Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92507, USA
| | - Jianzhong Wu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92507, USA
| |
Collapse
|
6
|
Su M, Xu Z, Wang Y. Poisson-Boltzmann theory with non-linear ion correlations. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:355101. [PMID: 31125981 DOI: 10.1088/1361-648x/ab24a9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The Poisson-Boltzmann (PB) theory is widely used to depict ionic systems. As a mean-field theory, the PB theory neglects the correlation effect in the ionic atmosphere and leads to deviations from experimental results as the concentration or charge valance increases. A modified PB theory including ion correlation effect while retaining its simplicity is critical for many important applications in which ion correlation effect can be significant. In this paper, we present a new model to incorporate ion correlations into the original PB equation by utilizing the Green's function with a non-linear form of the self-energy, which is different from the linear self-energy equation obtained by the field-theoretic (FT) approach. Both equations are solved numerically and compared with our molecular dynamics (MD) simulation. The co-ion distribution calculated by the FT approach deviates significantly from the MD simulation, while our results for both counter-ion and co-ion distributions are justified by the MD simulation.
Collapse
Affiliation(s)
- Mao Su
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, 55 East Zhongguancun Road, PO Box 2735, Beijing 100190, People's Republic of China. School of Physical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, People's Republic of China. Computational Mathematics Group, Pacific Northwest National Laboratory, Richland, WA 99352, United States of America
| | | | | |
Collapse
|
7
|
Liu K, Zhang P, Wu J. Does capillary evaporation limit the accessibility of nonaqueous electrolytes to the ultrasmall pores of carbon electrodes? J Chem Phys 2018; 149:234708. [PMID: 30579302 DOI: 10.1063/1.5064360] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Porous carbons have been widely utilized as electrode materials for capacitive energy storage. Whereas the importance of pore size and geometry on the device performance has been well recognized, little guidance is available for identification of carbon materials with ideal porous structures. In this work, we study the phase behavior of ionic fluids in slit pores using the classical density functional theory. Within the framework of the restricted primitive model for nonaqueous electrolytes, we demonstrate that the accessibility of micropores depends not only on the ionic diameters (or desolvation) but also on their wetting behavior intrinsically related to the vapor-liquid or liquid-liquid phase separation of the bulk ionic systems. Narrowing the pore size from several tens of nanometers to subnanometers may lead to a drastic reduction in the capacitance due to capillary evaporation. The wettability of micropores deteriorates as the pore size is reduced but can be noticeably improved by raising the surface electrical potential. The theoretical results provide fresh insights into the properties of confined ionic systems beyond electric double layer models commonly employed for rational design/selection of electrolytes and electrode materials.
Collapse
Affiliation(s)
- Kun Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, USA
| | - Pengfei Zhang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Jianzhong Wu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, USA
| |
Collapse
|
8
|
Manghi M, Palmeri J, Yazda K, Henn F, Jourdain V. Role of charge regulation and flow slip in the ionic conductance of nanopores: An analytical approach. Phys Rev E 2018; 98:012605. [PMID: 30110733 DOI: 10.1103/physreve.98.012605] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Indexed: 11/07/2022]
Abstract
The number of precise conductance measurements in nanopores is quickly growing. To clarify the dominant mechanisms at play and facilitate the characterization of such systems for which there is still no clear consensus, we propose an analytical approach to the ionic conductance in nanopores that takes into account (i) electro-osmotic effects, (ii) flow slip at the pore surface for hydrophobic nanopores, (iii) a component of the surface charge density that is modulated by the reservoir pH and salt concentration c_{s} using a simple charge regulation model, and (iv) a fixed surface charge density that is unaffected by pH and c_{s}. Limiting cases are explored for various ranges of salt concentration and our formula is used to fit conductance experiments found in the literature for carbon nanotubes. This approach permits us to catalog the different possible transport regimes and propose an explanation for the wide variety of currently known experimental behavior for the conductance versus c_{s}.
Collapse
Affiliation(s)
- Manoel Manghi
- Laboratoire de Physique Théorique, IRSAMC, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - John Palmeri
- Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Université de Montpellier, F-34095 Montpellier, France
| | - Khadija Yazda
- Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Université de Montpellier, F-34095 Montpellier, France
| | - François Henn
- Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Université de Montpellier, F-34095 Montpellier, France
| | - Vincent Jourdain
- Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Université de Montpellier, F-34095 Montpellier, France
| |
Collapse
|
9
|
Patsahan OV, Patsahan TM, Holovko MF. Vapor-liquid phase behavior of a size-asymmetric model of ionic fluids confined in a disordered matrix: The collective-variables-based approach. Phys Rev E 2018; 97:022109. [PMID: 29548228 DOI: 10.1103/physreve.97.022109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Indexed: 11/07/2022]
Abstract
We develop a theory based on the method of collective variables to study the vapor-liquid equilibrium of asymmetric ionic fluids confined in a disordered porous matrix. The approach allows us to formulate the perturbation theory using an extension of the scaled particle theory for a description of a reference system presented as a two-component hard-sphere fluid confined in a hard-sphere matrix. Treating an ionic fluid as a size- and charge-asymmetric primitive model (PM) we derive an explicit expression for the relevant chemical potential of a confined ionic system which takes into account the third-order correlations between ions. Using this expression, the phase diagrams for a size-asymmetric PM are calculated for different matrix porosities as well as for different sizes of matrix and fluid particles. It is observed that general trends of the coexistence curves with the matrix porosity are similar to those of simple fluids under disordered confinement, i.e., the coexistence region gets narrower with a decrease of porosity and, simultaneously, the reduced critical temperature T_{c}^{*} and the critical density ρ_{i,c}^{*} become lower. At the same time, our results suggest that an increase in size asymmetry of oppositely charged ions considerably affects the vapor-liquid diagrams leading to a faster decrease of T_{c}^{*} and ρ_{i,c}^{*} and even to a disappearance of the phase transition, especially for the case of small matrix particles.
Collapse
Affiliation(s)
- O V Patsahan
- Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii St., 79011 Lviv, Ukraine
| | - T M Patsahan
- Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii St., 79011 Lviv, Ukraine
| | - M F Holovko
- Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii St., 79011 Lviv, Ukraine
| |
Collapse
|
10
|
Zhou S. A statistical mechanics investigation about general aspects of wetting transition occurring in nonpolar neutral molecule system with a smooth solid wall. Chem Phys 2017. [DOI: 10.1016/j.chemphys.2017.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|