1
|
Nakamura T, Dangi BB, Wu L, Zhang Y, Schoendorff G, Gordon MS, Yang DS. Spin-orbit coupling of electrons on separate lanthanide atoms of Pr2O2 and its singly charged cation. J Chem Phys 2023; 159:244303. [PMID: 38131482 DOI: 10.1063/5.0185579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Although it plays a critical role in the photophysics and catalysis of lanthanides, spin-orbit coupling of electrons on individual lanthanide atoms in small clusters is not well understood. The major objective of this work is to probe such coupling of the praseodymium (Pr) 4f and 6s electrons in Pr2O2 and Pr2O2+. The approach combines mass-analyzed threshold ionization spectroscopy and spin-orbit multiconfiguration second-order quasi-degenerate perturbation theory. The energies of six ionization transitions are precisely measured; the adiabatic ionization energy of the neutral cluster is 38 045 (5) cm-1. Most of the electronic states involved in these transitions are identified as spin-orbit coupled states consisting of two or more electron spins. The electron configurations of these states are 4f46s2 for the neutral cluster and 4f46s for the singly charged cation, both in planar rhombus-type structures. The spin-orbit splitting due to the coupling of the electrons on the separate Pr atoms is on the order of hundreds of wavenumbers.
Collapse
Affiliation(s)
- Taiji Nakamura
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011-3111, USA
- Institute for Materials Chemistry and Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Beni B Dangi
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA
| | - Lu Wu
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA
| | - Yuchen Zhang
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA
| | - George Schoendorff
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011-3111, USA
- Propellants Branch, Rocket Propulsion Division, Aerospace Systems Directorate, Air Force Research Laboratory, AFRL/RQRP, Edwards Air Force Base, California 93524, USA
| | - Mark S Gordon
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011-3111, USA
| | - Dong-Sheng Yang
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA
| |
Collapse
|
2
|
Mason JL, Huizenga CD, Ray M, Kafader JO, Jarrold CC. Electronic Structure of Heteronuclear Cerium-Platinum Clusters. J Phys Chem A 2023; 127:6749-6763. [PMID: 37531463 DOI: 10.1021/acs.jpca.3c03738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Beyond the now well-known strong catalyst-support interactions reported for ceria-supported platinum catalysts, intermetallic Ce-Pt compounds exhibit fascinating properties such as heavy fermion behavior and magnetic instability. Small heterometallic Ce-Pt clusters, which can provide insights into the local features that govern bulk phenomena, have been less explored. Herein, the anion photoelectron spectra of three small mixed Ce-Pt clusters, Ce2OPt-, Ce2Pt-, and Ce3Pt-, are presented and interpreted with supporting density functional theory calculations. The calculations, which are readily reconciled with the experimental spectra, suggest the presence of numerous close-lying spin states, including states in which the Ce 4f electrons are ferromagnetically coupled or antiferromagnetically coupled. The Pt center is consistently in a nominal -2 charge state in all cluster neutrals and anions, giving the Ce-Pt bond ionic character. Ce-Pt bonds are stronger than Ce-Ce bonds, and the O atom in Ce2OPt- coordinates only with the Ce centers. The energy of the singly occupied Ce-local 4f orbitals relative to the Pt-local orbitals changes with cluster composition. Discussion of the results includes potential implications for Ce-rich intermetallic materials.
Collapse
Affiliation(s)
- Jarrett L Mason
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave, Bloomington, Indiana 47405, United States
| | - Caleb D Huizenga
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave, Bloomington, Indiana 47405, United States
| | - Manisha Ray
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave, Bloomington, Indiana 47405, United States
| | - Jared O Kafader
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave, Bloomington, Indiana 47405, United States
| | - Caroline Chick Jarrold
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave, Bloomington, Indiana 47405, United States
| |
Collapse
|
3
|
Harb H, Hratchian HP. A Density Functional Theory Investigation of the Reaction of Water with Ce2O-. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Huizenga C, Hratchian HP, Jarrold CC. Lanthanide Oxides: From Diatomics to High-Spin, Strongly Correlated Homo- and Heterometallic Clusters. J Phys Chem A 2021; 125:6315-6331. [PMID: 34265204 DOI: 10.1021/acs.jpca.1c04253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Small lanthanide (Ln) oxide clusters present both experimental and theoretical challenges because of their partially filled, core-like 4f n orbitals, a feature that results in a plethora of close-lying and fundamentally similar electronic states. These clusters provide a bottom-up approach toward understanding the electronic structure of defective or doped bulk material but also can offer a challenge to the theorists to find a method robust enough to capture electronic structure patterns that emerge from within the 4f n (0 < n < 14) series. In this Feature Article, we explore the electronic structures of small lanthanide oxide clusters that deviate from bulk stoichiometry using anion photoelectron spectroscopy and supporting density functional theory calculations. We will describe the evolution of electronic structure with oxidation and how LnxOy- cluster reactivities can be correlated with specific Ln-local orbital occupancies. These strongly correlated systems offer additional insights into how interactions between electrons and electronically complex neutrals can lead to detachment transitions that lie outside of the sudden one-electron detachment approximation generally assumed in anion photoelectron spectroscopy. With a better understanding of how we can control nominally forbidden transitions to sample an array of spin states, we suggest that more in-depth studies on the magnetic states of these systems can be explored. Extending these studies to other Ln-based materials with hidden magnetic phases, along with sequentially ligated single molecule magnets, could advance current understanding of these systems.
Collapse
Affiliation(s)
- Caleb Huizenga
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Hrant P Hratchian
- Department of Chemistry and Chemical Biology, University of California, Merced, 5200 North Lake Road, Merced, California 95343, United States
| | - Caroline Chick Jarrold
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
5
|
Mason JL, Folluo CN, Jarrold CC. More than little fragments of matter: Electronic and molecular structures of clusters. J Chem Phys 2021; 154:200901. [DOI: 10.1063/5.0054222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jarrett L. Mason
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA
| | - Carley N. Folluo
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA
| | - Caroline Chick Jarrold
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA
| |
Collapse
|
6
|
Mason JL, Harb H, Taka AA, McMahon AJ, Huizenga CD, Corzo H, Hratchian HP, Jarrold CC. Photoelectron Spectra of Gd2O2– and Nonmonotonic Photon-Energy-Dependent Variations in Populations of Close-Lying Neutral States. J Phys Chem A 2021; 125:857-866. [DOI: 10.1021/acs.jpca.0c11002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jarrett L. Mason
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Hassan Harb
- Department of Chemistry and Chemical Biology, University of California, Merced, 5200 North Lake Road, Merced, California 95343, United States
| | - Ali Abou Taka
- Department of Chemistry and Chemical Biology, University of California, Merced, 5200 North Lake Road, Merced, California 95343, United States
| | - Abbey J. McMahon
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Caleb D. Huizenga
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Hector Corzo
- Department of Chemistry and Chemical Biology, University of California, Merced, 5200 North Lake Road, Merced, California 95343, United States
| | - Hrant P. Hratchian
- Department of Chemistry and Chemical Biology, University of California, Merced, 5200 North Lake Road, Merced, California 95343, United States
| | - Caroline Chick Jarrold
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
7
|
McMahon AJ, Jarrold CC. Using anion photoelectron spectroscopy of cluster models to gain insights into mechanisms of catalyst-mediated H 2 production from water. Phys Chem Chem Phys 2020; 22:27936-27948. [PMID: 33201956 DOI: 10.1039/d0cp05055e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metal oxide cluster models of catalyst materials offer a powerful platform for probing the molecular-scale features and interactions that govern catalysis. This perspective gives an overview of studies implementing the combination of anion photoelectron (PE) spectroscopy and density functional theory calculations toward exploring cluster models of metal oxides and metal-oxide supported Pt that catalytically drive the hydrogen evolution reaction (HER) or the water-gas shift reaction. The utility in the combination of these experimental and computational techniques lies in our ability to unambiguously determine electronic and molecular structures, which can then connect to results of reactivity studies. In particular, we focus on the activity of oxygen vacancies modeled by suboxide clusters, the critical mechanistic step of forming proximal metal hydride and hydroxide groups as a prerequisite for H2 production, and the structural features that lead to trapped dihydroxide groups. The pronounced asymmetric oxidation found in heterometallic group 6 oxides and near-neighbor group 5/group 6 results in higher activity toward water, while group 7/group 6 oxides form very specific stoichiometries that suggest facile regeneration. Studies on the trans-periodic combination of cerium oxide and platinum as a model for ceria supported Pt atoms and nanoparticles reveal striking negative charge accumulation by Pt, which, combined with the ionic conductivity of ceria, suggests a mechanism for the exceptionally high activity of this system towards the water-gas shift reaction.
Collapse
Affiliation(s)
- Abbey J McMahon
- Indiana University, Department of Chemistry, 800 E. Kirkwood Avenue, Bloomington, IN 47405, USA.
| | | |
Collapse
|
8
|
Mafuné F, Liu X, Zhang Y, Kudoh S. Substitution of O with a Single Au Atom as an Electron Acceptor in Al Oxide Clusters. J Phys Chem A 2020; 124:7511-7517. [PMID: 32830508 DOI: 10.1021/acs.jpca.0c06269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Al atoms generally adopt the +3 oxidation state and form stoichiometric oxides such as Al2O3 in the bulk phase. Among small cationic gas-phase clusters, near-stoichiometric clusters such as Al3O4+, Al3O5+, Al4O6+, Al4O7+, Al5O7+, and Al5O8+ have been readily generated in experimental studies. However, when a single Au atom was included in the clusters, oxygen-deficient clusters such as AuAl4O5+ were formed in high abundance; in these clusters, the Au atom accepted electron density from the Al atoms. The geometrical structures and atomic charges in the clusters suggest that a single Au atom can substitute for O atoms in Al oxide clusters. This propensity originates from the high electron and low oxygen affinities, which, together, constitute an unusual property of Au.
Collapse
Affiliation(s)
- Fumitaka Mafuné
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | - Xinan Liu
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | - Yufei Zhang
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | - Satoshi Kudoh
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
9
|
Hardy RA, Karayilan AM, Metha GF. Using Photoionization Efficiency Spectroscopy and Density Functional Theory to Investigate Charge Transfer Interactions in AuCe3On Clusters. J Phys Chem A 2020; 124:5812-5823. [DOI: 10.1021/acs.jpca.0c02310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Robert A. Hardy
- Department of Chemistry, The University of Adelaide, South Australia 5005, Australia
| | - Aidan M. Karayilan
- Department of Chemistry, The University of Adelaide, South Australia 5005, Australia
| | - Gregory F. Metha
- Department of Chemistry, The University of Adelaide, South Australia 5005, Australia
| |
Collapse
|
10
|
Ozório MS, Andriani KF, Da Silva JLF. A hybrid-DFT investigation of the Ce oxidation state upon adsorption of F, Na, Ni, Pd and Pt on the (CeO2)6 cluster. Phys Chem Chem Phys 2020; 22:14099-14108. [DOI: 10.1039/c9cp07005b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The formation of small polarons in CeO2−x compounds has been investigated mainly on solids, compact surfaces, and large nanoparticles.
Collapse
Affiliation(s)
- Mailde S. Ozório
- São Carlos Institute of Chemistry
- University of São Paulo
- São Carlos
- Brazil
| | - Karla F. Andriani
- São Carlos Institute of Chemistry
- University of São Paulo
- São Carlos
- Brazil
| | | |
Collapse
|
11
|
Mason JL, Harb H, Topolski JE, Hratchian HP, Jarrold CC. Exceptionally Complex Electronic Structures of Lanthanide Oxides and Small Molecules. Acc Chem Res 2019; 52:3265-3273. [PMID: 31702894 DOI: 10.1021/acs.accounts.9b00474] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lanthanide (Ln) oxide clusters and molecular systems provide a bottom-up look at the electronic structures of the bulk materials because of close parallels in the patterns of Ln 4fN subshell occupancy between the molecular and bulk Ln2O3 size limits. At the same time, these clusters and molecules offer a challenge to the theory community to find appropriate and robust treatments for the 4fN patterns across the Ln series. Anion photoelectron (PE) spectroscopy provides a powerful experimental tool for studying these systems, mapping the energies of the ground and low-lying excited states of the neutral relative to the initial anion state, providing spectroscopic patterns that reflect the Ln 4fN occupancy. In this Account, we review our anion PE spectroscopic and computational studies on a range of small lanthanide molecules and cluster species. The PE spectra of LnO- (Ln = Ce, Pr, Sm, Eu) diatomic molecules show spectroscopic signatures associated with detachment of an electron from what can be described as a diffuse Ln 6s-like orbital. While the spectra of all four diatomics share this common transition, the fine structure in the transition becomes more complex with increasing 4f occupancy. This effect reflects increased coupling between the electrons occupying the corelike 4f and diffuse 6s orbitals with increasing N. Understanding the PE spectra of these diatomics sets the stage for interpreting the spectra of polyatomic molecular and cluster species. In general, the results confirm that the partial 4fN subshell occupancy is largely preserved between molecular and bulk oxides and borides. However, they also suggest that surfaces and edges of bulk materials may support a low-energy, diffuse Ln 6s band, in contrast to bulk interiors, in which the 6s band is destabilized relative to the 5d band. We also identify cases in which the molecular Ln centers have 4fN+1 occupancy rather than bulklike 4fN, which results in weaker Ln-O bonding. Specifically, Sm centers in mixed Ce-Sm oxides or in SmxOy- (y ≤ x) clusters have this higher 4fN+1 occupancy. The PE spectra of these particular species exhibit a striking increase in the relative intensities of excited-state transitions with decreasing photon energy (resulting in lower photoelectron kinetic energy). This is opposite of what is expected on the basis of the threshold laws that govern photodetachment. We relate this phenomenon to strong electron-neutral interactions unique to these complex electronic structures. The time scale of the interaction, which shakes up the electronic configuration of the neutral, increases with decreasing electron momentum. From a computational standpoint, we point out that special care must be taken when considering Ln cluster and molecular systems toward the center of the Ln series (e.g., Sm, Eu), where treatment of electrons explicitly or using an effective core potential can yield conflicting results on competing subshell occupancies. However, despite the complex electronic structures associated with partially filled 4fN subshells, we demonstrate that inexpensive and tractable calculations yield useful qualitative insight into the general electronic structural features.
Collapse
Affiliation(s)
- Jarrett L. Mason
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Hassan Harb
- Department of Chemistry and Chemical Biology and Center for Chemical Computation and Theory, University of California, Merced, 5200 North Lake Road, Merced, California 95343, United States
| | - Josey E. Topolski
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Hrant P. Hratchian
- Department of Chemistry and Chemical Biology and Center for Chemical Computation and Theory, University of California, Merced, 5200 North Lake Road, Merced, California 95343, United States
| | - Caroline Chick Jarrold
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
12
|
Hardy RA, Karayilan AM, Metha GF. Investigating Charge Transfer Interactions in AuCe2On Clusters Using Photoionization Efficiency Spectroscopy and Density Functional Theory. J Phys Chem A 2019; 123:10158-10168. [DOI: 10.1021/acs.jpca.9b09199] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Robert A. Hardy
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Aidan M. Karayilan
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Gregory F. Metha
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|