1
|
Do Quynh Nhu N, Nguyen TA, Tran Truc Phuong N, Tho LH, Huong VT, Pham ATT, Tran NQ, Tran NHT. Facile Fabrication of SERS Substrates by the Electrodeposition Method to Detect Pesticides with High Enhancement Effect and Long-Term Stability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13292-13302. [PMID: 38871669 DOI: 10.1021/acs.langmuir.4c01651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
In this study, surface-enhanced Raman scattering substrates were investigated by the electrodeposition method to detect low concentrations of pesticides via the electrodeposition method with different agents from silver and gold precursors on APTES-modified ITO glass. A dual-potential method supplied three electrodes and was performed with a nucleation potential of 0.7 V for 2 s and a growth potential of -0.2 V for 500 s. The Ag film produced by the electrodeposition approach has great surface uniformity and good SERS signal amplification for the thiram insecticide at low concentrations. Interestingly, the ITO/APTES/Ag substrate extensively increased the sensitivity than the other investigated ones, thanks to the adequate assistance of amino groups of APTES in the denser and hierarchical deposition of Ag NPs. These observations were additionally elucidated via finite-difference time-domain (FDTD) calculation. For thiram, the detection was set at 10-8 M with an enhancement factor of up to 3.6 × 107 times. Comparing the SERS spectra of thiram at concentrations of 10-3, 10-4, and 10-5 M with a relative standard deviation (RSD) of less than 7.0% demonstrates excellent reproducibility of the ITO/APTES/Ag substrate. In addition, the special selectivity of the ITO/APTES/Ag substrate for thiram demonstrates that these nanostructures can identify pesticides with extreme sensitivity.
Collapse
Affiliation(s)
- Nguyen Do Quynh Nhu
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City 700000, Viet Nam
- Vietnam National University, Ho Chi Minh City 700000, Viet Nam
- Center for Innovative Materials and Architectures (INOMAR), Ho Chi Minh City 700000, Viet Nam
| | - Thuy-An Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 70000, Viet Nam
- Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang City 50000, Viet Nam
| | - Nguyen Tran Truc Phuong
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City 700000, Viet Nam
- Vietnam National University, Ho Chi Minh City 700000, Viet Nam
- Center for Innovative Materials and Architectures (INOMAR), Ho Chi Minh City 700000, Viet Nam
| | - Le Hong Tho
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City 700000, Viet Nam
- Vietnam National University, Ho Chi Minh City 700000, Viet Nam
- Center for Innovative Materials and Architectures (INOMAR), Ho Chi Minh City 700000, Viet Nam
| | - Vu Thi Huong
- Department of Information Communication, Materials, and Chemistry Convergence Technology, Soongsil University, Seoul 06978, Republic of Korea
| | - Anh Tuan Thanh Pham
- Vietnam National University, Ho Chi Minh City 700000, Viet Nam
- Laboratory of Advanced Materials, University of Science, Ho Chi Minh City 700000, Viet Nam
| | - Ngoc Quang Tran
- Vietnam National University, Ho Chi Minh City 700000, Viet Nam
- Center for Innovative Materials and Architectures (INOMAR), Ho Chi Minh City 700000, Viet Nam
| | - Nhu Hoa Thi Tran
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City 700000, Viet Nam
- Vietnam National University, Ho Chi Minh City 700000, Viet Nam
| |
Collapse
|
2
|
Gwon Y, Kim JH, Lee SW. Quantification of Plasma Dopamine in Depressed Patients Using Silver-Enriched Silicon Nanowires as SERS-Active Substrates. ACS Sens 2024; 9:870-882. [PMID: 38354414 DOI: 10.1021/acssensors.3c02202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
A decrease in the levels of dopamine (DA)─a key catecholamine biomarker for major depressive disorder─highlights the need for quantitative analysis of biological fluids to aid in the early diagnosis of diverse neuropsychiatric disorders. This study developed silicon nanowires enriched with silver nanoparticles to serve as a surface-enhanced Raman scattering (SERS) substrate to enable precise and sensitive quantification of blood plasma DA levels in humans. The silver-enriched silicon nanowires (SiNWs@Ag) yielded flower-like assemblies with densely populated SERS "hot spots," allowing sensitive DA detection. By correlating DA concentration with Raman intensity at 1156 cm-1, the plasma DA levels in treatment-naïve patients with major depression (n = 18) were 2 orders of magnitude lower than those in healthy controls (n = 18) (6.56 × 10-10 M vs 1.43 × 10-8 M). The plasma DA concentrations differed significantly between the two groups (two-tailed p = 5.77×10-7), highlighting a distinct demarcation between depression patients and healthy controls. Furthermore, the SiNWs@Ag substrate effectively differentiated between DA and norepinephrine (NE) in mixtures at nanomolar levels, demonstrating its selective detection capability. This study represents the first report on the quantitative detection of DA levels in human blood samples from individuals with major depression using an SERS technique, emphasizing its potential clinical utility in the evaluation and diagnosis of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Youngju Gwon
- Department of Chemical and Biological Engineering, Gachon University, San 65, Bokjeong-Dong, Sujeong-Gu, Seongnam City, Gyeonggi-do 461-701, South Korea
| | - Jong-Hoon Kim
- Department of Psychiatry, Gachon University College of Medicine, Gil Medical Center, Neuroscience Research Institute, Gachon University, Incheon 21565, South Korea
| | - Sang-Wha Lee
- Department of Chemical and Biological Engineering, Gachon University, San 65, Bokjeong-Dong, Sujeong-Gu, Seongnam City, Gyeonggi-do 461-701, South Korea
| |
Collapse
|
3
|
Kaja S, Mathews AV, Venuganti VVK, Nag A. Bimetallic Ag-Cu Alloy SERS Substrates as Label-Free Biomedical Sensors: Femtomolar Detection of Anticancer Drug Mitoxantrone with Multiplexing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5591-5601. [PMID: 37025057 DOI: 10.1021/acs.langmuir.3c00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has been recognized as a promising label-free technology for clinical monitoring due to its high sensitivity and multiplexing ability, which should accelerate the screening of important drugs in the blood and plasma of cancer patients in a simpler, faster, and less-expensive manner. In this work, bimetallic Ag-Au and Ag-Cu alloy microflowers (MFs) with tunable surface compositions were fabricated on a glass cover slip by simple thermolysis of a metal alkyl ammonium halide precursor and used as SERS substrates for the sensitive detection of anticancer drug mitoxantrone (MTO). Two different laser excitation sources, 532 and 632.8 nm, were used to explore the possibility of surface-enhanced resonance Raman scattering. The Ag-Cu substrate showed superior detection capability over Ag-Au, whereby the sensor recorded a noteworthy "limit of detection" value of 1 fM for MTO. Theoretical electromagnetic field maps were simulated on appropriately chosen plasmonic systems to compare the electromagnetic field enhancements with the experimental SERS efficiencies of the substrates. Further, using a 10% Ag-Cu substrate, efficient multiplexing detection of MTO was demonstrated with another anticancer drug doxorubicin (DOX) in water and mouse blood plasma.
Collapse
Affiliation(s)
- Sravani Kaja
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Ashin Varghese Mathews
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, India
| | | | - Amit Nag
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, India
| |
Collapse
|
4
|
Awiaz G, Lin J, Wu A. Recent advances of Au@Ag core-shell SERS-based biosensors. EXPLORATION (BEIJING, CHINA) 2023; 3:20220072. [PMID: 37323623 PMCID: PMC10190953 DOI: 10.1002/exp.20220072] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/18/2022] [Indexed: 06/17/2023]
Abstract
The methodological advancements in surface-enhanced Raman scattering (SERS) technique with nanoscale materials based on noble metals, Au, Ag, and their bimetallic alloy Au-Ag, has enabled the highly efficient sensing of chemical and biological molecules at very low concentration values. By employing the innovative various type of Au, Ag nanoparticles and especially, high efficiency Au@Ag alloy nanomaterials as substrate in SERS based biosensors have revolutionized the detection of biological components including; proteins, antigens antibodies complex, circulating tumor cells, DNA, and RNA (miRNA), etc. This review is about SERS-based Au/Ag bimetallic biosensors and their Raman enhanced activity by focusing on different factors related to them. The emphasis of this research is to describe the recent developments in this field and conceptual advancements behind them. Furthermore, in this article we apex the understanding of impact by variation in basic features like effects of size, shape varying lengths, thickness of core-shell and their influence of large-scale magnitude and morphology. Moreover, the detailed information about recent biological applications based on these core-shell noble metals, importantly detection of receptor binding domain (RBD) protein of COVID-19 is provided.
Collapse
Affiliation(s)
- Gul Awiaz
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and Engineering, CASNingboChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jie Lin
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and Engineering, CASNingboChina
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhouChina
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and Engineering, CASNingboChina
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhouChina
| |
Collapse
|
5
|
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a vibrational spectroscopy technique that enables specific identification of target analytes with sensitivity down to the single-molecule level by harnessing metal nanoparticles and nanostructures. Excitation of localized surface plasmon resonance of a nanostructured surface and the associated huge local electric field enhancement lie at the heart of SERS, and things will become better if strong chemical enhancement is also available simultaneously. Thus, the precise control of surface characteristics of enhancing substrates plays a key role in broadening the scope of SERS for scientific purposes and developing SERS into a routine analytical tool. In this review, the development of SERS substrates is outlined with some milestones in the nearly half-century history of SERS. In particular, these substrates are classified into zero-dimensional, one-dimensional, two-dimensional, and three-dimensional substrates according to their geometric dimension. We show that, in each category of SERS substrates, design upon the geometric and composite configuration can be made to achieve an optimized enhancement factor for the Raman signal. We also show that the temporal dimension can be incorporated into SERS by applying femtosecond pulse laser technology, so that the SERS technique can be used not only to identify the chemical structure of molecules but also to uncover the ultrafast dynamics of molecular structural changes. By adopting SERS substrates with the power of four-dimensional spatiotemporal control and design, the ultimate goal of probing the single-molecule chemical structural changes in the femtosecond time scale, watching the chemical reactions in four dimensions, and visualizing the elementary reaction steps in chemistry might be realized in the near future.
Collapse
Affiliation(s)
| | | | - Hai-Yao Yang
- School of Physics and Optoelectronics, South China University of Technology, Wushan Road 381, Guangzhou 510641, China
| | - Zhiyuan Li
- School of Physics and Optoelectronics, South China University of Technology, Wushan Road 381, Guangzhou 510641, China
| |
Collapse
|
6
|
Wang Y, Dai B, Ma C, Zhang Q, Huang K, Luo X, Liu X, Ying Y, Xie L. Cross-Wavelength Hierarchical Metamaterials Enabled for Trans-Scale Molecules Detection Simultaneously. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105447. [PMID: 35261180 PMCID: PMC9069183 DOI: 10.1002/advs.202105447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Metamaterials have attracted increasing attention in sensing applications. However, the critical feature sizes of meta-atom span several orders of magnitude in length scale, almost all the metamaterials are designed to operate at limited bands. It is challenging for a single type of meta-atom with ultra-broadband adaptability. Inspired by the natural hierarchical architectures, herein, the authors introduce a new constructing scheme of cross-wavelength hierarchical metamaterials with a single type of meta-atom that can realize enhancement of terahertz (THz) resonance and surface-enhanced Raman scattering (SERS) at the same time. By combining multiple subwavelength structures at different hierarchical levels into a single meta-atom, the obtained metamaterial can operate in two frequencies and realize multiple functionalities. Armed with this hierarchical metamaterial, detecting analytes as small as sub-nanoscale chemical molecules or as big as microscale biomolecules simultaneously can be realized in one single metamaterial for the first time. As a proof-of-concept example, a smart sensory packaging is developed, which allowed them to real-time monitor the kinetic growth of pathogenic bacteria and their metabolites in food without opening the packaging. They believe that their work will provide a valuable example that satisfies the unmet need for multiscale functional meta-devices.
Collapse
Affiliation(s)
- Yingli Wang
- College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhou310058China
| | - Benhui Dai
- College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhou310058China
| | - Chan Ma
- College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhou310058China
| | - Qi Zhang
- Department of PhysicsNanjing UniversityNanjing210008China
| | - Kang Huang
- School of Chemical SciencesThe University of AucklandAuckland1142New Zealand
| | - Xuan Luo
- College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhou310058China
| | - Xiangjiang Liu
- College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhou310058China
| | - Yibin Ying
- College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhou310058China
| | - Lijuan Xie
- College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhou310058China
| |
Collapse
|
7
|
Tran Truc Phuong N, Xoan Hoang T, La Ngoc Tran N, Gia Phuc L, Phung VD, Kieu Thi Ta H, Ngoc Bach T, Hoa Thi Tran N, The Loan Trinh K. Rapid and sensitive detection of Rhodamine B in food using the plasmonic silver nanocube-based sensor as SERS active substrate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 263:120179. [PMID: 34298280 DOI: 10.1016/j.saa.2021.120179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/21/2021] [Accepted: 07/09/2021] [Indexed: 05/21/2023]
Abstract
The use of dye in food is harmful to human health and is prohibited nowadays. However, it is still used because of the benefits, such as cheap prices and abundant resources. Rhodamine B is usually used as the colorant in food such as chili powder, chili oil, etc. It is colorless at very low concentration 10-7 M. The sensitive detection of RhB at ultra-low concentration help to prevent some risk for human. Surface-enhanced Raman scattering (SERS) is a great technique to detect the analytes at ultra-low concentration and provide the molecule's information as a fingerprint. In this study, silver nano-cube was facilely synthesized by reducing Ag+ in ethylene glycol and upgraded to thin-film as a SERS active substrate. RhB was detected at 10-10 M by a silver nano-cube sensor. The dynamic linear regression between the Raman intensity and RhB concentration over seven orders of magnitude (from 10-4 to 10-10 M) was excellent with high reliability (R2 = 0.99). Moreover, the substrate can be used after storing in a dark area for 60 days. This proposed nano-cube silver could serve as a potential substrate for detecting RhB in food at very low concentration.
Collapse
Affiliation(s)
- Nguyen Tran Truc Phuong
- Faculty of Materials Science and Technology, University of Science, HoChiMinh City, Viet Nam; Vietnam National University, HoChiMinh City, Viet Nam
| | - Thi Xoan Hoang
- Department of Life Science, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Nguyen La Ngoc Tran
- Faculty of Materials Science and Technology, University of Science, HoChiMinh City, Viet Nam; Vietnam National University, HoChiMinh City, Viet Nam
| | - Lam Gia Phuc
- Faculty of Materials Science and Technology, University of Science, HoChiMinh City, Viet Nam; Vietnam National University, HoChiMinh City, Viet Nam
| | - Viet-Duc Phung
- Future Materials and Devices Laboratory, Duy Tan University, Ho Chi Minh City 700000, Viet Nam; Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 550000, Viet Nam
| | - Hanh Kieu Thi Ta
- Faculty of Materials Science and Technology, University of Science, HoChiMinh City, Viet Nam; Vietnam National University, HoChiMinh City, Viet Nam; Center for Innovative Materials and Architectures (INOMAR), HoChiMinh City, Viet Nam
| | - Ta Ngoc Bach
- Institute of Materials Science, Vietnam Academy of Science and Technology, Ha Noi, Viet Nam
| | - Nhu Hoa Thi Tran
- Faculty of Materials Science and Technology, University of Science, HoChiMinh City, Viet Nam; Vietnam National University, HoChiMinh City, Viet Nam.
| | - Kieu The Loan Trinh
- Department of Industrial Environmental Engineering, College of Industrial Environmental Engineering, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
| |
Collapse
|
8
|
Liu W, Jing C, Liu X, Du J. 3D imaging of single bacterial cells using surface-enhanced Raman spectroscopy with a multivariate curve resolution model. Analyst 2021; 147:223-229. [PMID: 34877945 DOI: 10.1039/d1an01879e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Imaging biomolecules within a single bacterial cell is crucial for understanding cellular genetic mechanisms. Herein, we exploited a surface-enhanced Raman spectroscopy (SERS) imaging strategy for single cell analysis. Cellular biosynthesized Ag nanoparticles (NPs) provided the necessary enhancement for SERS imaging. Multiple complementary techniques, including high-resolution transmission electron microscopy (HR-TEM), high-angle annular dark-field (HAADF)-scanning transmission electron microscopy (STEM), and energy-dispersive X-ray spectroscopy (EDX), were used to characterize the biogenic Ag NPs in cells. Three-dimensional SERS imaging maps displayed spectral information of biomolecules within the single cell. The multivariate curve resolution (MCR) model and principal component analysis (PCA) model were used to analyze the cellular SERS imaging maps. The MCR model, with a specific constraint of non-negativity, resulted in meaningful identification of biomolecules associated with Ag reduction. Focusing on the molecular level reveals that Pantoea sp. IMH utilizes several mechanisms to synthesize Ag NPs, including cytoplasm reduction by glucose or nicotinamide adenine dinucleotide (NADH)-dependent reductase, and extracellular reduction by an electron transfer chain containing quinone and cytochrome C. Our results shed new light on the Ag NP biosynthesis mechanism and single cell Raman analysis.
Collapse
Affiliation(s)
- Wenjing Liu
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | | | - Xiaowei Liu
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Jingjing Du
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
9
|
Liao W, Chen Y, Huang L, Wang Y, Zhou Y, Tang Q, Chen Z, Liu K. A capillary-based SERS sensor for ultrasensitive and selective detection of Hg 2+ by amalgamation with Au@4-MBA@Ag core-shell nanoparticles. Mikrochim Acta 2021; 188:354. [PMID: 34570272 DOI: 10.1007/s00604-021-05016-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/02/2021] [Indexed: 02/02/2023]
Abstract
A capillary-based SERS sensor was fabricated for ultrasensitive and selective detection of Hg2+ in water. Au@Ag core-shell NPs embedded with 4-mercaptobenzoic acid (4-MBA) (Au@4-MBA@Ag) were prepared by a seed growth method and fixed on the inner wall of the glass capillary to obtain the sensor. Owing to the amalgamation between Ag and Hg, the capillary-based SERS sensor can specifically recognize the reduced Hg2+ without any recognition element, and the resulted Ag/Hg amalgam can weaken the SERS activity of Ag shell; thus, the SERS intensity of the embedded 4-MBA at 1075 cm-1 gradually decreased with the increase of Hg2+ concentration. Under the optimum condition, the fabricated sensor can sensitively determine Hg2+ in water with a limit of detection (LOD) as low as 0.03 nM. The capillary-based SERS sensor offers the advantages of simple preparation, superior stability, and high selectivity, which is promising for rapid and on-site detection of Hg2+ in water combined with a portable Raman device.
Collapse
Affiliation(s)
- Wenlong Liao
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| | - Yangjie Chen
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610106, China
| | - Lijuan Huang
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Yong Wang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610106, China
| | - Youting Zhou
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610106, China
| | - Quan Tang
- College of Material and Chemical Engineer, Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, Hezhou University, Hezhou, 542899, China
| | - Zhenming Chen
- College of Material and Chemical Engineer, Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, Hezhou University, Hezhou, 542899, China
| | - Kunping Liu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
10
|
Cheng M, Zhang Y, Wang Y, Zhu A, Chen L, Hua Z, Zhang X. SERS Immunosensor of Array Units Surrounded by Particles: A Platform for Auxiliary Diagnosis of Hepatocellular Carcinoma. NANOMATERIALS 2020; 10:nano10102090. [PMID: 33096939 PMCID: PMC7589698 DOI: 10.3390/nano10102090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 11/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the diseases with high mortality worldwide, so its early diagnosis and treatment have attracted much attention. Due to the advantages of the high sensitivity of surface-enhanced Raman scattering (SERS) detection, SERS has excellent application value in the diagnosis of HCC. In this paper, silver nanoparticles (AgNPs) are modified by magnetron sputtering on the surface of polystyrene (PS) templates with spheres of two different diameters. The array of units surrounded by particles is successfully prepared and the SERS performance is characterized. The effect of the gap between AgNPs on plasmon coupling and hot spot distribution is discussed. Finite-difference time domain (FDTD) simulation is used to verify the electric fields and hot spot distribution of the array. The differences in the concentrations of HCC markers are analyzed by using the change of SERS signal intensity of the array. The whole process proves that the preparation of structures with a strong local electric field to provide highly sensitive SERS signals is a key link in the detection of HCC markers, which is conducive to the diagnosis of HCC and has potential application value in clinical diagnosis.
Collapse
Affiliation(s)
- Mingyu Cheng
- School of Material and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310012, China; (M.C.); (Y.W.)
- Key Laboratory of Functional Materials Physics and Chemistry, Ministry of Education, College of Physics, Jilin Normal University, Changchun 130103, China; (L.C.); (Z.H.)
| | - Yongjun Zhang
- School of Material and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310012, China; (M.C.); (Y.W.)
- Correspondence: (Y.Z.); (X.Z.)
| | - Yaxin Wang
- School of Material and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310012, China; (M.C.); (Y.W.)
| | - Aonan Zhu
- College of Chemistry, Nankai University, Tianjin 300071, China;
| | - Lei Chen
- Key Laboratory of Functional Materials Physics and Chemistry, Ministry of Education, College of Physics, Jilin Normal University, Changchun 130103, China; (L.C.); (Z.H.)
| | - Zhong Hua
- Key Laboratory of Functional Materials Physics and Chemistry, Ministry of Education, College of Physics, Jilin Normal University, Changchun 130103, China; (L.C.); (Z.H.)
| | - Xiaolong Zhang
- Key Laboratory of Functional Materials Physics and Chemistry, Ministry of Education, College of Physics, Jilin Normal University, Changchun 130103, China; (L.C.); (Z.H.)
- Correspondence: (Y.Z.); (X.Z.)
| |
Collapse
|
11
|
Petrov D. Photopolarimetrical properties of coronavirus model particles: Spike proteins number influence. JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER 2020; 248:107005. [PMID: 32292212 DOI: 10.1016/j.jqsrt.2020.107095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 05/22/2023]
Abstract
Coronavirus virions have spherical shape surrounded by spike proteins. The coronavirus spike proteins are very effective molecular mechanisms, which provide the coronavirus entrance to the host cell. The number of these spikes is different; it dramatically depends on external conditions and determines the degree of danger of the virus. A larger number of spike proteins makes the virus infectivity stronger. This paper describes a mathematical model of the shape of coronavirus virions. Based on this model, the characteristics of light scattered by the coronavirus virions were calculated. It was found two main features of coronavirus model particles in the spectral region near 200 nm: a minimum of intensity and a sharp leap of the linear polarization degree. The effect of the spike protein number on the intensity and polarization properties of the scattered light was studied. It was determined that when the number of spike proteins decreases, both the intensity minimum and the position of the linear polarization leap shift to shorter wavelengths. This allows us to better evaluate the shape of the coronavirus virion, and, therefore, the infectious danger of the virus. It was shown that the shorter the wavelength of scattered light, the more reliably one can distinguish viruses from non-viruses. The developed model and the light scattering simulations based on it can be applied not only to coronaviruses, but also to other objects of a similar structure, for example, pollen.
Collapse
Affiliation(s)
- Dmitry Petrov
- Crimean Astrophysical Observatory (CrAO RAS), Nauchnyj, 298409, Crimea, Russian Federation
| |
Collapse
|
12
|
Wu C, Hu Q, Benison M, Faulds K, Graham D. Modulation of interparticle gap for enhanced SERS sensitivity in chemically stable Ag@Au hetero-architectures. NEW J CHEM 2020. [DOI: 10.1039/d0nj02657c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A facile way to tune SERS sensitivity and chemical stability of Ag@Au hetero-architectures by Au coatings.
Collapse
Affiliation(s)
- Chunfang Wu
- School of Optoelectronic Engineering
- Xi’an Technological University
- Xi’an
- P. R. China
- Department of Pure and Applied Chemistry
| | - Qing Hu
- School of Optoelectronic Engineering
- Xi’an Technological University
- Xi’an
- P. R. China
| | - Melissa Benison
- Department of Pure and Applied Chemistry
- University of Strathclyde
- Glasgow
- UK
| | - Karen Faulds
- Department of Pure and Applied Chemistry
- University of Strathclyde
- Glasgow
- UK
| | - Duncan Graham
- Department of Pure and Applied Chemistry
- University of Strathclyde
- Glasgow
- UK
| |
Collapse
|
13
|
Pawar S, Teja BR, Nagarjuna R, Ganesan R, Nag A. Probing the surface composition effect of silver-gold alloy in SERS efficiency. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123638] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
14
|
Phung VD, Kook JK, Koh DY, Lee SW. Hierarchical Au nanoclusters electrodeposited on amine-terminated ITO glass as a SERS-active substrate for the reliable and sensitive detection of serotonin in a Tris-HCl buffer solution. Dalton Trans 2019; 48:16026-16033. [DOI: 10.1039/c9dt03269j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this study, a SERS-active substrate was fabricated by electrodepositing hierarchical Au nanostructures on amine-terminated ITO (indium tin oxide) glass to achieve an enhanced Raman signal of 5-HT.
Collapse
Affiliation(s)
- Viet-Duc Phung
- Future Materials and Devices Laboratory
- Institute of Fundamental and Applied Sciences
- Duy Tan University
- Ho Chi Minh City
- Viet Nam
| | - Jeong-Keun Kook
- Dept. of Chemical & Biological Engineering
- Gachon University
- Seongnam-si
- Republic of Korea
| | - Do Yeung Koh
- Dept. of Chemical & Biological Engineering
- Gachon University
- Seongnam-si
- Republic of Korea
| | - Sang-Wha Lee
- Dept. of Chemical & Biological Engineering
- Gachon University
- Seongnam-si
- Republic of Korea
| |
Collapse
|
15
|
Shin H, Jeong H, Park J, Hong S, Choi Y. Correlation between Cancerous Exosomes and Protein Markers Based on Surface-Enhanced Raman Spectroscopy (SERS) and Principal Component Analysis (PCA). ACS Sens 2018; 3:2637-2643. [PMID: 30381940 DOI: 10.1021/acssensors.8b01047] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Exosomes, which are nanovesicles secreted by cells, are promising biomarkers for cancer diagnosis and prognosis, based on their specific surface protein compositions. Here, we demonstrate the correlation of nonsmall cell lung cancer (NSCLC) cell-derived exosomes and potential protein markers by unique Raman scattering profiles and principal component analysis (PCA) for cancer diagnosis. On the basis of surface enhanced Raman scattering (SERS) signals of exosomes from normal and NSCLC cells, we extracted Raman patterns of cancerous exosomes by PCA and clarified specific patterns as unique peaks through quantitative analysis with ratiometric mixtures of cancerous and normal exosomes. The unique peaks correlated well with cancerous exosome ratio ( R2 > 90%) as the unique Raman band of NSCLC exosome. To examine the origin of the unique peaks, we compared these unique peaks with characteristic Raman bands of several exosomal protein markers (CD9, CD81, EpCAM, and EGFR). EGFR had 1.97-fold similarity in Raman profiles than other markers, and it showed dominant expression against the cancerous exosomes in an immunoblotting result. We expect that these results will contribute to studies on exosomal surface protein markers for diagnosis of cancers.
Collapse
Affiliation(s)
- Hyunku Shin
- Department of Bio-convergence Engineering, Korea University, Seoul 02841, South Korea
| | - Hyesun Jeong
- Department of Integrated Biomedical and Life Science, Korea University, Seoul 02841, South Korea
| | - Jaena Park
- Department of Bio-convergence Engineering, Korea University, Seoul 02841, South Korea
| | - Sunghoi Hong
- Department of Integrated Biomedical and Life Science, Korea University, Seoul 02841, South Korea
- School of Biosystem and Biomedical Science, Korea University, Seoul 02841, South Korea
| | - Yeonho Choi
- Department of Bio-convergence Engineering, Korea University, Seoul 02841, South Korea
- School of Biomedical Engineering, Korea University, Seoul 02841, South Korea
| |
Collapse
|
16
|
Phung VD, Jung WS, Nguyen TA, Kim JH, Lee SW. Reliable and quantitative SERS detection of dopamine levels in human blood plasma using a plasmonic Au/Ag nanocluster substrate. NANOSCALE 2018; 10:22493-22503. [PMID: 30480292 DOI: 10.1039/c8nr06444j] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Accurate and rapid blood-based detection of dopamine levels can aid in the diagnosis and monitoring of diseases related to dopaminergic dysfunction. For the sensitive detection of dopamine levels in human blood plasma (i.e., plasma dopamine levels), a silver-plated Au bimetallic nanocluster (so called plasmonic Au/Ag nanocluster) was prepared as a surface-enhanced Raman scattering (SERS) substrate by the combination of electrodeposition and electroless plating methods. The plasmonic effect of the Au/Ag nanocluster substrate was optimized by controlling the particle morphology, packing density, and interparticle distance, showing the best performance in its SERS activity. The lowest detection limit of dopamine was ∼10-11 M. A linear standard curve was obtained by plotting the log-scale of dopamine concentration (log C) versus Raman intensity at 1152 cm-1. The optimized SERS substrate quantified the plasma dopamine levels of patients with antipsychotic drug-induced Parkinsonism (n = 15) as 3.24 × 10-9 M and healthy control subjects (n = 15) as 2.31 × 10-8 M. Patients with drug-induced Parkinsonism had ∼86% lower plasma dopamine concentration than healthy subjects (two-tailed p-value = 0.000002), indicating a clear separation between the groups. Our study provides the first report on the quantitative SERS detection of dopamine levels in human blood plasma with Parkinsonism. The results highlight the potential clinical utility of the optimized SERS technique in screening clinical populations with dopaminergic dysfunction, i.e., differentiating between healthy subjects and patients with Parkinsonism.
Collapse
Affiliation(s)
- Viet-Duc Phung
- Dept. of Chemical & Biological Engineering, Gachon University, 1342 Seonnamdaero, Sujeong-gu, Seongnam-si, Republic of Korea.
| | | | | | | | | |
Collapse
|
17
|
Byram C, Soma VR. 2,4-dinitrotoluene detected using portable Raman spectrometer and femtosecond laser fabricated Au–Ag nanoparticles and nanostructures. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.nanoso.2017.09.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
18
|
Hollow Au-Ag Alloy Nanorices and Their Optical Properties. NANOMATERIALS 2017; 7:nano7090255. [PMID: 28869545 PMCID: PMC5618366 DOI: 10.3390/nano7090255] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/29/2017] [Accepted: 08/29/2017] [Indexed: 11/16/2022]
Abstract
Hollow noble metal nanoparticles have excellent performance not only in surface catalysis but also in optics. In this work, the hollow Au-Ag alloy nanorices are fabricated by the galvanic replacement reaction. The dark-field spectrum points out that there is a big difference in the optical properties between the pure Ag nanorices and the hollow alloy nanorices that exhibit highly tunable localized surface plasmon resonances (LSPR) and that possess larger radiative damping, which is also indicated by the finite element method. Furthermore, the surface enhanced Raman scattering (SERS) and oxidation test indicate that hollow Au-Ag alloy nanorices show good anti-oxidation and have broad application prospects in surface-plasmon-related fields.
Collapse
|