1
|
Spencer RJ, Zhanserkeev AA, Yang EL, Steele RP. The Near-Sightedness of Many-Body Interactions in Anharmonic Vibrational Couplings. J Am Chem Soc 2024; 146:15376-15392. [PMID: 38771156 DOI: 10.1021/jacs.4c03198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Couplings between vibrational motions are driven by electronic interactions, and these couplings carry special significance in vibrational energy transfer, multidimensional spectroscopy experiments, and simulations of vibrational spectra. In this investigation, the many-body contributions to these couplings are analyzed computationally in the context of clathrate-like alkali metal cation hydrates, including Cs+(H2O)20, Rb+(H2O)20, and K+(H2O)20, using both analytic and quantum-chemistry potential energy surfaces. Although the harmonic spectra and one-dimensional anharmonic spectra depend strongly on these many-body interactions, the mode-pair couplings were, perhaps surprisingly, found to be dominated by one-body effects, even in cases of couplings to low-frequency modes that involved the motion of multiple water molecules. The origin of this effect was traced mainly to geometric distortion within water monomers and cancellation of many-body effects in differential couplings, and the effect was also shown to be agnostic to the identity of the ion. These outcomes provide new understanding of vibrational couplings and suggest the possibility of improved computational methods for the simulation of infrared and Raman spectra.
Collapse
Affiliation(s)
- Ryan J Spencer
- Department of Chemistry and Henry Eyring Center for Theoretical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Asylbek A Zhanserkeev
- Department of Chemistry and Henry Eyring Center for Theoretical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Emily L Yang
- Department of Chemistry and Henry Eyring Center for Theoretical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Ryan P Steele
- Department of Chemistry and Henry Eyring Center for Theoretical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
2
|
Iyengar SS, Ricard TC, Zhu X. Reformulation of All ONIOM-Type Molecular Fragmentation Approaches and Many-Body Theories Using Graph-Theory-Based Projection Operators: Applications to Dynamics, Molecular Potential Surfaces, Machine Learning, and Quantum Computing. J Phys Chem A 2024; 128:466-478. [PMID: 38180503 DOI: 10.1021/acs.jpca.3c05630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
We present a graph-theory-based reformulation of all ONIOM-based molecular fragmentation methods. We discuss applications to (a) accurate post-Hartree-Fock AIMD that can be conducted at DFT cost for medium-sized systems, (b) hybrid DFT condensed-phase studies at the cost of pure density functionals, (c) reduced cost on-the-fly large basis gas-phase AIMD and condensed-phase studies, (d) post-Hartree-Fock-level potential surfaces at DFT cost to obtain quantum nuclear effects, and (e) novel transfer machine learning protocols derived from these measures. Additionally, in previous work, the unifying strategy discussed here has been used to construct new quantum computing algorithms. Thus, we conclude that this reformulation is robust and accurate.
Collapse
Affiliation(s)
- Srinivasan S Iyengar
- Department of Chemistry, Department of Physics, and the Indiana University Quantum Science and Engineering Center (IU-QSEC), Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Timothy C Ricard
- Department of Chemistry, Department of Physics, and the Indiana University Quantum Science and Engineering Center (IU-QSEC), Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Xiao Zhu
- Department of Chemistry, Department of Physics, and the Indiana University Quantum Science and Engineering Center (IU-QSEC), Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
3
|
Bader F, Lauvergnat D, Christiansen O. Vibrationally correlated calculations in polyspherical coordinates: Taylor expansion-based kinetic energy operators. J Chem Phys 2023; 159:214107. [PMID: 38047511 DOI: 10.1063/5.0171912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023] Open
Abstract
The efficiency of quantum chemical simulations of nuclear motion can in many cases greatly benefit from the application of curvilinear coordinate systems. This is rooted in the fact that a set of smartly selected curvilinear coordinates may represent the motion naturally well, thus decreasing the couplings between motions in these coordinates. In this study, we assess the validity of different Taylor expansion-based approximations of kinetic energy operators in a (curvilinear) polyspherical parametrization. To this end, we investigate the accuracy as well as the numerical performance of the approximations in time-independent vibrational coupled cluster and full vibrational interaction calculations for several test cases ranging from tri- to penta-atomic molecules. We find that several of the proposed schemes reproduce the vibrational ground state and excitation energies to a decent accuracy, justifying their application in future investigations. Furthermore, due to the restricted mode coupling and their inherent sum-of-products form, the new approximations open up the possibility of treating large molecular systems with efficient vibrational coupled cluster schemes in general coordinates.
Collapse
Affiliation(s)
- F Bader
- Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - D Lauvergnat
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay 91405, France
| | - O Christiansen
- Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
4
|
Yang EL, Talbot JJ, Spencer RJ, Steele RP. Pitfalls in the n-mode representation of vibrational potentials. J Chem Phys 2023; 159:204104. [PMID: 38010326 DOI: 10.1063/5.0176612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/19/2023] [Indexed: 11/29/2023] Open
Abstract
Simulations of anharmonic vibrational motion rely on computationally expedient representations of the governing potential energy surface. The n-mode representation (n-MR)-effectively a many-body expansion in the space of molecular vibrations-is a general and efficient approach that is often used for this purpose in vibrational self-consistent field (VSCF) calculations and correlated analogues thereof. In the present analysis, a lack of convergence in many VSCF calculations is shown to originate from negative and unbound potentials at truncated orders of the n-MR expansion. For cases of strong anharmonic coupling between modes, the n-MR can both dip below the true global minimum of the potential surface and lead to effective single-mode potentials in VSCF that do not correspond to bound vibrational problems, even for bound total potentials. The present analysis serves mainly as a pathology report of this issue. Furthermore, this insight into the origin of VSCF non-convergence provides a simple, albeit ad hoc, route to correct the problem by "painting in" the full representation of groups of modes that exhibit these negative potentials at little additional computational cost. Somewhat surprisingly, this approach also reasonably approximates the results of the next-higher n-MR order and identifies groups of modes with particularly strong coupling. The method is shown to identify and correct problematic triples of modes-and restore SCF convergence-in two-mode representations of challenging test systems, including the water dimer and trimer, as well as protonated tropine.
Collapse
Affiliation(s)
- Emily L Yang
- Department of Chemistry, The University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, USA
- Henry Eyring Center for Theoretical Chemistry, The University of Utah, Salt Lake City, Utah 84112, USA
| | - Justin J Talbot
- Department of Chemistry, University of California-Berkeley, 420 Latimer Hall, Berkeley, California 94720, USA
| | - Ryan J Spencer
- Department of Chemistry, The University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, USA
- Henry Eyring Center for Theoretical Chemistry, The University of Utah, Salt Lake City, Utah 84112, USA
| | - Ryan P Steele
- Department of Chemistry, The University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, USA
- Henry Eyring Center for Theoretical Chemistry, The University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
5
|
Focke K, Jacob CR. Coupled-Cluster Density-Based Many-Body Expansion. J Phys Chem A 2023; 127:9139-9148. [PMID: 37871170 PMCID: PMC10626589 DOI: 10.1021/acs.jpca.3c04591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/25/2023]
Abstract
While CCSD(T) is often considered the "gold standard" of computational chemistry, the scaling of its computational cost as N7 limits its applicability for large and complex molecular systems. In this work, we apply the density-based many-body expansion [ Int. J. Quantum Chem. 2020, 120, e26228] in combination with CCSD(T). The accuracy of this approach is assessed for neutral, protonated, and deprotonated water hexamers, as well as (H2O)16 and (H2O)17 clusters. For the neutral water clusters, we find that already with a density-based two-body expansion, we are able to approximate the supermolecular CCSD(T) energies within chemical accuracy (4 kJ/mol). This surpasses the accuracy that is achieved with a conventional, energy-based three-body expansion. We show that this accuracy can be maintained even when approximating the electron densities using Hartree-Fock instead of using coupled-cluster densities. The density-based many-body expansion thus offers a simple, resource-efficient, and highly parallelizable approach that makes CCSD(T)-quality calculations feasible where they would otherwise be prohibitively expensive.
Collapse
Affiliation(s)
- Kevin Focke
- Institute of Physical and
Theoretical Chemistry, Technische Universität
Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Christoph R. Jacob
- Institute of Physical and
Theoretical Chemistry, Technische Universität
Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| |
Collapse
|
6
|
Zhanserkeev AA, Yang EL, Steele RP. Accelerating Anharmonic Spectroscopy Simulations via Local-Mode, Multilevel Methods. J Chem Theory Comput 2023; 19:5572-5585. [PMID: 37555634 DOI: 10.1021/acs.jctc.3c00589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Ab initio computer simulations of anharmonic vibrational spectra provide nuanced insight into the vibrational behavior of molecules and complexes. The computational bottleneck in such simulations, particularly for ab initio potentials, is often the generation of mode-coupling potentials. Focusing specifically on two-mode couplings in this analysis, the combination of a local-mode representation and multilevel methods is demonstrated to be particularly symbiotic. In this approach, a low-level quantum chemistry method is employed to predict the pairwise couplings that should be included at the target level of theory in vibrational self-consistent field (and similar) calculations. Pairs that are excluded by this approach are "recycled" at the low level of theory. Furthermore, because this low-level pre-screening will eventually become the computational bottleneck for sufficiently large chemical systems, distance-based truncation is applied to these low-level predictions without substantive loss of accuracy. This combination is demonstrated to yield sub-wavenumber fidelity with reference vibrational transitions when including only a small fraction of target-level couplings; the overhead of predicting these couplings, particularly when employing distance-based, local-mode cutoffs, is a trivial added cost. This combined approach is assessed on a series of test cases, including ethylene, hexatriene, and the alanine dipeptide. Vibrational self-consistent field (VSCF) spectra were obtained with an RI-MP2/cc-pVTZ potential for the dipeptide, at approximately a 5-fold reduction in computational cost. Considerable optimism for increased accelerations for larger systems and higher-order couplings is also justified, based on this investigation.
Collapse
Affiliation(s)
- Asylbek A Zhanserkeev
- Department of Chemistry and Henry Eyring Center for Theoretical Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Emily L Yang
- Department of Chemistry and Henry Eyring Center for Theoretical Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Ryan P Steele
- Department of Chemistry and Henry Eyring Center for Theoretical Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
7
|
Artiukhin DG, Godtliebsen IH, Schmitz G, Christiansen O. Gaussian process regression adaptive density-guided approach: Toward calculations of potential energy surfaces for larger molecules. J Chem Phys 2023; 159:024102. [PMID: 37428042 DOI: 10.1063/5.0152367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/15/2023] [Indexed: 07/11/2023] Open
Abstract
We present a new program implementation of the Gaussian process regression adaptive density-guided approach [Schmitz et al., J. Chem. Phys. 153, 064105 (2020)] for automatic and cost-efficient potential energy surface construction in the MidasCpp program. A number of technical and methodological improvements made allowed us to extend this approach toward calculations of larger molecular systems than those previously accessible and maintain the very high accuracy of constructed potential energy surfaces. On the methodological side, improvements were made by using a Δ-learning approach, predicting the difference against a fully harmonic potential, and employing a computationally more efficient hyperparameter optimization procedure. We demonstrate the performance of this method on a test set of molecules of growing size and show that up to 80% of single point calculations could be avoided, introducing a root mean square deviation in fundamental excitations of about 3 cm-1. A much higher accuracy with errors below 1 cm-1 could be achieved with tighter convergence thresholds still reducing the number of single point computations by up to 68%. We further support our findings with a detailed analysis of wall times measured while employing different electronic structure methods. Our results demonstrate that GPR-ADGA is an effective tool, which could be applied for cost-efficient calculations of potential energy surfaces suitable for highly accurate vibrational spectra simulations.
Collapse
Affiliation(s)
- Denis G Artiukhin
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Ian H Godtliebsen
- Department of Chemistry, Aarhus Universitet, DK-8000 Aarhus, Denmark
| | - Gunnar Schmitz
- Lehrstuhl für Theoretische Chemie II, Ruhr-Universität Bochum, Universitätstraße 150, 44801 Bochum, Germany
| | - Ove Christiansen
- Department of Chemistry, Aarhus Universitet, DK-8000 Aarhus, Denmark
| |
Collapse
|
8
|
Brüggemann J, Wolter M, Jacob CR. Quantum-chemical calculation of two-dimensional infrared spectra using localized-mode VSCF/VCI. J Chem Phys 2022; 157:244107. [PMID: 36586972 DOI: 10.1063/5.0135273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Computational protocols for the simulation of two-dimensional infrared (2D IR) spectroscopy usually rely on vibrational exciton models which require an empirical parameterization. Here, we present an efficient quantum-chemical protocol for predicting static 2D IR spectra that does not require any empirical parameters. For the calculation of anharmonic vibrational energy levels and transition dipole moments, we employ the localized-mode vibrational self-consistent field (L-VSCF)/vibrational configuration interaction (L-VCI) approach previously established for (linear) anharmonic theoretical vibrational spectroscopy [P. T. Panek and C. R. Jacob, ChemPhysChem 15, 3365-3377 (2014)]. We demonstrate that with an efficient expansion of the potential energy surface using anharmonic one-mode potentials and harmonic two-mode potentials, 2D IR spectra of metal carbonyl complexes and dipeptides can be predicted reliably. We further show how the close connection between L-VCI and vibrational exciton models can be exploited to extract the parameters of such models from those calculations. This provides a novel route to the fully quantum-chemical parameterization of vibrational exciton models for predicting 2D IR spectra.
Collapse
Affiliation(s)
- Julia Brüggemann
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Mario Wolter
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Christoph R Jacob
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| |
Collapse
|
9
|
Hanson-Heine MWD. Static Electron Correlation in Anharmonic Molecular Vibrations: A Hybrid TAO-DFT Study. J Phys Chem A 2022; 126:7273-7282. [PMID: 36164938 PMCID: PMC9574917 DOI: 10.1021/acs.jpca.2c05881] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Hybrid thermally-assisted-occupation density functional theory is used to examine the effects of static electron correlation on the prediction of a benchmark set of experimentally observed molecular vibrational frequencies. The B3LYP and B97-1 thermally-assisted-occupation measure of static electron correlation is important for describing the vibrations of many of the molecules that make up several popular test sets of experimental data. Shifts are seen for known multireference systems and for many molecules containing atoms from the second row of the periodic table of elements. Several molecules only show significant shifts in select vibrational modes, and significant improvements are seen for the prediction of hydrogen stretching frequencies throughout the test set.
Collapse
|
10
|
Hellmers J, Hedegård ED, König C. Fragmentation-Based Decomposition of a Metalloenzyme-Substrate Interaction: A Case Study for a Lytic Polysaccharide Monooxygenase. J Phys Chem B 2022; 126:5400-5412. [PMID: 35833656 DOI: 10.1021/acs.jpcb.2c02883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a novel decomposition scheme for electronic interaction energies based on the flexible formulation of fragmentation schemes through fragment combination ranges (FCRs; J. Chem. Phys., 2021, 155, 164105). We devise a clear additive decomposition with contribution of nondisjoint fragments and correction terms for overlapping fragments and apply this scheme to the metalloenzyme-substrate complex of a lytic polysaccharide monooxygenase (LPMO) with an oligosaccharide. By this, we further illustrate the straightforward adaptability of the FCR-based schemes to novel systems. Our calculations suggest that the description of the electronic structure is a larger error source than the fragmentation scheme. In particular, we find a large impact of the basis set size on the interaction energies. Still, the introduction of three-body interaction terms in the fragmentation setup improves the agreement to the supermolecular reference. Yet, the qualitative results for the decomposition scheme with two-body terms only largely agree within the investigated electronic-structure approaches and basis sets, which are B97-3c, DFT (TPSS and B3LYP), and MP2 methods. The overlap contributions are found to be small, allowing analysis of the interaction energy into individual amino acid residues: We find a particularly strong interaction between the substrate and the LPMO copper active site.
Collapse
Affiliation(s)
- Janine Hellmers
- Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, 30167 Hannover, Germany
| | - Erik Donovan Hedegård
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense, Denmark
| | - Carolin König
- Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, 30167 Hannover, Germany
| |
Collapse
|
11
|
Carvalho JR, Vidal LN. Calculation of absolute Raman scattering cross-sections using vibrational self-consistent field/vibrational configuration interaction wave functions. J Comput Chem 2022; 43:1484-1494. [PMID: 35731622 DOI: 10.1002/jcc.26951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/21/2022] [Accepted: 06/02/2022] [Indexed: 11/12/2022]
Abstract
In the present study, the differential scattering cross-sections, depolarization ratios and Raman shifts of small molecular systems are obtained from configuration iteration wave functions of vibrational self-consistent field (VSCF) states. The transition polarizabilities were modeled using the Placzek approximation, neglecting those contributions not arising from the electric dipole mechanism. This theoretical approach is considered a good approximation for samples that absorb in the UV range if the excitation radiation falls in the visible region, as is the case of the molecules selected for the present study, namely: water, methane, and acetylene. Potential energy and electronic polarizability surfaces are calculated by the CCSD(T) and CC3 methods with aug-cc-p(C)V(T,Q,5)Z basis sets. The vibrational Hamiltonian includes the vibrational angular momentum contribution of the Watson kinetic energy operator. As expected, due to the variational nature of the VSCF and vibrational configuration interaction (VCI) methods, the Raman transition wavenumbers are substantially improved over the harmonic predictions. Surprisingly, the scattering cross-sections obtained using the harmonic approximation or the VSCF method better agrees with the experimental values than those cross-sections predicted using VCI wave functions. The more significant deviations of the VCI results from the experimental reference may be related to the significant uncertainties of the measured cross-sections. Still, it may also indicate that the VCI Raman transition moments may require a more accurate description of the electronic polarizability surface. Finally, the depolarization ratios calculated for H2 O and C2 D2 using harmonic and VCI wave functions have similar accuracy, whereas, for C2 H2 and C2 HD, the VCI results are more accurate.
Collapse
Affiliation(s)
- Jhonatas R Carvalho
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Luciano N Vidal
- Departamento Acadêmico de Química e Biologia, Universidade Tecnológica Federal do Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
12
|
Kumar A, DeGregorio N, Iyengar SS. Graph-Theory-Based Molecular Fragmentation for Efficient and Accurate Potential Surface Calculations in Multiple Dimensions. J Chem Theory Comput 2021; 17:6671-6690. [PMID: 34623129 DOI: 10.1021/acs.jctc.1c00065] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We present a multitopology molecular fragmentation approach, based on graph theory, to calculate multidimensional potential energy surfaces in agreement with post-Hartree-Fock levels of theory but at the density functional theory cost. A molecular assembly is coarse-grained into a set of graph-theoretic nodes that are then connected with edges to represent a collection of locally interacting subsystems up to an arbitrary order. Each of the subsystems is treated at two levels of electronic structure theory, the result being used to construct many-body expansions that are embedded within an ONIOM scheme. These expansions converge rapidly with the many-body order (or graphical rank) of subsystems and capture many-body interactions accurately and efficiently. However, multiple graphs, and hence multiple fragmentation topologies, may be defined in molecular configuration space that may arise during conformational sampling or from reactive, bond breaking and bond formation, events. Obtaining the resultant potential surfaces is an exponential scaling proposition, given the number of electronic structure computations needed. We utilize a family of graph-theoretic representations within a variational scheme to obtain multidimensional potential surfaces at a reduced cost. The fast convergence of the graph-theoretic expansion with increasing order of many-body interactions alleviates the exponential scaling cost for computing potential surfaces, with the need to only use molecular fragments that contain a fewer number of quantum nuclear degrees of freedom compared to the full system. This is because the dimensionality of the conformational space sampled by the fragment subsystems is much smaller than the full molecular configurational space. Additionally, we also introduce a multidimensional clustering algorithm, based on physically defined criteria, to reduce the number of energy calculations by orders of magnitude. The molecular systems benchmarked include coupled proton motion in protonated water wires. The potential energy surfaces and multidimensional nuclear eigenstates obtained are shown to be in very good agreement with those from explicit post-Hartree-Fock calculations that become prohibitive as the number of quantum nuclear dimensions grows. The developments here provide a rigorous and efficient alternative to this important chemical physics problem.
Collapse
Affiliation(s)
- Anup Kumar
- Department of Chemistry and Department of Physics, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Nicole DeGregorio
- Department of Chemistry and Department of Physics, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Srinivasan S Iyengar
- Department of Chemistry and Department of Physics, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
13
|
Hellmers J, König C. A unified and flexible formulation of molecular fragmentation schemes. J Chem Phys 2021; 155:164105. [PMID: 34717347 DOI: 10.1063/5.0059598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We present a flexible formulation for energy-based molecular fragmentation schemes. This framework does not only incorporate the majority of existing fragmentation expansions but also allows for flexible formulation of novel schemes. We further illustrate its application in multi-level approaches and for electronic interaction energies. For the examples of small water clusters, a small protein, and protein-protein interaction energies, we show how this flexible setup can be exploited to generate a well-suited multi-level fragmentation expansion for the given case. With such a setup, we reproduce the electronic protein-protein interaction energy of ten different structures of a neurotensin and an extracellular loop of its receptor with a mean absolute deviation to the respective super-system calculations below 1 kJ/mol.
Collapse
Affiliation(s)
- Janine Hellmers
- Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Hannover, Germany
| | - Carolin König
- Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
14
|
Ozaki Y, Beć KB, Morisawa Y, Yamamoto S, Tanabe I, Huck CW, Hofer TS. Advances, challenges and perspectives of quantum chemical approaches in molecular spectroscopy of the condensed phase. Chem Soc Rev 2021; 50:10917-10954. [PMID: 34382961 DOI: 10.1039/d0cs01602k] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The purpose of this review is to demonstrate advances, challenges and perspectives of quantum chemical approaches in molecular spectroscopy of the condensed phase. Molecular spectroscopy, particularly vibrational spectroscopy and electronic spectroscopy, has been used extensively for a wide range of areas of chemical sciences and materials science as well as nano- and biosciences because it provides valuable information about structure, functions, and reactions of molecules. In the meantime, quantum chemical approaches play crucial roles in the spectral analysis. They also yield important knowledge about molecular and electronic structures as well as electronic transitions. The combination of spectroscopic approaches and quantum chemical calculations is a powerful tool for science, in general. Thus, our article, which treats various spectroscopy and quantum chemical approaches, should have strong implications in the wider scientific community. This review covers a wide area of molecular spectroscopy from far-ultraviolet (FUV, 120-200 nm) to far-infrared (FIR, 400-10 cm-1)/terahertz and Raman spectroscopy. As quantum chemical approaches, we introduce several anharmonic approaches such as vibrational self-consistent field (VSCF) and the combination of periodic harmonic calculations with anharmonic corrections based on finite models, grid-based techniques like the Numerov approach, the Cartesian coordinate tensor transfer (CCT) method, Symmetry-Adapted Cluster Configuration-Interaction (SAC-CI), and the ZINDO (Semi-empirical calculations at Zerner's Intermediate Neglect of Differential Overlap). One can use anharmonic approaches and grid-based approaches for both infrared (IR) and near-infrared (NIR) spectroscopy, while CCT methods are employed for Raman, Raman optical activity (ROA), FIR/terahertz and low-frequency Raman spectroscopy. Therefore, this review overviews cross relations between molecular spectroscopy and quantum chemical approaches, and provides various kinds of close-reality advanced spectral simulation for condensed phases.
Collapse
Affiliation(s)
- Yukihiro Ozaki
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan. and Toyota Physical and Chemical Research Institute, Yokomichi, Nagakute, Aichi 480-1192, Japan
| | - Krzysztof B Beć
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Yusuke Morisawa
- Department of Chemistry, School of Science and Engineering, Kindai University, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Shigeki Yamamoto
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Ichiro Tanabe
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Christian W Huck
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Thomas S Hofer
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, A6020 Innsbruck, Austria
| |
Collapse
|
15
|
Yagi K, Sugita Y. Anharmonic Vibrational Calculations Based on Group-Localized Coordinates: Applications to Internal Water Molecules in Bacteriorhodopsin. J Chem Theory Comput 2021; 17:5007-5020. [PMID: 34296615 PMCID: PMC10986902 DOI: 10.1021/acs.jctc.1c00060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An efficient anharmonic vibrational method is developed exploiting the locality of molecular vibration. Vibrational coordinates localized to a group of atoms are employed to divide the potential energy surface (PES) of a system into intra- and inter-group contributions. Then, the vibrational Schrödinger equation is solved based on a PES, in which the inter-group coupling is truncated at the harmonic level while accounting for the intra-group anharmonicity. The method is applied to a pentagonal hydrogen bond network (HBN) composed of internal water molecules and charged residues in a membrane protein, bacteriorhodopsin. The PES is calculated by the quantum mechanics/molecular mechanics (QM/MM) calculation at the level of B3LYP-D3/aug-cc-pVDZ. The infrared (IR) spectrum is computed using a set of coordinates localized to each water molecule and amino acid residue by second-order vibrational quasi-degenerate perturbation theory (VQDPT2). Benchmark calculations show that the proposed method yields the N-D/O-D stretching frequencies with an error of 7 cm-1 at the cost reduced by more than five times. In contrast, the harmonic approximation results in a severe error of 150 cm-1. Furthermore, the size of QM regions is carefully assessed to find that the QM regions should include not only the pentagonal HBN itself but also its HB partners. VQDPT2 calculations starting from transient structures obtained by molecular dynamics simulations have shown that the structural sampling has a significant impact on the calculated IR spectrum. The incorporation of anharmonicity, sufficiently large QM regions, and structural samplings are of essential importance to reproduce the experimental IR spectrum. The computational spectrum paves the way for decoding the IR signal of strong HBNs and helps elucidate their functional roles in biomolecules.
Collapse
Affiliation(s)
- Kiyoshi Yagi
- Theoretical
Molecular Science Laboratory, RIKEN Cluster
for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yuji Sugita
- Theoretical
Molecular Science Laboratory, RIKEN Cluster
for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Computational
Biophysics Research Team, RIKEN Center for
Computational Science, 7-1-26 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Laboratory
for Biomolecular Function Simulation, RIKEN
Center for Biosystems Dynamics Research, 1-6-5 Minatojima-Minamimachi,
Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
16
|
Hanson-Heine MWD. Reduced Two-Electron Interactions in Anharmonic Molecular Vibrational Calculations Involving Localized Normal Coordinates. J Chem Theory Comput 2021; 17:4383-4391. [PMID: 34087068 DOI: 10.1021/acs.jctc.1c00314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Spatially localized vibrational normal mode coordinates are shown to reduce the importance of calculating the full set of two-electron terms in the molecular electronic Schrödinger equation. Electron correlation and dispersion interactions become less significant in (E,E)-1,3,5,7-octatetraene vibrational self-consistent field calculations when displacing remote atoms along multiple coordinates. Electron correlation interactions between spatially remote modes are also found to be less important compared to their corresponding uncorrelated interaction terms. Attenuation of the Coulomb operator indicates that the two-electron terms between remote electrons become less important for accurately describing the strongly contributing mode-coupling terms between sets of localized vibrational modes.
Collapse
|
17
|
Schmitt-Monreal D, Jacob CR. Density-Based Many-Body Expansion as an Efficient and Accurate Quantum-Chemical Fragmentation Method: Application to Water Clusters. J Chem Theory Comput 2021; 17:4144-4156. [PMID: 34196558 DOI: 10.1021/acs.jctc.1c00340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fragmentation methods based on the many-body expansion offer an attractive approach for the quantum-chemical treatment of large molecular systems, such as molecular clusters and crystals. Conventionally, the many-body expansion is performed for the total energy, but such an energy-based many-body expansion often suffers from a slow convergence with respect to the expansion order. For systems that show strong polarization effects such as water clusters, this can render the energy-based many-body expansion infeasible. Here, we establish a density-based many-body expansion as a promising alternative approach. By performing the many-body expansion for the electron density instead of the total energy and inserting the resulting total electron density into the total energy functional of density functional theory, one can derive a density-based energy correction, which in principle accounts for all higher-order polarization effects. Here, we systematically assess the accuracy of such a density-based many-body expansion for test sets of water clusters. We show that already a density-based two-body expansion is able to reproduce interaction energies per fragment within chemical accuracy and is able to accurately predict the energetic ordering as well as the relative interaction energies of different isomers of water clusters.
Collapse
Affiliation(s)
- Daniel Schmitt-Monreal
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstr. 17, 38106 Braunschweig, Germany
| | - Christoph R Jacob
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstr. 17, 38106 Braunschweig, Germany
| |
Collapse
|
18
|
Madsen NK, Jensen RB, Christiansen O. Calculating vibrational excitation energies using tensor-decomposed vibrational coupled-cluster response theory. J Chem Phys 2021; 154:054113. [DOI: 10.1063/5.0037240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Niels Kristian Madsen
- Department of Chemistry, University of Aarhus, Langelandsgade 140, DK–8000 Aarhus C, Denmark
| | - Rasmus Berg Jensen
- Department of Chemistry, University of Aarhus, Langelandsgade 140, DK–8000 Aarhus C, Denmark
| | - Ove Christiansen
- Department of Chemistry, University of Aarhus, Langelandsgade 140, DK–8000 Aarhus C, Denmark
| |
Collapse
|
19
|
Madsen NK, Jensen AB, Hansen MB, Christiansen O. A general implementation of time-dependent vibrational coupled-cluster theory. J Chem Phys 2020; 153:234109. [PMID: 33353317 DOI: 10.1063/5.0034013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The first general excitation level implementation of the time-dependent vibrational coupled cluster (TDVCC) method introduced in a recent publication [J. Chem. Phys. 151, 154116 (2019)] is presented. The general framework developed for time-independent vibrational coupled cluster (VCC) calculations has been extended to the time-dependent context. This results in an efficient implementation of TDVCC with general coupling levels in the cluster operator and Hamiltonian. Thus, the convergence of the TDVCC[k] hierarchy toward the complete-space limit can be studied for any sum-of-product Hamiltonian. Furthermore, a scheme for including selected higher-order excitations for a subset of modes is introduced and studied numerically. Three different definitions of the TDVCC autocorrelation function (ACF) are introduced and analyzed in both theory and numerical experiments. Example calculations are presented for an array of systems including imidazole, formyl fluoride, formaldehyde, and a reduced-dimensionality bithiophene model. The results show that the TDVCC[k] hierarchy converges systematically toward the full-TDVCC limit and that the implementation allows accurate quantum-dynamics simulations of large systems to be performed. Specifically, the intramolecular vibrational-energy redistribution of the 21-dimensional imidazole molecule is studied in terms of the decay of the ACF. Furthermore, the importance of product separability in the definition of the ACF is highlighted when studying non-interacting subsystems.
Collapse
Affiliation(s)
- Niels Kristian Madsen
- Department of Chemistry, University of Aarhus, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | | | - Mads Bøttger Hansen
- Department of Chemistry, University of Aarhus, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Ove Christiansen
- Department of Chemistry, University of Aarhus, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| |
Collapse
|
20
|
Dinu DF, Podewitz M, Grothe H, Loerting T, Liedl KR. On the synergy of matrix-isolation infrared spectroscopy and vibrational configuration interaction computations. Theor Chem Acc 2020; 139:174. [PMID: 33192169 PMCID: PMC7652801 DOI: 10.1007/s00214-020-02682-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 10/05/2020] [Indexed: 11/08/2022]
Abstract
The key feature of matrix-isolation infrared (MI-IR) spectroscopy is the isolation of single guest molecules in a host system at cryogenic conditions. The matrix mostly hinders rotation of the guest molecule, providing access to pure vibrational features. Vibrational self-consistent field (VSCF) and configuration interaction computations (VCI) on ab initio multimode potential energy surfaces (PES) give rise to anharmonic vibrational spectra. In a single-sourced combination of these experimental and computational approaches, we have established an iterative spectroscopic characterization procedure. The present article reviews the scope of this procedure by highlighting the strengths and limitations based on the examples of water, carbon dioxide, methane, methanol, and fluoroethane. An assessment of setups for the construction of the multimode PES on the example of methanol demonstrates that CCSD(T)-F12 level of theory is preferable to compute (a) accurate vibrational frequencies and (b) equilibrium or vibrationally averaged structural parameters. Our procedure has allowed us to uniquely assign unknown or disputed bands and enabled us to clarify problematic spectral regions that are crowded with combination bands and overtones. Besides spectroscopic assignment, the excellent agreement between theory and experiment paves the way to tackle questions of rather fundamental nature as to whether or not matrix effects are systematic, and it shows the limits of conventional notations used by spectroscopists.
Collapse
Affiliation(s)
- Dennis F Dinu
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria.,Institute of Material Chemistry, TU Vienna, Vienna, Austria.,Institute of Physical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Maren Podewitz
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Hinrich Grothe
- Institute of Material Chemistry, TU Vienna, Vienna, Austria
| | - Thomas Loerting
- Institute of Physical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Klaus R Liedl
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
21
|
Schmitz G, Klinting EL, Christiansen O. A Gaussian process regression adaptive density guided approach for potential energy surface construction. J Chem Phys 2020; 153:064105. [DOI: 10.1063/5.0015344] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Gunnar Schmitz
- Department of Chemistry, Aarhus Universitet, DK-8000 Aarhus, Denmark
| | | | - Ove Christiansen
- Department of Chemistry, Aarhus Universitet, DK-8000 Aarhus, Denmark
| |
Collapse
|
22
|
Ricard TC, Iyengar SS. Efficient and Accurate Approach To Estimate Hybrid Functional and Large Basis-Set Contributions to Condensed-Phase Systems and Molecule–Surface Interactions. J Chem Theory Comput 2020; 16:4790-4812. [DOI: 10.1021/acs.jctc.9b01089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Timothy C. Ricard
- Department of Chemistry and Department of Physics, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Srinivasan S. Iyengar
- Department of Chemistry and Department of Physics, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
23
|
The Structure of the "Vibration Hole" around an Isotopic Substitution-Implications for the Calculation of Nuclear Magnetic Resonance (NMR) Isotopic Shifts. Molecules 2020; 25:molecules25122915. [PMID: 32599937 PMCID: PMC7355873 DOI: 10.3390/molecules25122915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 11/17/2022] Open
Abstract
Calculations of nuclear magnetic resonance (NMR) isotopic shifts often rest on the unverified assumption that the “vibration hole”, that is, the change of the vibration motif upon an isotopic substitution, is strongly localized around the substitution site. Using our recently developed difference-dedicated (DD) second-order vibrational perturbation theory (VPT2) method, we test this assumption for a variety of molecules. The vibration hole turns out to be well localized in many cases but not in the interesting case where the H/D substitution site is involved in an intra-molecular hydrogen bond. For a series of salicylaldehyde derivatives recently studied by Hansen and co-workers (Molecules2019, 24, 4533), the vibrational hole was found to stretch over the whole hydrogen-bond moiety, including the bonds to the neighbouring C atoms, and to be sensitive to substituent effects. We discuss consequences of this finding for the accurate calculation of NMR isotopic shifts and point out directions for the further improvement of our DD-VPT2 method.
Collapse
|
24
|
Madsen NK, Hansen MB, Worth GA, Christiansen O. MR-MCTDH[n]: Flexible Configuration Spaces and Nonadiabatic Dynamics within the MCTDH[n] Framework. J Chem Theory Comput 2020; 16:4087-4097. [DOI: 10.1021/acs.jctc.0c00379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Niels Kristian Madsen
- Department of Chemistry, University of Aarhus, Langelandsgade 140, DK−8000 Aarhus C, Denmark
| | - Mads Bøttger Hansen
- Department of Chemistry, University of Aarhus, Langelandsgade 140, DK−8000 Aarhus C, Denmark
| | - Graham A. Worth
- Department of Chemistry, University College London, 20, Gordon St., WC1H 0AJ London, United Kingdom
| | - Ove Christiansen
- Department of Chemistry, University of Aarhus, Langelandsgade 140, DK−8000 Aarhus C, Denmark
| |
Collapse
|
25
|
Artiukhin DG, Klinting EL, König C, Christiansen O. Adaptive density-guided approach to double incremental potential energy surface construction. J Chem Phys 2020; 152:194105. [PMID: 33687258 DOI: 10.1063/5.0004686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We present a combination of the recently developed double incremental expansion of potential energy surfaces with the well-established adaptive density-guided approach to grid construction. This unique methodology is based on the use of an incremental expansion for potential energy surfaces, known as n-mode expansion; an incremental many-body representation of the electronic energy; and an efficient vibrational density-guided approach to automated determination of grid dimensions and granularity. The reliability of the method is validated calculating potential energy surfaces and obtaining fundamental excitation energies for three moderate-size chain-like molecular systems. The use of our methodology leads to considerable computational savings for potential energy surface construction compared to standard approaches while maintaining a high level of accuracy in the resulting potential energy surfaces. Additional investigations indicate that our method can be applied to covalently bound and strongly interacting molecular systems, even though these cases are known to be very unfavorable for fragmentation schemes. We therefore conclude that the presented methodology is a robust and flexible approach to potential energy surface construction, which introduces considerable computational savings without compromising the accuracy of vibrational spectra calculations.
Collapse
Affiliation(s)
- Denis G Artiukhin
- Department of Chemistry, Aarhus Universitet, DK-8000 Aarhus, Denmark
| | | | - Carolin König
- Institute of Physical Chemistry, Christian-Albrechts-University Kiel, Max-Eyth-Straße 1, D-24118 Kiel, Germany
| | - Ove Christiansen
- Department of Chemistry, Aarhus Universitet, DK-8000 Aarhus, Denmark
| |
Collapse
|
26
|
Klinting EL, Lauvergnat D, Christiansen O. Vibrational Coupled Cluster Computations in Polyspherical Coordinates with the Exact Analytical Kinetic Energy Operator. J Chem Theory Comput 2020; 16:4505-4520. [DOI: 10.1021/acs.jctc.0c00261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - David Lauvergnat
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, 91405 Orsay, France
| | - Ove Christiansen
- Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
27
|
Lomaka A, Tamm T. Linearization of moment tensor potentials for multicomponent systems with a preliminary assessment for short-range interaction energy in water dimer and trimer. J Chem Phys 2020; 152:164115. [DOI: 10.1063/5.0007473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Andre Lomaka
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Toomas Tamm
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
28
|
Klinting EL, Christiansen O, König C. Toward Accurate Theoretical Vibrational Spectra: A Case Study for Maleimide. J Phys Chem A 2020; 124:2616-2627. [DOI: 10.1021/acs.jpca.9b11915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Ove Christiansen
- Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Carolin König
- Institute of Physical Chemistry, Kiel University, Max-Eyth-Straße 1, D-24118 Kiel, Germany
| |
Collapse
|
29
|
Madsen NK, Hansen MB, Worth GA, Christiansen O. Systematic and variational truncation of the configuration space in the multiconfiguration time-dependent Hartree method: The MCTDH[n] hierarchy. J Chem Phys 2020; 152:084101. [DOI: 10.1063/1.5142459] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Niels Kristian Madsen
- Department of Chemistry, University of Aarhus, Langelandsgade 140, DK–8000 Aarhus C, Denmark
| | - Mads Bøttger Hansen
- Department of Chemistry, University of Aarhus, Langelandsgade 140, DK–8000 Aarhus C, Denmark
| | - Graham A. Worth
- Department of Chemistry, University College London, 20, Gordon St., WC1H 0AJ London, United Kingdom
| | - Ove Christiansen
- Department of Chemistry, University of Aarhus, Langelandsgade 140, DK–8000 Aarhus C, Denmark
| |
Collapse
|
30
|
Gräfenstein J. Efficient calculation of NMR isotopic shifts: Difference-dedicated vibrational perturbation theory. J Chem Phys 2019; 151:244120. [PMID: 31893883 DOI: 10.1063/1.5134538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We present difference-dedicated second-order vibrational perturbation theory (VPT2) as an efficient method for the computation of nuclear magnetic resonance (NMR) isotopic shifts, which reflect the geometry dependence of the NMR property in combination with different vibration patterns of two isotopologues. Conventional calculations of isotopic shifts, e.g., by standard VPT2, require scanning the geometry dependence over the whole molecule, which becomes expensive rapidly as the molecule size increases. In DD-VPT2, this scan can be restricted to a small region around the substitution site. At the heart of DD-VPT2 is a set of localized vibration modes common to the two isotopologues and designed such that the difference between the vibration patterns is caught by a small subset of them (usually fewer than 10). We tested the DD-VPT2 method for a series of molecules with increasing size and found that this method provides results with the same quality as VPT2 and in good agreement with the experiment, with computational savings up to 95% and less numerical instabilities. The method is easy to automatize and straightforward to generalize to other molecular properties.
Collapse
Affiliation(s)
- Jürgen Gräfenstein
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Göteborg, Sweden
| |
Collapse
|
31
|
Panek PT, Hoeske AA, Jacob CR. On the choice of coordinates in anharmonic theoretical vibrational spectroscopy: Harmonic vs. anharmonic coupling in vibrational configuration interaction. J Chem Phys 2019; 150:054107. [PMID: 30736699 DOI: 10.1063/1.5083186] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
By a suitable choice of coordinates, the computational effort required for calculations of anharmonic vibrational spectra can be reduced significantly. By using suitable localized-mode coordinates obtained from an orthogonal transformation of the conventionally used normal-mode coordinates, anharmonic couplings between modes can be significantly reduced. However, such a transformation introduces harmonic couplings between the localized modes. To elucidate the role of these harmonic couplings, we consider the vibrational self-consistent field (VSCF)/vibrational configuration interaction (VCI) calculations for both few-mode model systems and for ethene as a molecular test case. We show that large harmonic couplings can result in significant errors in localized-mode L-VSCF/L-VCI calculations and study the convergence with respect to the size of the VCI excitation space. To further elucidate the errors introduced by harmonic couplings, we discuss the connection between L-VSCF/L-VCI and vibrational exciton models. With the help of our results, we propose an algorithm for the localization of normal modes in suitable subsets that are chosen to strictly limit the errors introduced by the harmonic couplings while still leading to maximally localized modes.
Collapse
Affiliation(s)
- Paweł T Panek
- Technische Universität Braunschweig, Institute of Physical and Theoretical Chemistry, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Adrian A Hoeske
- Technische Universität Braunschweig, Institute of Physical and Theoretical Chemistry, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Christoph R Jacob
- Technische Universität Braunschweig, Institute of Physical and Theoretical Chemistry, Gaußstraße 17, 38106 Braunschweig, Germany
| |
Collapse
|
32
|
Yagi K, Yamada K, Kobayashi C, Sugita Y. Anharmonic Vibrational Analysis of Biomolecules and Solvated Molecules Using Hybrid QM/MM Computations. J Chem Theory Comput 2019; 15:1924-1938. [PMID: 30730746 PMCID: PMC8864611 DOI: 10.1021/acs.jctc.8b01193] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Quantum
mechanics/molecular mechanics (QM/MM) calculations are
applied for anharmonic vibrational analyses of biomolecules and solvated
molecules. The QM/MM method is implemented into a molecular dynamics
(MD) program, GENESIS, by interfacing with external electronic structure
programs. Following the geometry optimization and the harmonic normal-mode
analysis based on a partial Hessian, the anharmonic potential energy
surface (PES) is generated from QM/MM energies and gradients calculated
at grid points. The PES is used for vibrational self-consistent field
(VSCF) and post-VSCF calculations to compute the vibrational spectrum.
The method is first applied to a phosphate ion in solution. With both
the ion and neighboring water molecules taken as a QM region, IR spectra
of representative hydration structures are calculated by the second-order
vibrational quasi-degenerate perturbation theory (VQDPT2) at the level
of B3LYP/cc-pVTZ and TIP3P force field. A weight-average of IR spectra
over the structures reproduces the experimental spectrum with a mean
absolute deviation of 16 cm–1. Then, the method
is applied to an enzyme, P450 nitric oxide reductase (P450nor), with
the NO molecule bound to a ferric (FeIII) heme. Starting
from snapshot structures obtained from MD simulations of P450nor in
solution, QM/MM calculations have been carried out at the level of
B3LYP-D3/def2-SVP(D). The spin state of FeIII(NO) is likely
a closed-shell singlet state based on a ratio of N–O and Fe–NO
stretching frequencies (νN–O and νFe–NO) calculated for closed- and open-shell singlet
states. The calculated νN–O and νFe–NO overestimate the experimental ones by 120 and
75 cm–1, respectively. The electronic structure
and solvation of FeIII(NO) affect the structure around
the heme of P450nor leading to an increase in νN–O and νFe–NO.
Collapse
Affiliation(s)
- Kiyoshi Yagi
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kenta Yamada
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Chigusa Kobayashi
- Computational Biophysics Research Team, RIKEN Center for Computational Science, 7-1-26 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yuji Sugita
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Computational Biophysics Research Team, RIKEN Center for Computational Science, 7-1-26 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, 1-6-5 Minatojima-Minamimachi,
Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
33
|
Krasnoshchekov SV, Schutski RS, Craig NC, Sibaev M, Crittenden DL. Comparing the accuracy of perturbative and variational calculations for predicting fundamental vibrational frequencies of dihalomethanes. J Chem Phys 2018; 148:084102. [DOI: 10.1063/1.5020295] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sergey V. Krasnoshchekov
- Department of Chemistry, Lomonosov Moscow State University, Leninskiye Gory 1-3, Moscow 119991, Russian Federation
| | | | - Norman C. Craig
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio 44074, USA
| | - Marat Sibaev
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | | |
Collapse
|
34
|
Madsen NK, Godtliebsen IH, Losilla SA, Christiansen O. Tensor-decomposed vibrational coupled-cluster theory: Enabling large-scale, highly accurate vibrational-structure calculations. J Chem Phys 2018; 148:024103. [DOI: 10.1063/1.5001569] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | | | | | - Ove Christiansen
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
35
|
Madsen D, Christiansen O, König C. Anharmonic vibrational spectra from double incremental potential energy and dipole surfaces. Phys Chem Chem Phys 2018; 20:3445-3456. [DOI: 10.1039/c7cp07190f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using incremental approaches, size limitations for property surface generations are pushed significantly, enabling accurate large molecule anharmonic vibrational spectra calculations.
Collapse
Affiliation(s)
- Diana Madsen
- Department of Chemistry
- Aarhus University
- DK-8000 Aarhus C
- Denmark
| | | | - Carolin König
- Division of Theoretical Chemistry & Biology
- Royal Institute of Technology
- SE-106 91 Stockholm
- Sweden
| |
Collapse
|
36
|
Madsen NK, Godtliebsen IH, Christiansen O. Efficient algorithms for solving the non-linear vibrational coupled-cluster equations using full and decomposed tensors. J Chem Phys 2017; 146:134110. [DOI: 10.1063/1.4979498] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Niels K. Madsen
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Ove Christiansen
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
37
|
Cheng X, Talbot JJ, Steele RP. Tuning vibrational mode localization with frequency windowing. J Chem Phys 2016; 145:124112. [DOI: 10.1063/1.4963109] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Xiaolu Cheng
- Department of Chemistry and Henry Eyring Center for Theoretical Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Justin J. Talbot
- Department of Chemistry and Henry Eyring Center for Theoretical Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Ryan P. Steele
- Department of Chemistry and Henry Eyring Center for Theoretical Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|