1
|
Song H, Guo H. Theoretical Insights into the Dynamics of Gas-Phase Bimolecular Reactions with Submerged Barriers. ACS PHYSICAL CHEMISTRY AU 2023; 3:406-418. [PMID: 37780541 PMCID: PMC10540288 DOI: 10.1021/acsphyschemau.3c00009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 10/03/2023]
Abstract
Much attention has been paid to the dynamics of both activated gas-phase bimolecular reactions, which feature monotonically increasing integral cross sections and Arrhenius kinetics, and their barrierless capture counterparts, which manifest monotonically decreasing integral cross sections and negative temperature dependence of the rate coefficients. In this Perspective, we focus on the dynamics of gas-phase bimolecular reactions with submerged barriers, which often involve radicals or ions and are prevalent in combustion, atmospheric chemistry, astrochemistry, and plasma chemistry. The temperature dependence of the rate coefficients for such reactions is often non-Arrhenius and complex, and the corresponding dynamics may also be quite different from those with significant barriers or those completely dominated by capture. Recent experimental and theoretical studies of such reactions, particularly at relatively low temperatures or collision energies, have revealed interesting dynamical behaviors, which are discussed here. The new knowledge enriches our understanding of the dynamics of these unusual reactions.
Collapse
Affiliation(s)
- Hongwei Song
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science
and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Hua Guo
- Department
of Chemistry and Chemical Biology, University
of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
2
|
Ab initio characterization of the potential energy profiles for the multi-channel reactions: H/Cl + CH3OH. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Song H, Xie W, Zhang C, Yang M. Toward a Comprehensive Understanding of Mode-Specific Dynamics of Polyatomic Reactions: A Full-Dimensional Quantum Dynamics Study of the H + NH 3 Reaction. J Phys Chem A 2022; 126:663-669. [PMID: 35080397 DOI: 10.1021/acs.jpca.1c08399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mode specificity not only sheds light on reaction dynamics but also opens the door for chemical reaction control. This work reports a state-of-the-art full-dimensional quantum dynamics study on the prototypical hydrogen abstraction reaction of hydrogen with ammonia, which serves as a benchmark for advancing our fundamental understanding of polyatomic reaction dynamics. By taking advantage of the (3 + 1) Radau-Jacobi coordinates, the bond-specific probabilities are resolved with the reactant NH3 initiated from either a non-degenerate or degenerate stretching vibrational state. The observed different atom-specific abstraction probabilities from individual states of the degenerate pair are rationalized in the local mode representation according to the different vibrational energy deposited in each N-H bond. It is verified that the three H atoms in NH3 have the same abstraction probability as that from the degenerate pair and the linear combination of the degenerate pair gives the same reaction probability. In addition, the symmetric and asymmetric stretching modes of the reactant NH3 have comparable efficacies on driving the reaction.
Collapse
Affiliation(s)
- Hongwei Song
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Weiyu Xie
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Chaoyang Zhang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Minghui Yang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.,Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China
| |
Collapse
|
4
|
Mode Specificity Dynamics of the Prototypical Multi-Channel H+CH 3OH Reaction on a Globally Accurate Potential Energy Surface. CHINESE J CHEM PHYS 2022. [DOI: 10.1063/1674-0068/cjcp2201018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Yang Z, Chen H, Mao Y, Chen M. Neural network potential energy surface and quantum dynamics studies for the Ca +( 2S) + H 2 → CaH + + H reaction. Phys Chem Chem Phys 2022; 24:19209-19217. [DOI: 10.1039/d2cp02711a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reactive collisions of Ca+ ion with H2 molecule play a crucial role in ultracold chemistry, quantum information and other cutting-edge fields, and have been widely concerned experimentally, but the corresponding...
Collapse
|
6
|
A Ten-Dimensional Quantum Dynamics Study of the H+CH 3D→H 2+CH 2D Reaction. CHINESE J CHEM PHYS 2022. [DOI: 10.1063/1674-0068/cjcp2112284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
7
|
Li C, Liu Q, Zhang L, Li Y, Jiang B. Ring polymer molecular dynamics in gas-surface reactions: tests on initial sampling and potential energy landscape. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1941367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Chen Li
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Qinghua Liu
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Liang Zhang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Yongle Li
- Department of Physics, International Center of Quantum and Molecular Structures and Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University, Shanghai, People’s Republic of China
| | - Bin Jiang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, People’s Republic of China
| |
Collapse
|
8
|
Zhang X, Zhang Z, Gatti F, Zhang DH. Full-dimensional quantum dynamics study of isotope effects for the H 2 + NH 2/ND 2/NHD and H 2/D 2/HD + NH 2 reactions. J Chem Phys 2021; 154:074301. [PMID: 33607900 DOI: 10.1063/5.0040002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A full-dimensional quantum dynamical study for the bimolecular reactions of hydrogen molecules with amino radicals for different isotopologues is reported. The nonreactive amino radical is described by two Radau vectors that are very close to the valence bond coordinates. Potential-optimized discrete variable representation basis is used for the vibrational coordinates of the amino radical. Starting from the reaction H2 + NH2, we study the isotope effects for the two reagents separately, i.e., H2 + NH2/ND2/NHD and H2/D2/HD + NH2. The effects of different vibrational mode excitations of the reagents on the reactivities are studied. Physical explanations about the isotope effects are also provided thoroughly including the influence of vibrational energy differences between the different isotopologues and the impact of the tunneling effect.
Collapse
Affiliation(s)
- Xiaoren Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Zhaojun Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Fabien Gatti
- ISMO, Institut des Sciences Moléculaires d'Orsay, UMR 8214 CNRS/Université Paris-Saclay, F-91405 Orsay, France
| | - Dong H Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| |
Collapse
|
9
|
Tian L, Song H, Yang M. Effects of bending excitation on the reaction dynamics of fluorine atoms with ammonia. Phys Chem Chem Phys 2021; 23:2715-2722. [PMID: 33491710 DOI: 10.1039/d0cp05790h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vibrational excitation has been established as an efficient way to control the chemical reaction outcome. Stretching vibration of polyatomic molecules is believed to be efficient to promote abstraction reactions since energy is placed directly into the breaking bond. In this work, we report on a counterexample showing that exciting the low-frequency umbrella bending mode of ammonia enhances its reaction with fluorine atoms much more than exciting the high-frequency symmetric or asymmetric stretching mode over a wide range of collision energy, validated using both quasiclassical trajectory simulations and full-dimensional quantum dynamics calculations under the centrifugal-sudden approximation. This interesting mode-specific reaction dynamic originates from the increased chance of capturing the fluorine atom by ammonia due to the enlarged attractive interaction between them and the enhancement of the direct stripping reaction mediated by two submerged barriers.
Collapse
Affiliation(s)
- Li Tian
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China. and College of Physical Science and Technology, Huazhong Normal University, Wuhan 430079, China
| | - Hongwei Song
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Minghui Yang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
10
|
Szűcs T, Czakó G. Benchmark ab initio stationary-point characterization of the complex potential energy surface of the multi-channel Cl + CH 3NH 2 reaction. Phys Chem Chem Phys 2021; 23:10347-10356. [PMID: 33881412 DOI: 10.1039/d0cp06392d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We characterize the exothermic low/submerged-barrier hydrogen-abstraction (HCl + CH2NH2/CH3NH) as well as, for the first time, the endothermic high-barrier amino-substitution (CH3Cl + NH2), methyl-substitution (NH2Cl + CH3), and hydrogen-substitution (CH2ClNH2/CH3NHCl + H) pathways of the Cl + CH3NH2 reaction using an accurate composite ab initio approach. The computations reveal a CH3NH2Cl complex in the entrance channel, nine transition states corresponding to different abstractions, Walden-inversion substitution, and configuration-retaining front-side attack substitution pathways, as well as nine post-reaction complexes. The global minima of the electronic and vibrationally adiabatic potential energy surfaces correspond to the pre-reaction CH3NH2Cl and post-reaction CH2NH2HCl complexes, respectively. The benchmark composite energies of the stationary points are obtained by considering basis-set effects up to the correlation-consistent polarized valence quadruple-zeta basis augmented with diffuse functions (aug-cc-pVQZ) using the explicitly-correlated coupled-cluster singles, doubles, and perturbative triples CCSD(T)-F12b method, post-(T) correlation up to CCSDT(Q) including full triples and perturbative quadruples, core correlation, and scalar relativistic and spin-orbit effects, as well as harmonic zero-point energy corrections.
Collapse
Affiliation(s)
- Tímea Szűcs
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary.
| | - Gábor Czakó
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary.
| |
Collapse
|
11
|
Zhang L, Jiang B. State-to-state quantum dynamics of H2O/HOD scattering from Cu(111): Mode- and bond-selective vibrational energy transfer. J Chem Phys 2020; 153:214702. [DOI: 10.1063/5.0030490] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Liang Zhang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bin Jiang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
12
|
Li J, Zhao B, Xie D, Guo H. Advances and New Challenges to Bimolecular Reaction Dynamics Theory. J Phys Chem Lett 2020; 11:8844-8860. [PMID: 32970441 DOI: 10.1021/acs.jpclett.0c02501] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dynamics of bimolecular reactions in the gas phase are of foundational importance in combustion, atmospheric chemistry, interstellar chemistry, and plasma chemistry. These collision-induced chemical transformations are a sensitive probe of the underlying potential energy surface(s). Despite tremendous progress in past decades, our understanding is still not complete. In this Perspective, we survey the recent advances in theoretical characterization of bimolecular reaction dynamics, stimulated by new experimental observations, and identify key new challenges.
Collapse
Affiliation(s)
- Jun Li
- School of Chemistry and Chemical Engineering & Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Bin Zhao
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
13
|
|
14
|
Zhang Z, Gatti F, Zhang DH. Full dimensional quantum mechanical calculations of the reaction probability of the H + NH3 collision based on a mixed Jacobi and Radau description. J Chem Phys 2019; 150:204301. [DOI: 10.1063/1.5096047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Zhaojun Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Fabien Gatti
- ISMO, Institut des Sciences Moléculaires d’Orsay—UMR 8214 CNRS/Université Paris-Sud, F-91405 Orsay, France
| | - Dong H. Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| |
Collapse
|
15
|
Jasper AW, Sivaramakrishnan R, Klippenstein SJ. Nonthermal rate constants for CH 4 * + X → CH 3 + HX, X = H, O, OH, and O 2. J Chem Phys 2019; 150:114112. [PMID: 30902010 DOI: 10.1063/1.5090394] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Quasiclassical trajectories are used to compute nonthermal rate constants, k*, for abstraction reactions involving highly-excited methane CH4 * and the radicals H, O, OH, and O2. Several temperatures and internal energies of methane, Evib, are considered, and significant nonthermal rate enhancements for large Evib are found. Specifically, when CH4 * is internally excited close to its dissociation threshold (Evib ≈ D0 = 104 kcal/mol), its reactivity with H, O, and OH is shown to be collision-rate-limited and to approach that of comparably-sized radicals, such as CH3, with k* > 10-10 cm3 molecule-1 s-1. Rate constants this large are more typically associated with barrierless reactions, and at 1000 K, this represents a nonthermal rate enhancement, k*/k, of more than two orders of magnitude relative to thermal rate constants k. We show that large nonthermal rate constants persist even after significant internal cooling, with k*/k > 10 down to Evib ≈ D0/4. The competition between collisional cooling and nonthermal reactivity is studied using a simple model, and nonthermal reactions are shown to account for up to 35%-50% of the fate of the products of H + CH3 = CH4 * under conditions of practical relevance to combustion. Finally, the accuracy of an effective temperature model for estimating k* from k is quantified.
Collapse
Affiliation(s)
- Ahren W Jasper
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Raghu Sivaramakrishnan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Stephen J Klippenstein
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| |
Collapse
|
16
|
Nguyen TL, Stanton JF. Ab initio thermal rate coefficients for H + NH3⇌ H2+ NH2. INT J CHEM KINET 2019. [DOI: 10.1002/kin.21255] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Thanh Lam Nguyen
- Quantum Theory ProjectDepartments of Chemistry and PhysicsUniversity of Florida Gainesville Florida
| | - John F. Stanton
- Quantum Theory ProjectDepartments of Chemistry and PhysicsUniversity of Florida Gainesville Florida
| |
Collapse
|
17
|
Song H, Yang M. Understanding mode-specific dynamics in the local mode representation. Phys Chem Chem Phys 2018; 20:19647-19655. [PMID: 30014087 DOI: 10.1039/c8cp03240h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mode specificity is a main characteristic of transition state control of reaction dynamics. The normal mode representation has been widely employed to describe the mode specificity in elementary chemical reactions. However, spectroscopists have demonstrated that the local mode representation has advantages in analyzing the overtone and combination band spectra. In this work, the mode-specific reaction dynamics between the hydrogen atom and the molecules H2S and H2O is studied using a full-dimensional quantum scattering model in the (2 + 1) Radau-Jacobi coordinates. The mode specificities in the reactions that violates our physical intuition in the normal mode representation are well rationalized in the local mode representation. The energy flow between different XH bonds resulting from the intramolecular interaction and/or intermolecular interaction is unveiled, together with its impacts on dynamics of the abstraction and exchange reactions.
Collapse
Affiliation(s)
- Hongwei Song
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| | | |
Collapse
|
18
|
Zhu Y, Ping L, Bai M, Liu Y, Song H, Li J, Yang M. Tracking the energy flow in the hydrogen exchange reaction OH + H 2O → H 2O + OH. Phys Chem Chem Phys 2018; 20:12543-12556. [PMID: 29693667 DOI: 10.1039/c8cp00938d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The prototypical hydrogen exchange reaction OH + H2O → H2O + OH has attracted considerable interest due to its importance in a wide range of chemically active environments. In this work, an accurate global potential energy surface (PES) for the ground electronic state was developed based on ∼44 000 ab initio points at the level of UCCSD(T)-F12a/aug-cc-pVTZ. The PES was fitted using the fundamental invariant-neural network method with a root mean squared error of 4.37 meV. The mode specific dynamics was then studied by the quasi-classical trajectory method on the PES. Furthermore, the normal mode analysis approach was employed to calculate the final vibrational state distribution of the product H2O, in which a new scheme to acquire the Cartesian coordinates and momenta of each atom in the product molecule from the trajectories was proposed. It was found that, on one hand, excitation of either the symmetric stretching mode or the asymmetric stretching mode of the reactant H2O promotes the reaction more than the translational energy, which can be rationalized by the sudden vector projection model. On the other hand, the relatively higher efficacy of exciting the symmetric stretching mode than that of the asymmetric stretching mode is caused by the prevalence of the indirect mechanism at low collision energies and the stripping mechanism at high collision energies. In addition, the initial collision energy turns ineffectively into the vibrational energy of the products H2O and OH while a fraction of the energy transforms into the rotational energy of the product H2O. Fundamental excitation of the stretching modes of H2O results in the product H2O having the highest population in the fundamental state of the asymmetric stretching mode, followed by the ground state and the fundamental state of the symmetric stretching mode.
Collapse
Affiliation(s)
- Yongfa Zhu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| | | | | | | | | | | | | |
Collapse
|
19
|
Ping L, Zhu Y, Li A, Song H, Li Y, Yang M. Dynamics and kinetics of the reaction OH + H2S → H2O + SH on an accurate potential energy surface. Phys Chem Chem Phys 2018; 20:26315-26324. [DOI: 10.1039/c8cp05276j] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mode specificity and product energy disposal are unveiled in the reaction OH + H2S → H2O + SH.
Collapse
Affiliation(s)
- Leilei Ping
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- Wuhan Institute of Physics and Mathematics
- Chinese Academy of Sciences
- Wuhan 430071
- China
| | - Yongfa Zhu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- Wuhan Institute of Physics and Mathematics
- Chinese Academy of Sciences
- Wuhan 430071
- China
| | - Anyang Li
- College of Chemistry and Materials Science
- Northwest University
- Xi’an
- China
| | - Hongwei Song
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- Wuhan Institute of Physics and Mathematics
- Chinese Academy of Sciences
- Wuhan 430071
- China
| | - Yong Li
- College of Physical Science and Technology
- Huazhong Normal University
- Wuhan 430079
- China
| | - Minghui Yang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- Wuhan Institute of Physics and Mathematics
- Chinese Academy of Sciences
- Wuhan 430071
- China
| |
Collapse
|
20
|
Song H, Li A, Yang M, Guo H. Competition between the H- and D-atom transfer channels in the H 2O + + HD reaction: reduced-dimensional quantum and quasi-classical studies. Phys Chem Chem Phys 2017. [PMID: 28650041 DOI: 10.1039/c7cp02889j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ion-molecule reaction between a water cation and a hydrogen molecule has recently attracted considerable interest due to its importance in astrochemistry. In this work, the intramolecular isotope effect of the H2O+ + HD reaction is investigated using a seven-dimensional initial state-selected time-dependent wave packet approach as well as a full-dimensional quasi-classical trajectory method on a full-dimensional ab initio global potential energy surface. The calculated branching ratios for the formation of H3O+ and H2DO+via H- and D-transfer agree reasonably well with the experimental values. The preference to the formation of the H3O+ product observed using the experiment at low collision energies is reproduced by theoretical calculations and explained by a one-dimensional effective potential model.
Collapse
Affiliation(s)
- Hongwei Song
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China.
| | | | | | | |
Collapse
|
21
|
Qi J, Lu D, Song H, Li J, Yang M. Quantum and quasiclassical dynamics of the multi-channel H + H2S reaction. J Chem Phys 2017; 146:124303. [DOI: 10.1063/1.4978685] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ji Qi
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Dandan Lu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Hongwei Song
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jun Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Minghui Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
22
|
Abstract
Recent experimental and theoretical advances in transient reaction dynamics probed by photodetachment of polyatomic anions are reviewed.
Collapse
Affiliation(s)
- Robert E. Continetti
- Department of Chemistry and Biochemistry
- University of California San Diego
- La Jolla
- USA
| | - Hua Guo
- Department of Chemistry and Chemical Biology
- University of New Mexico
- Albuquerque
- USA
| |
Collapse
|
23
|
Fu B, Shan X, Zhang DH, Clary DC. Recent advances in quantum scattering calculations on polyatomic bimolecular reactions. Chem Soc Rev 2017; 46:7625-7649. [DOI: 10.1039/c7cs00526a] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review surveys quantum scattering calculations on chemical reactions of polyatomic molecules in the gas phase published in the last ten years.
Collapse
Affiliation(s)
- Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Xiao Shan
- Physical and Theoretical Chemistry Laboratory
- Department of Chemistry
- University of Oxford
- Oxford
- UK
| | - Dong H. Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - David C. Clary
- Physical and Theoretical Chemistry Laboratory
- Department of Chemistry
- University of Oxford
- Oxford
- UK
| |
Collapse
|