1
|
Intermittent ELF-MF Induce an Amplitude-Window Effect on Umbilical Cord Blood Lymphocytes. Int J Mol Sci 2022; 23:ijms232214391. [PMID: 36430865 PMCID: PMC9699011 DOI: 10.3390/ijms232214391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
In a previous study of the effects of intermittent extremely low frequency (ELF) magnetic fields (MF) on umbilical cord blood lymphocytes (UCBL), we evaluated MF amplitudes between 6 µT and 24 µT and found an effect only for those below 13 µT. This suggested the existence of an amplitude window. In this brief communication, we further tested this hypothesis. UCBLs from healthy newborns were isolated and exposed for 72 h to an intermittent ELF-MF (triangular, 7.8 Hz, 250 s ON/250 s OFF) with 6 different amplitudes between 3 µT and 12 µT, utilizing an oblong coil. Percentage of viable, early apoptotic (EA), and late apoptotic/necrotic (LAN) cells were determined by flow cytometry. Moreover, reactive oxygen species (ROS) were determined at 1 h and 3 h of the exposure. Like in our previous work, neither EA, nor LAN, nor ROS were statistically significantly affected by the intermittent ELF-MF. However, the percentage of viable cells was decreased by exposure to the fields with intensities of 6.5 µT and 12 µT (p < 0.05; and p = 0.057 for 8.5 µT). ELF-MF decreased the percentage of viable cells for fields down to 6.5 µT, but not for 5 µT, 4 µT, or 3 µT. Combined with our previous findings, the results reported here indicate an amplitude window effect between 6 µT and 13 µT. The obtained data are in line with a notion of amplitude and frequency windows, which request scanning of both amplitude and frequency while studying the ELF-MF effects.
Collapse
|
2
|
Makinistian L, Zastko L, Tvarožná A, Días LE, Belyaev I. Static magnetic fields from earphones: Detailed measurements plus some open questions. ENVIRONMENTAL RESEARCH 2022; 214:113907. [PMID: 35870506 DOI: 10.1016/j.envres.2022.113907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/09/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Earphones (EP) are a worldwide, massively adopted product, assumed to be innocuous provided the recommendations on sound doses limits are followed. Nevertheless, sound is not the only physical stimulus that derives from EP use, since they include a built-in permanent magnet from which a static magnetic field (SMF) originates. We performed 2D maps of the SMF at several distances from 6 models of in-ear EP, showing that they produce an exposure that spans from ca. 20 mT on their surface down to tens of μT in the inner ear. The numerous reports of bioeffects elicited by SMF in that range of intensities (applied both acutely and chronically), together with the fact that there is no scientific consensus over the possible mechanisms of interaction with living tissues, suggest that caution could be recommendable. In addition, more research is warranted on the possible effects of the combination of SMF with extremely low frequency and radiofrequency fields, which has so far been scarcely studied. Overall, while several open questions about bioeffects of SMF remain to be addressed by the scientific community, we find sensible to suggest that the use of air-tube earphones is probably the more conservative, cautious choice.
Collapse
Affiliation(s)
- L Makinistian
- Department of Physics, Universidad Nacional de San Luis (UNSL), San Luis, Argentina; Instituto de Física Aplicada (INFAP), Universidad Nacional de San Luis (UNSL)-CONICET, San Luis, Argentina.
| | - L Zastko
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovakia; Department of Laboratory Medicine, Faculty of Health Care, Catholic University in Ružomberok, Ružomberok, Slovakia
| | - A Tvarožná
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - L E Días
- Department of Physics, Universidad Nacional de San Luis (UNSL), San Luis, Argentina
| | - I Belyaev
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
3
|
Low-Frequency Magnetic Field Exposure System for Cells Electromagnetic Biocompatibility Studies. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12146846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The advancement in science and technology has resulted in the invention and widespread usage of many electrical devices in the daily lives of humans. The exponential use of modern electronic facilities has increased electromagnetic field exposure in the current population. Therefore, the presented article deals with designing, constructing, and testing a new applicator system developed for cells electromagnetic biocompatibility studies. The applicator system is intended for studying the non-thermal impacts of low-frequency magnetic field on cell cultures growth. Main attention is focused on increasing the capacity of the applicator and effectivity of the experiments. The key idea is to reach high level of the magnetic field homogeneity in an area of interest and the temperature stability during the biocompatibility studies. The applicator system is designed based on numerical simulations and its construction, measurements, and properties evaluation are also reported for proving the applicator’s functionality. The new applicator allows performing five parallel experiments at the same time under the same conditions. The simulation together with the experimental results confirm that the magnetic field homogeneity reaches 99% in the area of interest and the maximum temperature instability is lower than 2% during the experiments. The effectiveness of new applicator is tested and proved during preliminary experiments with Saccharomyces Cerevisiae cells. The observed effects of MF exposure represent maximal stimulation of 74% and maximal inhibition of 49%. The reason why MF with the same parameters induces inhibition in one sample and stimulation in the other will be the subject of further research.
Collapse
|
4
|
Zastko L, Makinistian L, Tvarožná A, Ferreyra FL, Belyaev I. Mapping of static magnetic fields near the surface of mobile phones. Sci Rep 2021; 11:19002. [PMID: 34561477 PMCID: PMC8463716 DOI: 10.1038/s41598-021-98083-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/01/2021] [Indexed: 12/26/2022] Open
Abstract
Whether the use of mobile phones (MP) represents a health hazard is still under debate. As part of the attempts to resolve this uncertainty, there has been an extensive characterization of the electromagnetic fields MP emit and receive. While the radiofrequencies (RF) have been studied exhaustively, the static magnetic fields (SMF) have received much less attention, regardless of the fact there is a wealth of evidence demonstrating their biological effects. We performed 2D maps of the SMF at several distances from the screen of 5 MP (models between 2013 and 2018) using a tri-axis magnetometer. We built a mathematical model to fit our measurements, extrapolated them down to the phones' screen, and calculated the SMF on the skin of a 3D head model, showing that exposure is in the µT to mT range. Our literature survey prompts the need of further research not only on the biological effects of SMF and their gradients, but also on their combination with extremely low frequency (ELF) and RF fields. The study of combined fields (SMF, ELF, and RF) as similar as possible to the ones that occur in reality should provide a more sensible assessment of potential risks.
Collapse
Affiliation(s)
- L Zastko
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - L Makinistian
- Department of Physics, Universidad Nacional de San Luis (UNSL), Ejército de los Andes 950, CP5700, San Luis, San Luis, Argentina. .,Instituto de Física Aplicada (INFAP), Universidad Nacional de San Luis (UNSL-CONICET), San Luis, Argentina.
| | - A Tvarožná
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - F L Ferreyra
- Department of Physics, Universidad Nacional de San Luis (UNSL), Ejército de los Andes 950, CP5700, San Luis, San Luis, Argentina
| | - I Belyaev
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
5
|
Zastko L, Makinistian L, Moravčíková A, Jakuš J, Belyaev I. Effect of Intermittent ELF MF on Umbilical Cord Blood Lymphocytes. Bioelectromagnetics 2020; 41:649-655. [PMID: 33190314 DOI: 10.1002/bem.22302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/11/2020] [Accepted: 10/10/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Lucián Zastko
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Leonardo Makinistian
- Department of Physics, Instituto de Física Aplicada (INFAP), Universidad Nacional de San Luis-CONICET, San Luis, Argentina
| | - Andrea Moravčíková
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ján Jakuš
- Department of Medical Biophysics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Igor Belyaev
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
6
|
Vives L, Balsalobre J, Monteiro T, Diaz JG, Liponetzky G, Ielpi M, Dalmas Di Giovanni N. ELF Magnetic Field Exposure System for In Vitro Studies Based on Lee-Whiting Coils. Bioelectromagnetics 2020; 41:382-391. [PMID: 32515026 DOI: 10.1002/bem.22273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 04/10/2020] [Accepted: 05/23/2020] [Indexed: 11/07/2022]
Abstract
In order to run a series of in vitro studies on the effect of extremely low-frequency magnetic fields on cell cultures, developing and characterizing an appropriate exposure system is required. The present design is based on a two-shielded Lee-Whiting coils system. The circular design was chosen because its axial symmetry allowed for both reducing simulation unknowns and measurement points during the characterization, and additionally made the machining of the parts easier. The system can generate magnetic flux densities (B fields) up to 1 mT root-mean-square amplitude (rms) with no active cooling system in the incubator, and up to 3 mTrms with it. The double-wrapped windings with twisted pairs allow for the use of each set of coils either as exposure or control with no detectable parasitic B field in the control. The artifacts have also been analyzed; the B field in the center of the sham control chamber is about 1 µTrms for a maximum of 3 mTrms in the exposure chamber, the parasitic incident electric fields are less than 1 V/m, the temperature difference between sham and exposure chamber is less than or equal to 0.2 °C, and the typical vibration difference between sham and exposure is less than 0.1 m/s2 . © 2020 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Leandro Vives
- Electronic Warfare Division, Department of Applied Electronics, Institute of Scientific and Technical Research for Defense (CITEDEF), Villa Martelli, Pcia de Buenos Aires, Argentina
| | - Juan Balsalobre
- Electronic Warfare Division, Department of Applied Electronics, Institute of Scientific and Technical Research for Defense (CITEDEF), Villa Martelli, Pcia de Buenos Aires, Argentina
| | - Tiago Monteiro
- Electronic Warfare Division, Department of Applied Electronics, Institute of Scientific and Technical Research for Defense (CITEDEF), Villa Martelli, Pcia de Buenos Aires, Argentina
| | - Javier G Diaz
- Electronic Warfare Division, Department of Applied Electronics, Institute of Scientific and Technical Research for Defense (CITEDEF), Villa Martelli, Pcia de Buenos Aires, Argentina
| | - Gustavo Liponetzky
- Electronic Warfare Division, Department of Applied Electronics, Institute of Scientific and Technical Research for Defense (CITEDEF), Villa Martelli, Pcia de Buenos Aires, Argentina
| | - Marcelo Ielpi
- Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB), CONICET, Instituto Universitario del Hospital Italiano, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Norberto Dalmas Di Giovanni
- Electronic Warfare Division, Department of Applied Electronics, Institute of Scientific and Technical Research for Defense (CITEDEF), Villa Martelli, Pcia de Buenos Aires, Argentina
| |
Collapse
|
7
|
Makinistian L, Marková E, Belyaev I. A high throughput screening system of coils for ELF magnetic fields experiments: proof of concept on the proliferation of cancer cell lines. BMC Cancer 2019; 19:188. [PMID: 30819144 PMCID: PMC6396543 DOI: 10.1186/s12885-019-5376-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/18/2019] [Indexed: 12/26/2022] Open
Abstract
Background It has been demonstrated that relatively small variations of the parameters of exposure to extremely low frequency magnetic fields (ELF-MF) can change significantly the outcome of experiments. Hence, either in trying to elucidate if these fields are carcinogenic, or in exploring their possible therapeutic use, it is desirable to screen through as many different exposures as possible. The purpose of this work is to provide a proof of concept of how a recently reported system of coils allows testing different field exposures, in a single experiment. Methods Using a novel exposure system, we subjected a glioblastoma cancer cell line (U251) to three different time modulations of an ELF-MF at 60 different combinations of the alternated current (AC) and direct current (DC) components of the field. One of those three time modulations was also tested on another cell line, MDA-MB-231 (breast cancer). After exposure, proliferation was assessed by colorimetric assays. Results For the U251 cells, a total of 180 different exposures were tested in three different experiments. Depending on exposure modulation and AC field intensity (but, remarkably, not on DC intensity), we found the three possible outcomes: increase (14.3% above control, p < 0.01), decrease (16.6% below control, p < 0.001), and also no-effect on proliferation with respect to control. Only the time modulation that inhibited proliferation of U251 was also tested on MDA-MB-231 cells which, in contrast, showed no alteration of their proliferation on any of the 60 AC/DC field combinations tested. Conclusions We demonstrated, for the first time, the use of a novel system of coils for magnetobiology research, which allowed us to find that differences of only a few μT resulted in statistically different results. Not only does our study demonstrate the relevance of the time modulation and the importance of finely sweeping through the AC and DC amplitudes, but also, and most importantly, provides a proof of concept of a system that sensibly reduces the time and costs of screening. Electronic supplementary material The online version of this article (10.1186/s12885-019-5376-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leonardo Makinistian
- Department of Radiobiology, Cancer Research Institute, Biomedical Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovakia.,Department of Physics and Instituto de Física Aplicada (INFAP), Universidad Nacional de San Luis-CONICET, Ejército de los Andes 950, CP5700, San Luis, Argentina
| | - Eva Marková
- Department of Radiobiology, Cancer Research Institute, Biomedical Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - Igor Belyaev
- Department of Radiobiology, Cancer Research Institute, Biomedical Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovakia.
| |
Collapse
|
8
|
Makinistian L, Muehsam DJ, Bersani F, Belyaev I. Some recommendations for experimental work in magnetobiology, revisited. Bioelectromagnetics 2018; 39:556-564. [DOI: 10.1002/bem.22144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/03/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Leonardo Makinistian
- Department of Physics and Instituto de Física Aplicada (INFAP); Universidad Nacional de San Luis-CONICET; San Luis Argentina
- Department of Radiobiology; Cancer Research Institute, Biomedical Research Center; Slovak Academy of Science; Bratislava Slovakia
| | - David J. Muehsam
- National Institute of Biostructures and Biosystems; Bologna Italy
| | - Ferdinando Bersani
- National Institute of Biostructures and Biosystems; Bologna Italy
- DIFA Department of Physics and Astronomy; University of Bologna; Bologna Italy
| | - Igor Belyaev
- Department of Radiobiology; Cancer Research Institute, Biomedical Research Center; Slovak Academy of Science; Bratislava Slovakia
- Laboratory of Radiobiology; Prokhorov General Physics Institute; Russian Academy of Science; Moscow Russia
| |
Collapse
|
9
|
Makinistian L, Belyaev I. Magnetic field inhomogeneities due to CO 2 incubator shelves: a source of experimental confounding and variability? ROYAL SOCIETY OPEN SCIENCE 2018; 5:172095. [PMID: 29515902 PMCID: PMC5830791 DOI: 10.1098/rsos.172095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/15/2018] [Indexed: 12/27/2023]
Abstract
A thorough assessment of the static magnetic field (SMF) inside a CO2 incubator allowed us to identify non-negligible inhomogeneities close to the floor, ceiling, walls and the door. Given that incubator's shelves are made of a non-magnetic stainless steel alloy, we did not expect any important effect of them on the SMF. Surprisingly, we did find relatively strong distortion of the SMF due to shelves. Indeed, our high-resolution maps of the SMF revealed that distortion is such that field intensities differing by a factor of up to 36 were measured on the surface of the shelf at locations only few millimetres apart from each other. Furthermore, the most intense of these fields was around five times greater than the ones found inside the incubator (without the metallic shelves in), while the lowest one was around 10 times lower, reaching the so-called hypomagnetic field range. Our findings, together with a survey of the literature on biological effects of hypomagnetic fields, soundly support the idea that SMF inhomogeneities inside incubators, especially due to shelves' holes, are a potential source of confounding and variability in experiments with cell cultures kept in an incubator.
Collapse
Affiliation(s)
- L. Makinistian
- Department of Radiobiology, Cancer Research Institute, Biomedical Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Physics and Instituto de Física Aplicada (INFAP), Universidad Nacional de San Luis, Consejo Nacional de Investigaciones Científicas y Técnicas, Ejército de los Andes 950, 5700 San Luis, Argentina
| | - I. Belyaev
- Department of Radiobiology, Cancer Research Institute, Biomedical Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Laboratory of Radiobiology, General Physics Institute, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|