1
|
Picconi D. Dynamics of high-dimensional quantum systems coupled to a harmonic bath. General theory and implementation via multiconfigurational wave packets and truncated hierarchical equations for the mean-fields. J Chem Phys 2024; 161:164108. [PMID: 39450734 DOI: 10.1063/5.0233708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
Modeling the dynamics of a quantum system coupled to a dissipative environment becomes particularly challenging when the system's dimensionality is too high to permit the computation of its eigenstates. This problem is addressed by introducing an eigenstate-free formalism, where the open quantum system is represented as a mixture of high-dimensional, time-dependent wave packets governed by coupled Schrödinger equations, while the environment is described by a multi-component quantum master equation. An efficient computational implementation of this formalism is presented, employing a variational mixed Gaussian/multiconfigurational time-dependent Hartree (G-MCTDH) ansatz for the wave packets and propagating the environment dynamics via hierarchical equations, truncated at the first or second level of the hierarchy. The effectiveness of the proposed methodology is demonstrated on a 61-dimensional model of phonon-driven vibrational relaxation of an adsorbate. G-MCTDH calculations on 4- and 10-dimensional reduced models, combined with truncated hierarchical equations for the mean fields, nearly quantitatively replicate the full-dimensional quantum dynamical results on vibrational relaxation while significantly reducing the computational time. This approach thus offers a promising quantum dynamical method for modeling complex system-bath interactions, where a large number of degrees of freedom must be explicitly considered.
Collapse
Affiliation(s)
- David Picconi
- Institute of Theoretical and Computational Chemistry, Heinrich-Heine-University Düsseldorf, Universitätstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
2
|
Takahashi H, Borrelli R. Effective modeling of open quantum systems by low-rank discretization of structured environments. J Chem Phys 2024; 161:151101. [PMID: 39422205 DOI: 10.1063/5.0232232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
The accurate description of the interaction of a quantum system with its environment is a challenging problem ubiquitous across all areas of physics and lies at the foundation of quantum mechanics theory. Here, we pioneer a new strategy to create discrete low-rank models of the system-environment interaction, by exploiting the frequency and time domain information encoded in the fluctuation-dissipation relation connecting the system-bath correlation function and the spectral density. We demonstrate the effectiveness of our methodology by combining it with tensor-network methodologies and simulating the quantum dynamics of complex excitonic systems in a highly structured bosonic environment. The new modeling framework sets the basis for a leap in the analysis of open quantum systems, providing controlled accuracy at significantly reduced computational costs, with benefits in all connected research areas.
Collapse
|
3
|
Guan W, Bao P, Peng J, Lan Z, Shi Q. mpsqd: A matrix product state based Python package to simulate closed and open system quantum dynamics. J Chem Phys 2024; 161:122501. [PMID: 39324531 DOI: 10.1063/5.0226214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024] Open
Abstract
We introduce a Python package based on matrix product states (MPS) to simulate both the time-dependent Schrödinger equation (TDSE) and the hierarchical equations of motion (HEOM). The wave function in the TDSE or the reduced density operator/auxiliary density operators in the HEOM are represented using MPS. A matrix product operator (MPO) is then constructed to represent the Hamiltonian in the TDSE or the generalized Liouvillian in the HEOM. The fourth-order Runge-Kutta method and the time-dependent variational principle are used to propagate the MPS. Several examples, including the nonadiabatic interconversion dynamics of the pyrazine molecule, excitation energy transfer dynamics in molecular aggregates and photosynthetic light-harvesting complexes, the spin-boson model, a laser driven two-state model, the Holstein model, and charge transport in the Anderson impurity model, are presented to demonstrate the capability of the package.
Collapse
Affiliation(s)
- Weizhong Guan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Bao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
| | - Jiawei Peng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China and School of Environment, South China Normal University, Guangzhou 510006, China
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Zhenggang Lan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China and School of Environment, South China Normal University, Guangzhou 510006, China
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Takahashi H, Borrelli R. Tensor-Train Format Hierarchical Equations of Motion Formalism: Charge Transfer in Organic Semiconductors via Dissipative Holstein Models. J Chem Theory Comput 2024. [PMID: 39152908 DOI: 10.1021/acs.jctc.4c00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
Hierarchical Equations of Motion (HEOM) in the Tensor-Train (TT) representation is applied to study the charge-transfer dynamics in organic semiconductors (OSCs). The theoretical formulation as well as the basic computational aspects of HEOM-TT are discussed in detail. Charge transfer in OSCs is modeled using dissipative polaronic models that incorporate the effects of both high- and low-frequency molecular vibrations, and it is simulated in a fully quantum and nonperturbative manner, which has not been studied intensively. The capability of treating complex electron-vibrational systems is examined by analyzing and comparing the numerical behavior of the time-dependent variational approach and the time-Alternating Minimal Energy methods and by calculating the current autocorrelation function and diffusivity across various models. Our results indicate that the HEOM-TT framework offers a robust tool for the detailed analysis of complex polaronic systems, suggesting its potential for broader applications.
Collapse
|
5
|
Li W, Ren J, Yang H, Wang H, Shuai Z. Optimal tree tensor network operators for tensor network simulations: Applications to open quantum systems. J Chem Phys 2024; 161:054116. [PMID: 39105557 DOI: 10.1063/5.0218773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024] Open
Abstract
Tree tensor network states (TTNS) decompose the system wavefunction to the product of low-rank tensors based on the tree topology, serving as the foundation of the multi-layer multi-configuration time-dependent Hartree method. In this work, we present an algorithm that automatically constructs the optimal and exact tree tensor network operators (TTNO) for any sum-of-product symbolic quantum operator. The construction is based on the minimum vertex cover of a bipartite graph. With the optimal TTNO, we simulate open quantum systems, such as spin relaxation dynamics in the spin-boson model and charge transport in molecular junctions. In these simulations, the environment is treated as discrete modes and its wavefunction is evolved on equal footing with the system. We employ the Cole-Davidson spectral density to model the glassy phonon environment and incorporate temperature effects via thermo-field dynamics. Our results show that the computational cost scales linearly with the number of discretized modes, demonstrating the efficiency of our approach.
Collapse
Affiliation(s)
- Weitang Li
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, People's Republic of China
- Tencent Quantum Lab, Tencent, Shenzhen 518057, People's Republic of China
| | - Jiajun Ren
- MOE Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Hengrui Yang
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, 100084 Beijing, People's Republic of China
| | - Haobin Wang
- Department of Chemistry, University of Colorado Denver, Denver, Colorado 80217-3364, USA
| | - Zhigang Shuai
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, People's Republic of China
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, 100084 Beijing, People's Republic of China
| |
Collapse
|
6
|
Xu Y, Liu C, Ma H. Kylin-V: An open-source package calculating the dynamic and spectroscopic properties of large systems. J Chem Phys 2024; 161:052501. [PMID: 39087896 DOI: 10.1063/5.0220712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/14/2024] [Indexed: 08/02/2024] Open
Abstract
Quantum dynamics simulation and computational spectroscopy serve as indispensable tools for the theoretical understanding of various fundamental physical and chemical processes, ranging from charge transfer to photochemical reactions. When simulating realistic systems, the primary challenge stems from the overwhelming number of degrees of freedom and the pronounced many-body correlations. Here, we present Kylin-V, an innovative quantum dynamics package designed for accurate and efficient simulations of dynamics and spectroscopic properties of vibronic Hamiltonians for molecular systems and their aggregates. Kylin-V supports various quantum dynamics and computational spectroscopy methods, such as time-dependent density matrix renormalization group and our recently proposed single-site and hierarchical mapping approaches, as well as vibrational heat-bath configuration interaction. In this paper, we introduce the methodologies implemented in Kylin-V and illustrate their performances through a diverse collection of numerical examples.
Collapse
Affiliation(s)
- Yihe Xu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chungen Liu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Haibo Ma
- Qingdao Institute for Theoretical and Computational Sciences, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
7
|
Sheng Z, Jiang T, Li W, Shuai Z. TD-DMRG Study of Exciton Dynamics with both Thermal and Static Disorders for Fenna-Matthews-Olson Complex. J Chem Theory Comput 2024. [PMID: 39087905 DOI: 10.1021/acs.jctc.4c00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Photosynthesis is a fundamental process that converts solar energy into chemical energy. Understanding the microscopic mechanisms of energy transfer in photosynthetic systems is crucial for the development of novel optoelectronic materials. Simulating these processes poses significant challenges due to the intricate interactions between electrons and phonons, compounded by static disorder. In this work, we present a numerically nearly exact study using the time-dependent density matrix renormalization group (TD-DMRG) method to simulate the quantum dynamics of the Fenna-Matthews-Olson (FMO) complex considering an eight-site model with both thermal and static disorders. We employ the thermo-field dynamics formalism for temperature effects. We merge all electronic interactions into one large matrix product state (MPS) site, boosting accuracy efficiently without increasing complexity. Previous combined experimental and computational studies indicated that the static disorders range from 30 to 90 cm-1 for different FMO sites. We employ a Gaussian distribution and the auxiliary bosonic operator approach to consider the static disorder in our TD-DMRG algorithm. We investigate the impact of different initial excitation sites, temperatures, and degrees of static disorder on the exciton dynamics and temporal coherence. It is found that under the influence of the experimentally determined static disorder strength, the exciton population evolution shows a non-negligible difference at zero temperature, while it is hardly affected at room temperature.
Collapse
Affiliation(s)
- Zirui Sheng
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, P. R. China
| | - Tong Jiang
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, 100084 Beijing, P. R. China
| | - Weitang Li
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, P. R. China
| | - Zhigang Shuai
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, P. R. China
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, 100084 Beijing, P. R. China
| |
Collapse
|
8
|
Liu S, Peng J, Bao P, Shi Q, Lan Z. Ultrafast Excited-State Energy Transfer in Phenylene Ethynylene Dendrimer: Quantum Dynamics with the Tensor Network Method. J Phys Chem A 2024. [PMID: 39047261 DOI: 10.1021/acs.jpca.4c00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Photoinduced excited-state energy transfer (EET) processes play an important role in solar energy conversions. Owing to their excellent photoharvesting and exciton-transport properties, phenylene ethynylene (PE) dendrimers display great potential for improving the efficiency of solar cells. In this work, we investigated the intramolecular EET dynamics in a dendrimer composed of two linear PE units (2-ring and 3-ring) using a fully quantum description based on the tensor network method. We first constructed a diabatic model Hamiltonian based on the electronic structure calculations. Using this diabatic vibronic coupling model, we tried to obtain the main features of the EET dynamics in terms of the several diabatic models with different numbers of vibrational modes (from 4 modes to 129 modes) and to explore the corresponding vibronic coupling interactions. The results show that the EET in this PE dendrimer is ultrafast. Four modes of A' symmetry play dominant roles in the dynamics; the remaining 86 modes of A' symmetry can dampen the electronic coherence; and the modes of A″ symmetry do not exhibit significant influence on the EET process. Overall, the first-order intrastate vibronic coupling terms show the dominant role in the EET dynamics, while the second-order intrastate vibronic coupling terms cause damping of the electronic coherence and slow down the overall EET process. This work provides a microscopic understanding of the EET dynamics in PE dendrimers.
Collapse
Affiliation(s)
- Sisi Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Jiawei Peng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Peng Bao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, Zhongguancun 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, Zhongguancun 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenggang Lan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
9
|
Liu Z, Lyu N, Hu Z, Zeng H, Batista VS, Sun X. Benchmarking various nonadiabatic semiclassical mapping dynamics methods with tensor-train thermo-field dynamics. J Chem Phys 2024; 161:024102. [PMID: 38980091 DOI: 10.1063/5.0208708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024] Open
Abstract
Accurate quantum dynamics simulations of nonadiabatic processes are important for studies of electron transfer, energy transfer, and photochemical reactions in complex systems. In this comparative study, we benchmark various approximate nonadiabatic dynamics methods with mapping variables against numerically exact calculations based on the tensor-train (TT) representation of high-dimensional arrays, including TT-KSL for zero-temperature dynamics and TT-thermofield dynamics for finite-temperature dynamics. The approximate nonadiabatic dynamics methods investigated include mixed quantum-classical Ehrenfest mean-field and fewest-switches surface hopping, linearized semiclassical mapping dynamics, symmetrized quasiclassical dynamics, the spin-mapping method, and extended classical mapping models. Different model systems were evaluated, including the spin-boson model for nonadiabatic dynamics in the condensed phase, the linear vibronic coupling model for electronic transition through conical intersections, the photoisomerization model of retinal, and Tully's one-dimensional scattering models. Our calculations show that the optimal choice of approximate dynamical method is system-specific, and the accuracy is sensitively dependent on the zero-point-energy parameter and the initial sampling strategy for the mapping variables.
Collapse
Affiliation(s)
- Zengkui Liu
- Division of Arts and Sciences, NYU Shanghai, 567 West Yangsi Road, Shanghai 200124, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China
- Department of Chemistry, New York University, New York, New York 10003, USA
| | - Ningyi Lyu
- Division of Arts and Sciences, NYU Shanghai, 567 West Yangsi Road, Shanghai 200124, China
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, USA
| | - Zhubin Hu
- Division of Arts and Sciences, NYU Shanghai, 567 West Yangsi Road, Shanghai 200124, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Hao Zeng
- Division of Arts and Sciences, NYU Shanghai, 567 West Yangsi Road, Shanghai 200124, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Victor S Batista
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, USA
| | - Xiang Sun
- Division of Arts and Sciences, NYU Shanghai, 567 West Yangsi Road, Shanghai 200124, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China
- Department of Chemistry, New York University, New York, New York 10003, USA
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| |
Collapse
|
10
|
Takahashi H, Borrelli R, Gelin MF, Chen L. Finite temperature dynamics in a polarized sub-Ohmic heat bath: A hierarchical equations of motion-tensor train study. J Chem Phys 2024; 160:164106. [PMID: 38656440 DOI: 10.1063/5.0202312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
The dynamics of the sub-Ohmic spin-boson model under polarized initial conditions at finite temperatures is investigated by employing both analytical tools and the numerically accurate hierarchical equations of motion-tensor train method. By analyzing the features of nonequilibrium dynamics, we discovered a bifurcation phenomenon, which separates two regimes of the dynamics. It is found that before the bifurcation time, increasing temperature slows down the population dynamics, while the opposite effect occurs after the bifurcation time. The dynamics is highly sensitive to both initial preparation of the bath and thermal effects.
Collapse
Affiliation(s)
| | | | - Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | | |
Collapse
|
11
|
Hou E, Sun K, Gelin MF, Zhao Y. Finite temperature dynamics of the Holstein-Tavis-Cummings model. J Chem Phys 2024; 160:084116. [PMID: 38421073 DOI: 10.1063/5.0193471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
By employing the numerically accurate multiple Davydov Ansatz (mDA) formalism in combination with the thermo-field dynamics (TFD) representation of quantum mechanics, we systematically explore the influence of three parameters-temperature, photonic-mode detuning, and qubit-phonon coupling-on population dynamics and absorption spectra of the Holstein-Tavis-Cummings (HTC) model. It is found that elevated qubit-phonon couplings and/or temperatures have a similar impact on all dynamic observables: they suppress the amplitudes of Rabi oscillations in photonic populations as well as broaden the peaks and decrease their intensities in the absorption spectra. Our results unequivocally demonstrate that the HTC dynamics is very sensitive to the concerted variation of the three aforementioned parameters, and this finding can be used for fine-tuning polaritonic transport. The developed mDA-TFD methodology can be efficiently applied for modeling, predicting, optimizing, and comprehensively understanding dynamic and spectroscopic responses of actual molecular systems in microcavities.
Collapse
Affiliation(s)
- Erqin Hou
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Kewei Sun
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Yang Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
12
|
Zhang ZT, Vaníček JJL. Finite-temperature vibronic spectra from the split-operator coherence thermofield dynamics. J Chem Phys 2024; 160:084103. [PMID: 38385512 DOI: 10.1063/5.0187823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/22/2023] [Indexed: 02/23/2024] Open
Abstract
We present a numerically exact approach for evaluating vibrationally resolved electronic spectra at finite temperatures using the coherence thermofield dynamics. In this method, which avoids implementing an algorithm for solving the von Neumann equation for coherence, the thermal vibrational ensemble is first mapped to a pure-state wavepacket in an augmented space, and this wavepacket is then propagated by solving the standard, zero-temperature Schrödinger equation with the split-operator Fourier method. We show that the finite-temperature spectra obtained with the coherence thermofield dynamics in a Morse potential agree exactly with those computed by Boltzmann-averaging the spectra of individual vibrational levels. Because the split-operator thermofield dynamics on a full tensor-product grid is restricted to low-dimensional systems, we briefly discuss how the accessible dimensionality can be increased by various techniques developed for the zero-temperature split-operator Fourier method.
Collapse
Affiliation(s)
- Zhan Tong Zhang
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jiří J L Vaníček
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
13
|
Shen K, Gelin MF, Sun K, Zhao Y. Dynamics of a Magnetic Polaron in an Antiferromagnet. MATERIALS (BASEL, SWITZERLAND) 2024; 17:469. [PMID: 38255636 PMCID: PMC10820380 DOI: 10.3390/ma17020469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/07/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
The t-J model remains an indispensable construct in high-temperature superconductivity research, bridging the gap between charge dynamics and spin interactions within antiferromagnetic matrices. This study employs the multiple Davydov Ansatz method with thermo-field dynamics to dissect the zero-temperature and finite-temperature behaviors. We uncover the nuanced dependence of hole and spin deviation dynamics on the spin-spin coupling parameter J, revealing a thermally-activated landscape where hole mobilities and spin deviations exhibit a distinct temperature-dependent relationship. This numerically accurate thermal perspective augments our understanding of charge and spin dynamics in an antiferromagnet.
Collapse
Affiliation(s)
- Kaijun Shen
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Maxim F. Gelin
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Kewei Sun
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yang Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
14
|
Lyu N, Miano A, Tsioutsios I, Cortiñas RG, Jung K, Wang Y, Hu Z, Geva E, Kais S, Batista VS. Mapping Molecular Hamiltonians into Hamiltonians of Modular cQED Processors. J Chem Theory Comput 2023; 19:6564-6576. [PMID: 37733472 DOI: 10.1021/acs.jctc.3c00620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
We introduce a general method based on the operators of the Dyson-Masleev transformation to map the Hamiltonian of an arbitrary model system into the Hamiltonian of a circuit Quantum Electrodynamics (cQED) processor. Furthermore, we introduce a modular approach to programming a cQED processor with components corresponding to the mapping Hamiltonian. The method is illustrated as applied to quantum dynamics simulations of the Fenna-Matthews-Olson (FMO) complex and the spin-boson model of charge transfer. Beyond applications to molecular Hamiltonians, the mapping provides a general approach to implement any unitary operator in terms of a sequence of unitary transformations corresponding to powers of creation and annihilation operators of a single bosonic mode in a cQED processor.
Collapse
Affiliation(s)
- Ningyi Lyu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Alessandro Miano
- Department of Applied Physics, Yale University, New Haven, Connecticut 06520, United States
- Department of Physics, Yale University, New Haven, Connecticut 06520, United States
- Yale Quantum Institute, Yale University, New Haven, Connecticut 06511, United States
| | - Ioannis Tsioutsios
- Department of Applied Physics, Yale University, New Haven, Connecticut 06520, United States
- Department of Physics, Yale University, New Haven, Connecticut 06520, United States
- Yale Quantum Institute, Yale University, New Haven, Connecticut 06511, United States
| | - Rodrigo G Cortiñas
- Department of Applied Physics, Yale University, New Haven, Connecticut 06520, United States
- Department of Physics, Yale University, New Haven, Connecticut 06520, United States
- Yale Quantum Institute, Yale University, New Haven, Connecticut 06511, United States
| | - Kenneth Jung
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Yuchen Wang
- Department of Chemistry, Department of Physics and Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zixuan Hu
- Department of Chemistry, Department of Physics and Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, United States
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sabre Kais
- Department of Chemistry, Department of Physics and Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, United States
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Yale Quantum Institute, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
15
|
Gelin MF, Borrelli R. Thermo-Field Dynamics Approach to Photo-induced Electronic Transitions Driven by Incoherent Thermal Radiation. J Chem Theory Comput 2023; 19:6402-6413. [PMID: 37656914 DOI: 10.1021/acs.jctc.3c00590] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
The effects of thermal light-matter interaction on the dynamics of photo-induced electronic transitions in molecules are investigated using a novel first principles approach based on the thermo-field dynamics description of both the molecular vibrational modes and of the radiation field. The developed approach permits numerically accurate simulations of quantum dynamics of electronic/excitonic systems coupled to nuclear and photonic baths kept at different temperatures. The baths can be described by arbitrary spectral densities and can have any system-bath coupling strengths. In agreement with the results obtained previously by less rigorous methods, we show that the excitation process obtained by the continuous interaction with the suddenly turned-on thermal radiation field creates a mixed ensemble having a nonnegligible component consisting of a superposition of vibronic eigenstates which can sustain coherent oscillations for relatively long times. The results become especially relevant for the dynamics of electronic transitions upon sunlight excitation. Analytical results based on time-dependent perturbation theory support the numerical simulations and provide a simple interpretation of the time evolution of quantum observables.
Collapse
Affiliation(s)
- Maxim F Gelin
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Raffaele Borrelli
- DISAFA, University of Torino, Largo Paolo Braccini 2, Grugliasco I-10095, Italy
| |
Collapse
|
16
|
Lyu N, Mulvihill E, Soley MB, Geva E, Batista VS. Tensor-Train Thermo-Field Memory Kernels for Generalized Quantum Master Equations. J Chem Theory Comput 2023; 19:1111-1129. [PMID: 36719350 DOI: 10.1021/acs.jctc.2c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The generalized quantum master equation (GQME) approach provides a rigorous framework for deriving the exact equation of motion for any subset of electronic reduced density matrix elements (e.g., the diagonal elements). In the context of electronic dynamics, the memory kernel and inhomogeneous term of the GQME introduce the implicit coupling to nuclear motion and dynamics of electronic density matrix elements that are projected out (e.g., the off-diagonal elements), allowing for efficient quantum dynamics simulations. Here, we focus on benchmark quantum simulations of electronic dynamics in a spin-boson model system described by various types of GQMEs. Exact memory kernels and inhomogeneous terms are obtained from short-time quantum-mechanically exact tensor-train thermo-field dynamics (TT-TFD) simulations and are compared with those obtained from an approximate linearized semiclassical method, allowing for assessment of the accuracy of these approximate memory kernels and inhomogeneous terms. Moreover, we have analyzed the computational cost of the full and reduced-dimensionality GQMEs. The scaling of the computational cost is dependent on several factors, sometimes with opposite scaling trends. The TT-TFD memory kernels can provide insights on the main sources of inaccuracies of GQME approaches when combined with approximate input methods and pave the road for the development of quantum circuits that implement GQMEs on digital quantum computers.
Collapse
Affiliation(s)
- Ningyi Lyu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Ellen Mulvihill
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Micheline B Soley
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.,Yale Quantum Institute, Yale University, New Haven, Connecticut 06511, United States.,Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.,Yale Quantum Institute, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
17
|
Zhao Y. The hierarchy of Davydov's Ansätze: From guesswork to numerically "exact" many-body wave functions. J Chem Phys 2023; 158:080901. [PMID: 36859105 DOI: 10.1063/5.0140002] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
This Perspective presents an overview of the development of the hierarchy of Davydov's Ansätze and a few of their applications in many-body problems in computational chemical physics. Davydov's solitons originated in the investigation of vibrational energy transport in proteins in the 1970s. Momentum-space projection of these solitary waves turned up to be accurate variational ground-state wave functions for the extended Holstein molecular crystal model, lending unambiguous evidence to the absence of formal quantum phase transitions in Holstein systems. The multiple Davydov Ansätze have been proposed, with increasing Ansatz multiplicity, as incremental improvements of their single-Ansatz parents. For a given Hamiltonian, the time-dependent variational formalism is utilized to extract accurate dynamic and spectroscopic properties using Davydov's Ansätze as its trial states. A quantity proven to disappear for large multiplicities, the Ansatz relative deviation is introduced to quantify how closely the Schrödinger equation is obeyed. Three finite-temperature extensions to the time-dependent variation scheme are elaborated, i.e., the Monte Carlo importance sampling, the method of thermofield dynamics, and the method of displaced number states. To demonstrate the versatility of the methodology, this Perspective provides applications of Davydov's Ansätze to the generalized Holstein Hamiltonian, variants of the spin-boson model, and systems of cavity-assisted singlet fission, where accurate dynamic and spectroscopic properties of the many-body systems are given by the Davydov trial states.
Collapse
Affiliation(s)
- Yang Zhao
- Division of Materials Science, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
18
|
Gelin MF, Chen L, Domcke W. Equation-of-Motion Methods for the Calculation of Femtosecond Time-Resolved 4-Wave-Mixing and N-Wave-Mixing Signals. Chem Rev 2022; 122:17339-17396. [PMID: 36278801 DOI: 10.1021/acs.chemrev.2c00329] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Femtosecond nonlinear spectroscopy is the main tool for the time-resolved detection of photophysical and photochemical processes. Since most systems of chemical interest are rather complex, theoretical support is indispensable for the extraction of the intrinsic system dynamics from the detected spectroscopic responses. There exist two alternative theoretical formalisms for the calculation of spectroscopic signals, the nonlinear response-function (NRF) approach and the spectroscopic equation-of-motion (EOM) approach. In the NRF formalism, the system-field interaction is assumed to be sufficiently weak and is treated in lowest-order perturbation theory for each laser pulse interacting with the sample. The conceptual alternative to the NRF method is the extraction of the spectroscopic signals from the solutions of quantum mechanical, semiclassical, or quasiclassical EOMs which govern the time evolution of the material system interacting with the radiation field of the laser pulses. The NRF formalism and its applications to a broad range of material systems and spectroscopic signals have been comprehensively reviewed in the literature. This article provides a detailed review of the suite of EOM methods, including applications to 4-wave-mixing and N-wave-mixing signals detected with weak or strong fields. Under certain circumstances, the spectroscopic EOM methods may be more efficient than the NRF method for the computation of various nonlinear spectroscopic signals.
Collapse
Affiliation(s)
- Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Lipeng Chen
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, D-01187 Dresden, Germany
| | - Wolfgang Domcke
- Department of Chemistry, Technical University of Munich, D-85747 Garching,Germany
| |
Collapse
|
19
|
Lin K, Peng J, Xu C, Gu FL, Lan Z. Automatic Evolution of Machine-Learning-Based Quantum Dynamics with Uncertainty Analysis. J Chem Theory Comput 2022; 18:5837-5855. [DOI: 10.1021/acs.jctc.2c00702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kunni Lin
- School of Chemistry, South China Normal University, Guangzhou510006, P. R. China
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou510006, P. R. China
| | - Jiawei Peng
- School of Chemistry, South China Normal University, Guangzhou510006, P. R. China
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou510006, P. R. China
| | - Chao Xu
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou510006, P. R. China
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou510006, P. R. China
| | - Feng Long Gu
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou510006, P. R. China
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou510006, P. R. China
| | - Zhenggang Lan
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou510006, P. R. China
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou510006, P. R. China
| |
Collapse
|
20
|
Cainelli M, Borrelli R, Tanimura Y. Effect of mixed Frenkel and charge transfer states in time-gated fluorescence spectra of perylene bisimides H-aggregates: Hierarchical equations of motion approach. J Chem Phys 2022; 157:084103. [DOI: 10.1063/5.0102000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We theoretically investigated the effect of mixed Frenkel (F) and charge transfer (CT) states on the spectral properties of perylene bisimide (PBI) derivatives, focusing on the role of strong electron-phonon interactions. The model consists of a four-level system described by the Holstein Hamiltonian coupled to independent local heat-baths on each site, described by Brownian spectral distribution functions. We employ the reduced hierarchical equations of motion (HEOM) approach to calculate the time evolution of the system and compare it to the pure F exciton cases. We compute the absorption and time-gated fluorescence (TGF) spectra for different exciton transfer integrals and F-CT band gap conditions. The coherence length of excitons ($N_{coh}$) is evaluated employing two different definitions. We observe the presence of an excited hot state peak whose intensity is associated with the delocalization of the excited species and ultrafast dynamics that are solely dependent on the frequency of the local bath. The results indicate that the inclusion of CT states promotes localization of the excitons which is manifested in a decrease in the intensity of the hot state peak and the 0--1 peak, and an increase in the intensity of the 0--0 emission peak in TGF spectrum, leading to a decrease of $N_{coh}$.
Collapse
Affiliation(s)
| | - Raffaele Borrelli
- Department of Agricoltural Science, Università degli Studi di Torino, Italy
| | | |
Collapse
|
21
|
Polley K, Loring RF. Two-dimensional vibronic spectroscopy with semiclassical thermofield dynamics. J Chem Phys 2022; 156:124108. [DOI: 10.1063/5.0083868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Thermofield dynamics is an exactly correct formulation of quantum mechanics at finite temperature in which a wavefunction is governed by an effective temperature-dependent quantum Hamiltonian. The optimized mean trajectory (OMT) approximation allows the calculation of spectroscopic response functions from trajectories produced by the classical limit of a mapping Hamiltonian that includes physical nuclear degrees of freedom and other effective degrees of freedom representing discrete vibronic states. Here, we develop a thermofield OMT (TF-OMT) approach in which the OMT procedure is applied to a temperature-dependent classical Hamiltonian determined from the thermofield-transformed quantum mapping Hamiltonian. Initial conditions for bath nuclear degrees of freedom are sampled from a zero-temperature distribution. Calculations of two-dimensional electronic spectra and two-dimensional vibrational–electronic spectra are performed for models that include excitonically coupled electronic states. The TF-OMT calculations agree very closely with the corresponding OMT results, which, in turn, represent well benchmark calculations with the hierarchical equations of motion method.
Collapse
Affiliation(s)
- Kritanjan Polley
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA
| | - Roger F. Loring
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
22
|
Ren J, Li W, Jiang T, Wang Y, Shuai Z. Time‐dependent density matrix renormalization group method for quantum dynamics in complex systems. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jiajun Ren
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing People's Republic of China
| | - Weitang Li
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing People's Republic of China
| | - Tong Jiang
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing People's Republic of China
| | - Yuanheng Wang
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing People's Republic of China
| | - Zhigang Shuai
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing People's Republic of China
| |
Collapse
|
23
|
Xu Y, Xie Z, Xie X, Schollwöck U, Ma H. Stochastic Adaptive Single-Site Time-Dependent Variational Principle. JACS AU 2022; 2:335-340. [PMID: 35252984 PMCID: PMC8889605 DOI: 10.1021/jacsau.1c00474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Indexed: 06/14/2023]
Abstract
In recent years, the time-dependent variational principle (TDVP) method based on the matrix product state (MPS) wave function formulation has shown its great power in performing large-scale quantum dynamics simulations for realistic chemical systems with strong electron-vibration interactions. In this work, we propose a stochastic adaptive single-site TDVP (SA-1TDVP) scheme to evolve the bond-dimension adaptively, which can integrate the traditional advantages of both the high efficiency of the single-site TDVP (1TDVP) variant and the high accuracy of the two-site TDVP (2TDVP) variant. Based on the assumption that the level statistics of entanglement Hamiltonians, which originate from the reduced density matrices of the MPS method, follows a Poisson or Wigner distribution, as generically predicted by random-matrix theory, additional random singular values are generated to expand the bond-dimension automatically. Tests on simulating the vibrationally resolved quantum dynamics and absorption spectra in the pyrazine molecule and perylene bisimide (PBI) J-aggregate trimer as well as a spin-1/2 Heisenberg chain show that it can be automatic and as accurate as 2TDVP but reduce the computational time remarkably.
Collapse
Affiliation(s)
- Yihe Xu
- School
of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle
Emissions Control, Nanjing University, Nanjing 210023, China
| | - Zhaoxuan Xie
- School
of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle
Emissions Control, Nanjing University, Nanjing 210023, China
| | - Xiaoyu Xie
- Department
of Chemistry, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Ulrich Schollwöck
- Arnold
Sommerfeld Center of Theoretical Physics, Department of Physics, University of Munich, Theresienstrasse 37, 80333 Munich, Germany
- Munich
Center for Quantum Science and Technology (MCQST), 80799 Munich, Germany
| | - Haibo Ma
- School
of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle
Emissions Control, Nanjing University, Nanjing 210023, China
| |
Collapse
|
24
|
Zeng J, Yao Y. Variational Squeezed Davydov Ansatz for Realistic Chemical Systems with Nonlinear Vibronic Coupling. J Chem Theory Comput 2022; 18:1255-1263. [PMID: 35100509 DOI: 10.1021/acs.jctc.1c00859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chemical systems normally possess strong nonlinear vibronic couplings at both zero and finite temperature. For the lowest-order quadratic couplings, here, we introduce a squeezing operator into a variational coherent-state-based method, Davydov ansatz, to simulate the quantum dynamics and the respective spectroscopy. Two molecular systems, pyrazine and the 2-pyridone dimer, are taken as calculated model systems, both of which involve nontrivial quadratic vibronic couplings in high- and low-frequency regions, respectively. Upon a comparison with the benchmarks, the method manifests its advantage for nonlinear couplings. The squeezed bases are also proven to be applicable for the finite temperature by adapting with the thermofield dynamics.
Collapse
Affiliation(s)
- Jiarui Zeng
- Department of Physics, South China University of Technology, Guangzhou 510640, China
| | - Yao Yao
- Department of Physics, South China University of Technology, Guangzhou 510640, China.,State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
25
|
Gelß P, Klein R, Matera S, Schmidt B. Solving the time-independent Schrödinger equation for chains of coupled excitons and phonons using tensor trains. J Chem Phys 2022; 156:024109. [PMID: 35032989 DOI: 10.1063/5.0074948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We demonstrate how to apply the tensor-train format to solve the time-independent Schrödinger equation for quasi-one-dimensional excitonic chain systems with and without periodic boundary conditions. The coupled excitons and phonons are modeled by Fröhlich-Holstein type Hamiltonians with on-site and nearest-neighbor interactions only. We reduce the memory consumption as well as the computational costs significantly by employing efficient decompositions to construct low-rank tensor-train representations, thus mitigating the curse of dimensionality. In order to compute also higher quantum states, we introduce an approach that directly incorporates the Wielandt deflation technique into the alternating linear scheme for the solution of eigenproblems. Besides systems with coupled excitons and phonons, we also investigate uncoupled problems for which (semi-)analytical results exist. There, we find that in the case of homogeneous systems, the tensor-train ranks of state vectors only marginally depend on the chain length, which results in a linear growth of the storage consumption. However, the central processing unit time increases slightly faster with the chain length than the storage consumption because the alternating linear scheme adopted in our work requires more iterations to achieve convergence for longer chains and a given rank. Finally, we demonstrate that the tensor-train approach to the quantum treatment of coupled excitons and phonons makes it possible to directly tackle the phenomenon of mutual self-trapping. We are able to confirm the main results of the Davydov theory, i.e., the dependence of the wave packet width and the corresponding stabilization energy on the exciton-phonon coupling strength, although only for a certain range of that parameter. In future work, our approach will allow calculations also beyond the validity regime of that theory and/or beyond the restrictions of the Fröhlich-Holstein type Hamiltonians.
Collapse
Affiliation(s)
- Patrick Gelß
- Institut für Mathematik, Freie Universität Berlin, Arnimallee 3-9, D-14195 Berlin, Germany
| | - Rupert Klein
- Institut für Mathematik, Freie Universität Berlin, Arnimallee 3-9, D-14195 Berlin, Germany
| | - Sebastian Matera
- Institut für Mathematik, Freie Universität Berlin, Arnimallee 3-9, D-14195 Berlin, Germany
| | - Burkhard Schmidt
- Institut für Mathematik, Freie Universität Berlin, Arnimallee 3-9, D-14195 Berlin, Germany
| |
Collapse
|
26
|
Sun K, Dou C, Gelin MF, Zhao Y. Dynamics of disordered Tavis-Cummings and Holstein-Tavis-Cummings models. J Chem Phys 2022; 156:024102. [PMID: 35032972 DOI: 10.1063/5.0076485] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
By employing the time-dependent variational principle and the versatile multi-D2 Davydov trial states, in combination with the Green's function method, we study the dynamics of the Tavis-Cummings model and the Holstein-Tavis-Cummings model in the presence of diagonal disorder and cavity-qubit coupling disorder. For the Tavis-Cummings model, time evolution of the photon population, the optical absorption spectra, and the hetero-entanglement between the qubits and the cavity mode are calculated by using the Green's function method to corroborate numerically exact results of Davydov's Ansätze. For the Holstein-Tavis-Cummings model, only the latter is utilized to simulate effects of disorder on the photon population dynamics and the absorption spectra. We have demonstrated that the complementary employment of analytical and numerical methods permits uncovering a fairly comprehensive picture of a variety of complex behaviors in disordered multidimensional polaritonic cavity quantum electrodynamics systems.
Collapse
Affiliation(s)
- Kewei Sun
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Cunzhi Dou
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yang Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
27
|
Zhao Y, Sun K, Chen L, Gelin M. The hierarchy of Davydov's Ansätze and its applications. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1589] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yang Zhao
- Division of Materials Science Nanyang Technological University Singapore Singapore
| | - Kewei Sun
- Division of Materials Science Nanyang Technological University Singapore Singapore
- School of Science, Hanghzhou Dianzi University Hangzhou China
| | - Lipeng Chen
- Max Planck Institute for the Physics of Complex Systems Dresden Germany
| | - Maxim Gelin
- School of Science, Hanghzhou Dianzi University Hangzhou China
| |
Collapse
|
28
|
Lin K, Peng J, Gu FL, Lan Z. Simulation of Open Quantum Dynamics with Bootstrap-Based Long Short-Term Memory Recurrent Neural Network. J Phys Chem Lett 2021; 12:10225-10234. [PMID: 34647736 DOI: 10.1021/acs.jpclett.1c02672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The recurrent neural network with the long short-term memory cell (LSTM-NN) is employed to simulate the long-time dynamics of open quantum systems. The bootstrap method is applied in the LSTM-NN construction and prediction, which provides a Monte Carlo estimation of a forecasting confidence interval. Within this approach, a large number of LSTM-NNs are constructed by resampling time-series sequences that were obtained from the early stage quantum evolution given by numerically exact multilayer multiconfigurational time-dependent Hartree method. The built LSTM-NN ensemble is used for the reliable propagation of the long-time quantum dynamics, and the simulated result is highly consistent with the exact evolution. The forecasting uncertainty that partially reflects the reliability of the LSTM-NN prediction is also given. This demonstrates the bootstrap-based LSTM-NN approach is a practical and powerful tool to propagate the long-time quantum dynamics of open systems with high accuracy and low computational cost.
Collapse
Affiliation(s)
- Kunni Lin
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Jiawei Peng
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| | - Feng Long Gu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Zhenggang Lan
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| |
Collapse
|
29
|
Gelin MF, Velardo A, Borrelli R. Efficient quantum dynamics simulations of complex molecular systems: A unified treatment of dynamic and static disorder. J Chem Phys 2021; 155:134102. [PMID: 34624969 DOI: 10.1063/5.0065896] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We present a unified and highly numerically efficient formalism for the simulation of quantum dynamics of complex molecular systems, which takes into account both temperature effects and static disorder. The methodology is based on the thermo-field dynamics formalism, and Gaussian static disorder is included into simulations via auxiliary bosonic operators. This approach, combined with the tensor-train/matrix-product state representation of the thermalized stochastic wave function, is applied to study the effect of dynamic and static disorders in charge-transfer processes in model organic semiconductor chains employing the Su-Schrieffer-Heeger (Holstein-Peierls) model Hamiltonian.
Collapse
Affiliation(s)
- Maxim F Gelin
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | | | | |
Collapse
|
30
|
Fischer EW, Saalfrank P. A thermofield-based multilayer multiconfigurational time-dependent Hartree approach to non-adiabatic quantum dynamics at finite temperature. J Chem Phys 2021; 155:134109. [PMID: 34624972 DOI: 10.1063/5.0064013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We introduce a thermofield-based formulation of the multilayer multiconfigurational time-dependent Hartree (MCTDH) method to study finite temperature effects on non-adiabatic quantum dynamics from a non-stochastic, wave function perspective. Our approach is based on the formal equivalence of bosonic many-body theory at zero temperature with a doubled number of degrees of freedom and the thermal quasi-particle representation of bosonic thermofield dynamics (TFD). This equivalence allows for a transfer of bosonic many-body MCTDH as introduced by Wang and Thoss to the finite temperature framework of thermal quasi-particle TFD. As an application, we study temperature effects on the ultrafast internal conversion dynamics in pyrazine. We show that finite temperature effects can be efficiently accounted for in the construction of multilayer expansions of thermofield states in the framework presented herein. Furthermore, we find our results to agree well with existing studies on the pyrazine model based on the ρMCTDH method.
Collapse
Affiliation(s)
- Eric W Fischer
- Theoretische Chemie, Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam-Golm, Germany
| | - Peter Saalfrank
- Theoretische Chemie, Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
31
|
Abstract
The dynamical behaviors of a two-level system (TLS) coupled to a harmonic dissipative bath has been studied extensively using a variety of analytical and numerical methods. The focus of the vast majority of these studies has been on the properties of the TLS, averaged with respect to the bath degrees of freedom. In this work, we use real-time path integral methods to probe the behavior of select bath degrees of freedom during the dynamics of a symmetric two-level system (TLS) coupled to a dissipative bath by calculating system-bath densities (SBD) and coordinate expectation values. Overall, the SBD motion on each diabatic state is simpler than the motion of the total density. In the weak coupling regime, which characterizes the parameters of oscillators that comprise such a bath, the SBD on each TLS state remains primarily compact and Gaussian-like, such that its peak is well characterized by the mode expectation value. In the absence of a dissipative environment, nonadiabatic density depletion leads to spikes in coordinate expectation values. The evolution of the SBD peak trajectory for two discrete modes exhibits Lissajous patterns with frequency-dependent shapes that strongly resemble classical trajectory motion on a torus. These patterns become more complex when the coupling of the mode to the TLS is increased outside of this regime, leading to persistent small amplitude oscillations in the TLS populations characterized by a very slow decay and SBD trajectories that exhibit behaviors reminiscent of chaotic classical systems. Indirect coupling to a dissipative bath has a stabilizing effect on the dynamics, eliminating spikes, synchronizing the SBD motion on the two diabatic states and regularizing the SBD trajectory to simple rectangular Lissajous-like shapes with a slowly shrinking boundary, regardless of the mode frequencies.
Collapse
Affiliation(s)
- Sohang Kundu
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Nancy Makri
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States.,Department of Physics, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
32
|
Gelin MF, Borrelli R. Simulation of Nonlinear Femtosecond Signals at Finite Temperature via a Thermo Field Dynamics-Tensor Train Method: General Theory and Application to Time- and Frequency-Resolved Fluorescence of the Fenna-Matthews-Olson Complex. J Chem Theory Comput 2021; 17:4316-4331. [PMID: 34076412 DOI: 10.1021/acs.jctc.1c00158] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Addressing needs of contemporary nonlinear femtosecond optical spectroscopy, we have developed a fully quantum, numerically accurate wave function-based approach for the calculation of third-order spectroscopic signals of polyatomic molecules and molecular aggregates at finite temperature. The systems are described by multimode nonadiabatic vibronic-coupling Hamiltonians, in which diagonal terms are treated in harmonic approximation, while off-diagonal interstate couplings are assumed to be coordinate independent. The approach is based on the Thermo Field Dynamics (TFD) representation of quantum mechanics and tensor-train (TT) machinery for efficient numerical simulation of quantum evolution of systems with many degrees of freedom. The developed TFD-TT approach is applied to the calculation of time- and frequency-resolved fluorescence spectra of the Fenna-Matthews-Olson (FMO) antenna complex at room temperature taking into account finite time-frequency resolution in fluorescence detection, orientational averaging, and static disorder.
Collapse
Affiliation(s)
- Maxim F Gelin
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | | |
Collapse
|
33
|
Chen L, Borrelli R, Shalashilin DV, Zhao Y, Gelin MF. Simulation of Time- and Frequency-Resolved Four-Wave-Mixing Signals at Finite Temperatures: A Thermo-Field Dynamics Approach. J Chem Theory Comput 2021; 17:4359-4373. [PMID: 34107216 DOI: 10.1021/acs.jctc.1c00259] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We propose a new approach to simulate four-wave-mixing signals of molecular systems at finite temperatures by combining the multiconfigurational Ehrenfest method with the thermo-field dynamics theory. In our approach, the four-time correlation functions at finite temperatures are mapped onto those at zero temperature in an enlarged Hilbert space with twice the vibrational degrees of freedom. As an illustration, we have simulated three multidimensional spectroscopic signals, time- and frequency-resolved fluorescence spectra, transient-absorption pump-probe spectra, and electronic two-dimensional (2D) spectra at finite temperatures, for a conical intersection-mediated singlet fission model of a rubrene crystal. It is shown that a detailed dynamical picture of the singlet fission process can be extracted from the three spectroscopic signals. An increasing temperature leads to lower intensities of the signals and broadened vibrational peaks, which can be attributed to faster singlet-triplet population transfer and stronger bath-induced electronic dephasing at higher temperatures.
Collapse
Affiliation(s)
- Lipeng Chen
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str 38, 01187 Dresden, Germany
| | - Raffaele Borrelli
- Department of Agricultural, Forestry and Food Science, Universitá di Torino, I-10095 Grugliasco, TO, Italy
| | | | - Yang Zhao
- Division of Materials Science, Nanyang Technological University, Singapore 639798, Singapore
| | - Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
34
|
Borrelli R, Dolgov S. Expanding the Range of Hierarchical Equations of Motion by Tensor-Train Implementation. J Phys Chem B 2021; 125:5397-5407. [DOI: 10.1021/acs.jpcb.1c02724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Raffaele Borrelli
- DISAFA, University of Torino, Largo Paolo Braccini 2, Grugliasco 10095, Italy
| | - Sergey Dolgov
- University of Bath, Claverton Down, BA2 7AY Bath, United Kingdom
| |
Collapse
|
35
|
Borrelli R, Gelin MF. Finite temperature quantum dynamics of complex systems: Integrating
thermo‐field
theories and
tensor‐train
methods. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1539] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | - Maxim F. Gelin
- School of Sciences Hangzhou Dianzi University Hangzhou China
| |
Collapse
|
36
|
Begušić T, Vaníček J. Finite-Temperature, Anharmonicity, and Duschinsky Effects on the Two-Dimensional Electronic Spectra from Ab Initio Thermo-Field Gaussian Wavepacket Dynamics. J Phys Chem Lett 2021; 12:2997-3005. [PMID: 33733773 PMCID: PMC8006135 DOI: 10.1021/acs.jpclett.1c00123] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/08/2021] [Indexed: 05/28/2023]
Abstract
Accurate description of finite-temperature vibrational dynamics is indispensable in the computation of two-dimensional electronic spectra. Such simulations are often based on the density matrix evolution, statistical averaging of initial vibrational states, or approximate classical or semiclassical limits. While many practical approaches exist, they are often of limited accuracy and difficult to interpret. Here, we use the concept of thermo-field dynamics to derive an exact finite-temperature expression that lends itself to an intuitive wavepacket-based interpretation. Furthermore, an efficient method for computing finite-temperature two-dimensional spectra is obtained by combining the exact thermo-field dynamics approach with the thawed Gaussian approximation for the wavepacket dynamics, which is exact for any displaced, distorted, and Duschinsky-rotated harmonic potential but also accounts partially for anharmonicity effects in general potentials. Using this new method, we directly relate a symmetry breaking of the two-dimensional signal to the deviation from the conventional Brownian oscillator picture.
Collapse
|
37
|
Peng J, Xie Y, Hu D, Lan Z. Analysis of bath motion in MM-SQC dynamics via dimensionality reduction approach: Principal component analysis. J Chem Phys 2021; 154:094122. [PMID: 33685149 DOI: 10.1063/5.0039743] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The system-plus-bath model is an important tool to understand the nonadiabatic dynamics of large molecular systems. Understanding the collective motion of a large number of bath modes is essential for revealing their key roles in the overall dynamics. Here, we applied principal component analysis (PCA) to investigate the bath motion in the basis of a large dataset generated from the symmetrical quasi-classical dynamics method based on the Meyer-Miller mapping Hamiltonian nonadiabatic dynamics for the excited-state energy transfer in the Frenkel-exciton model. The PCA method clearly elucidated that two types of bath modes, which either display strong vibronic coupling or have frequencies close to that of the electronic transition, are important to the nonadiabatic dynamics. These observations were fully consistent with the physical insights. The conclusions were based on the PCA of the trajectory data and did not involve significant pre-defined physical knowledge. The results show that the PCA approach, which is one of the simplest unsupervised machine learning dimensionality reduction methods, is a powerful one for analyzing complicated nonadiabatic dynamics in the condensed phase with many degrees of freedom.
Collapse
Affiliation(s)
- Jiawei Peng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Yu Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Deping Hu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Zhenggang Lan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
38
|
Begušić T, Vaníček J. On-the-fly ab initio semiclassical evaluation of vibronic spectra at finite temperature. J Chem Phys 2020; 153:024105. [PMID: 32668922 DOI: 10.1063/5.0013677] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
To compute and analyze vibrationally resolved electronic spectra at zero temperature, we have recently implemented the on-the-fly ab initio extended thawed Gaussian approximation [A. Patoz et al., J. Phys. Chem. Lett. 9, 2367 (2018)], which accounts for anharmonicity, mode-mode coupling, and Herzberg-Teller effects. Here, we generalize this method in order to evaluate spectra at non-zero temperature. In line with thermo-field dynamics, we transform the von Neumann evolution of the coherence component of the density matrix to the Schrödinger evolution of a wavefunction in an augmented space with twice as many degrees of freedom. Due to the efficiency of the extended thawed Gaussian approximation, this increase in the number of coordinates results in nearly no additional computational cost. More specifically, compared to the original, zero-temperature approach, the finite-temperature method requires no additional ab initio electronic structure calculations. At the same time, the new approach allows for a clear distinction among finite-temperature, anharmonicity, and Herzberg-Teller effects on spectra. We show, on a model Morse system, the advantages of the finite-temperature thawed Gaussian approximation over the commonly used global harmonic methods and apply it to evaluate the symmetry-forbidden absorption spectrum of benzene, where all of the aforementioned effects contribute.
Collapse
Affiliation(s)
- Tomislav Begušić
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jiří Vaníček
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
39
|
Prlj A, Begušić T, Zhang ZT, Fish GC, Wehrle M, Zimmermann T, Choi S, Roulet J, Moser JE, Vaníček J. Semiclassical Approach to Photophysics Beyond Kasha's Rule and Vibronic Spectroscopy Beyond the Condon Approximation. The Case of Azulene. J Chem Theory Comput 2020; 16:2617-2626. [PMID: 32119547 DOI: 10.1021/acs.jctc.0c00079] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Azulene is a prototypical molecule with an anomalous fluorescence from the second excited electronic state, thus violating Kasha's rule, and with an emission spectrum that cannot be understood within the Condon approximation. To better understand the photophysics and spectroscopy of azulene and other nonconventional molecules, we developed a systematic, general, and efficient computational approach combining the semiclassical dynamics of nuclei with ab initio electronic structure. First, to analyze the nonadiabatic effects, we complement the standard population dynamics by a rigorous measure of adiabaticity, estimated with the multiple-surface dephasing representation. Second, we propose a new semiclassical method for simulating non-Condon spectra, which combines the extended thawed Gaussian approximation with the efficient single-Hessian approach. S1 ← S0 and S2 ← S0 absorption and S2 → S0 emission spectra of azulene, recorded in a new set of experiments, agree very well with our calculations. We find that accuracy of the evaluated spectra requires the treatment of anharmonicity, Herzberg-Teller, and mode-mixing effects.
Collapse
Affiliation(s)
- Antonio Prlj
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Tomislav Begušić
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Zhan Tong Zhang
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - George Cameron Fish
- Photochemical Dynamics Group, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Marius Wehrle
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Tomáš Zimmermann
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Seonghoon Choi
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Julien Roulet
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jacques-Edouard Moser
- Photochemical Dynamics Group, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jiří Vaníček
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
40
|
Zheng J, Peng J, Xie Y, Long Y, Ning X, Lan Z. Study of the exciton dynamics in perylene bisimide (PBI) aggregates with symmetrical quasiclassical dynamics based on the Meyer–Miller mapping Hamiltonian. Phys Chem Chem Phys 2020; 22:18192-18204. [DOI: 10.1039/d0cp00648c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The exciton dynamics in one-dimensional stacked PBI (Perylene Bisimide) aggregates was studied with SQC-MM dynamics (Symmetrical Quasiclassical Dynamics based on the Meyer–Miller mapping Hamiltonian).
Collapse
Affiliation(s)
- Jie Zheng
- Industrial Research Institute of Nonwovens & Technical Textiles
- Shandong Center for Engineered Nonwovens (SCEN)
- College of Textiles Clothing
- Qingdao University
- Qingdao 266071
| | - Jiawei Peng
- SCNU Environmental Research Institute
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment
- South China Normal University
- Guangzhou 510006
- China
| | - Yu Xie
- SCNU Environmental Research Institute
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment
- South China Normal University
- Guangzhou 510006
- China
| | - Yunze Long
- Industrial Research Institute of Nonwovens & Technical Textiles
- Shandong Center for Engineered Nonwovens (SCEN)
- College of Textiles Clothing
- Qingdao University
- Qingdao 266071
| | - Xin Ning
- Industrial Research Institute of Nonwovens & Technical Textiles
- Shandong Center for Engineered Nonwovens (SCEN)
- College of Textiles Clothing
- Qingdao University
- Qingdao 266071
| | - Zhenggang Lan
- SCNU Environmental Research Institute
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment
- South China Normal University
- Guangzhou 510006
- China
| |
Collapse
|
41
|
Xie X, Liu Y, Yao Y, Schollwöck U, Liu C, Ma H. Time-dependent density matrix renormalization group quantum dynamics for realistic chemical systems. J Chem Phys 2019; 151:224101. [DOI: 10.1063/1.5125945] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Xiaoyu Xie
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuyang Liu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yao Yao
- Department of Physics and State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Ulrich Schollwöck
- Department of Physics, Arnold Sommerfeld Center for Theoretical Physics (ASC), Fakultät für Physik, Ludwig-Maximilians-Universität München, München D-80333, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, München D-80799, Germany
| | - Chungen Liu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Haibo Ma
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
42
|
The Dynamics of Hole Transfer in DNA. Molecules 2019; 24:molecules24224044. [PMID: 31703470 PMCID: PMC6891780 DOI: 10.3390/molecules24224044] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/31/2019] [Accepted: 11/02/2019] [Indexed: 11/21/2022] Open
Abstract
High-energy radiation and oxidizing agents can ionize DNA. One electron oxidation gives rise to a radical cation whose charge (hole) can migrate through DNA covering several hundreds of Å, eventually leading to irreversible oxidative damage and consequent disease. Understanding the thermodynamic, kinetic and chemical aspects of the hole transport in DNA is important not only for its biological consequences, but also for assessing the properties of DNA in redox sensing or labeling. Furthermore, due to hole migration, DNA could potentially play an important role in nanoelectronics, by acting as both a template and active component. Herein, we review our work on the dynamics of hole transfer in DNA carried out in the last decade. After retrieving the thermodynamic parameters needed to address the dynamics of hole transfer by voltammetric and spectroscopic experiments and quantum chemical computations, we develop a theoretical methodology which allows for a faithful interpretation of the kinetics of the hole transport in DNA and is also capable of taking into account sequence-specific effects.
Collapse
|
43
|
Shushkov P, Miller TF. Real-time density-matrix coupled-cluster approach for closed and open systems at finite temperature. J Chem Phys 2019; 151:134107. [DOI: 10.1063/1.5121749] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Philip Shushkov
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Thomas F. Miller
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
44
|
Harsha G, Henderson TM, Scuseria GE. Thermofield Theory for Finite-Temperature Coupled Cluster. J Chem Theory Comput 2019; 15:6127-6136. [DOI: 10.1021/acs.jctc.9b00744] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gaurav Harsha
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| | - Thomas M. Henderson
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Gustavo E. Scuseria
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
45
|
Borrelli R. Density matrix dynamics in twin-formulation: An efficient methodology based on tensor-train representation of reduced equations of motion. J Chem Phys 2019; 150:234102. [PMID: 31228887 DOI: 10.1063/1.5099416] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The twin-formulation of quantum statistical mechanics is employed to describe a new methodology for the solution of the equations of motion of the reduced density matrix in their hierarchical formulation. It is shown that the introduction of tilde operators and of their algebra in the dual space greatly simplifies the application of numerical techniques for the propagation of the density matrix. The application of tensor-train representation of a vector to solve complex quantum dynamical problems within the framework of the twin-formulation is discussed. Next, applications of the hierarchical equations of motion to a dissipative polaron model are presented showing the validity and accuracy of the new approach.
Collapse
|
46
|
Gelin MF, Borrelli R, Domcke W. Origin of Unexpectedly Simple Oscillatory Responses in the Excited-State Dynamics of Disordered Molecular Aggregates. J Phys Chem Lett 2019; 10:2806-2810. [PMID: 31070912 DOI: 10.1021/acs.jpclett.9b00840] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Unraveling the many facets of coherent and incoherent exciton motion in an ensemble of chromophores is an inherently complex quantum mechanical problem that has triggered a vivid debate on the role of quantum effects in molecular materials and biophysical systems. Here the dynamics of a statistical ensemble of molecular aggregates consisting of identical chromophores is investigated within a new theoretical framework. Taking account of intrinsic properties of the system, the Hamiltonian of the aggregate is partitioned into two mutually commuting vibrational and vibronic operators. This representation paves the way for an analysis that reveals the role of static disorder in ensembles of aggregates. Using analytical methods, it is demonstrated that after a critical time τD ≃ 2π/σ (σ being the dispersion of the disorder) any dynamic variable of the aggregate exhibits purely vibrational dynamics. This result is confirmed by exact numerical calculations of the time-dependent site populations of the aggregate. These findings may be useful for the interpretation of recent femtosecond spectroscopic experiments on molecular aggregates.
Collapse
Affiliation(s)
- Maxim F Gelin
- Department of Chemistry , Technische Universität München , D-85747 Garching , Germany
| | | | - Wolfgang Domcke
- Department of Chemistry , Technische Universität München , D-85747 Garching , Germany
| |
Collapse
|
47
|
Harsha G, Henderson TM, Scuseria GE. Thermofield theory for finite-temperature quantum chemistry. J Chem Phys 2019; 150:154109. [DOI: 10.1063/1.5089560] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Gaurav Harsha
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005-1892, USA
| | - Thomas M. Henderson
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005-1892, USA
- Department of Chemistry, Rice University, Houston, Texas 77005-1892, USA
| | - Gustavo E. Scuseria
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005-1892, USA
- Department of Chemistry, Rice University, Houston, Texas 77005-1892, USA
| |
Collapse
|
48
|
Landi A, Borrelli R, Capobianco A, Peluso A. Transient and Enduring Electronic Resonances Drive Coherent Long Distance Charge Transport in Molecular Wires. J Phys Chem Lett 2019; 10:1845-1851. [PMID: 30939015 DOI: 10.1021/acs.jpclett.9b00650] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
It is shown that the yields of oxidative damage observed in double-stranded DNA oligomers consisting of two guanines separated by adenine-thymine (A:T) n bridges of various lengths are reliably accounted for by a multistep mechanism, in which transient and nontransient electronic resonances induce charge transport and solvent relaxation stabilizes the hole transfer products. The proposed multistep mechanism leads to results in excellent agreement with the observed yield ratios for both the short and the long distance regime; the almost distance independence of yield ratios for longer bridges ( n ≥ 3) is the consequence of the significant energy decrease of the electronic levels of the bridge, which, as the bridge length increases, become quasi-degenerate with those of the acceptor and donor groups (enduring resonance). These results provide significant guidelines for the design of novel DNA sequences to be employed in organic electronics.
Collapse
Affiliation(s)
- Alessandro Landi
- Dipartimento di Chimica e Biologia , Università di Salerno , I-84084 Fisciano , Salerno , Italy
| | - Raffaele Borrelli
- Department of Agricultural, Forestry and Food Science , University of Torino , Via Leonardo da Vinci 44 , I-10095 Grugliasco , Italy
| | - Amedeo Capobianco
- Dipartimento di Chimica e Biologia , Università di Salerno , I-84084 Fisciano , Salerno , Italy
| | - Andrea Peluso
- Dipartimento di Chimica e Biologia , Università di Salerno , I-84084 Fisciano , Salerno , Italy
| |
Collapse
|
49
|
Chen L, Gelin MF, Domcke W. Multimode quantum dynamics with multiple Davydov D2 trial states: Application to a 24-dimensional conical intersection model. J Chem Phys 2019; 150:024101. [DOI: 10.1063/1.5066022] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Lipeng Chen
- Department of Chemistry, Technische Universität München, D-85747, Garching, Germany
| | - Maxim F. Gelin
- Department of Chemistry, Technische Universität München, D-85747, Garching, Germany
| | - Wolfgang Domcke
- Department of Chemistry, Technische Universität München, D-85747, Garching, Germany
| |
Collapse
|
50
|
Borrelli R. Theoretical study of charge-transfer processes at finite temperature using a novel thermal Schrödinger equation. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|