1
|
Papadakis CM, Niebuur BJ, Schulte A. Thermoresponsive Polymers under Pressure with a Focus on Poly( N-isopropylacrylamide) (PNIPAM). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1-20. [PMID: 38149782 DOI: 10.1021/acs.langmuir.3c02398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Pressure is a key variable in the phase behavior of responsive polymers, both for applications and from a fundamental point of view. In this feature article, we review recent developments, particularly applications of neutron techniques such as small-angle neutron scattering (SANS) and quasi-elastic neutron scattering (QENS), across the temperature-pressure phase diagram. These are complemented by kinetic SANS experiments following pressure jumps. In the prototype system poly(N-isopropylacrylamide) (PNIPAM), QENS revealed the pressure-dependent characteristics of hydration water around the lower critical solution temperature transition. The size, water content, and inner structure of the mesoglobules formed in the two-phase region depend strongly on pressure, as shown by SANS. Beside these changes at the phase transition, the mesoglobule formation at low pressure is determined by kinetic factors, namely the formation of a polymer-rich, rigid shell, which hampers further growth by coalescence. At high pressure, in contrast, the growth proceeds by diffusion-limited coalescence without any kinetic hindrance. The disintegration of the mesoglobules evolves either via chain release from their surface or via swelling, depending on the osmotic pressure of the water. Moreover, we report on the profound influence of pressure on the cononsolvency effect. In the temperature-pressure frame, the one-phase region is hugely expanded upon the addition of the cosolvent methanol. SANS experiments unveil the enthalpic and entropic contributions to the effective Flory-Huggins interaction parameter between the segments and the solvent mixture. QENS experiments demonstrate an increase in polymer associated water with pressure, whereas methanol is released. Correspondingly, the solvent phase becomes enriched in methanol, providing a mechanism for the breakdown of cononsolvency at a high pressure. Finally, we outline future opportunities for high-pressure studies of thermoresponsive polymers, with a focus on neutron methods.
Collapse
Affiliation(s)
- Christine M Papadakis
- TUM School of Natural Sciences, Physics Department, Soft Matter Physics Group, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - Bart-Jan Niebuur
- TUM School of Natural Sciences, Physics Department, Soft Matter Physics Group, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - Alfons Schulte
- Department of Physics and College of Optics and Photonics, University of Central Florida, 4111 Libra Drive, Orlando, Florida 32816-2385, United States
| |
Collapse
|
2
|
Chèvremont W, Zinn T, Narayanan T. Improvement of ultra-small-angle XPCS with the Extremely Brilliant Source. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:65-76. [PMID: 37933847 PMCID: PMC10833426 DOI: 10.1107/s1600577523008627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/01/2023] [Indexed: 11/08/2023]
Abstract
Recent technical developments and the performance of the X-ray photon correlation spectroscopy (XPCS) method over the ultra-small-angle range with the Extremely Brilliant Source (EBS) at the ESRF are described. With higher monochromatic coherent photon flux (∼1012 photons s-1) provided by the EBS and the availability of a fast pixel array detector (EIGER 500K detector operating at 23000 frames s-1), XPCS has become more competitive for probing faster dynamics in relatively dilute suspensions. One of the goals of the present development is to increase the user-friendliness of the method. This is achieved by means of a Python-based graphical user interface that enables online visualization and analysis of the processed data. The improved performance of XPCS on the Time-Resolved Ultra-Small-Angle X-ray Scattering instrument (ID02 beamline) is demonstrated using dilute model colloidal suspensions in several different applications.
Collapse
Affiliation(s)
- William Chèvremont
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Thomas Zinn
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, 38043 Grenoble, France
| | | |
Collapse
|
3
|
Narayanan T, Sztucki M, Zinn T, Kieffer J, Homs-Puron A, Gorini J, Van Vaerenbergh P, Boesecke P. Performance of the time-resolved ultra-small-angle X-ray scattering beamline with the Extremely Brilliant Source. J Appl Crystallogr 2022; 55:98-111. [PMID: 35145357 PMCID: PMC8805168 DOI: 10.1107/s1600576721012693] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/30/2021] [Indexed: 11/10/2022] Open
Abstract
The new technical features and enhanced performance of the ID02 beamline with the Extremely Brilliant Source (EBS) at the ESRF are described. The beamline enables static and kinetic investigations of a broad range of systems from ångström to micrometre size scales and down to the sub-millisecond time range by combining different small-angle X-ray scattering techniques in a single instrument. In addition, a nearly coherent beam obtained in the high-resolution mode allows multispeckle X-ray photon correlation spectroscopy measurements down to the microsecond range over the ultra-small- and small-angle regions. While the scattering vector (of magnitude q) range covered is the same as before, 0.001 ≤ q ≤ 50 nm-1 for an X-ray wavelength of 1 Å, the EBS permits relaxation of the collimation conditions, thereby obtaining a higher flux throughput and lower background. In particular, a coherent photon flux in excess of 1012 photons s-1 can be routinely obtained, allowing dynamic studies of relatively dilute samples. The enhanced beam properties are complemented by advanced pixel-array detectors and high-throughput data reduction pipelines. All these developments together open new opportunities for structural, dynamic and kinetic investigations of out-of-equilibrium soft matter and biophysical systems.
Collapse
Affiliation(s)
| | | | - Thomas Zinn
- ESRF – The European Synchrotron, 38043 Grenoble, France
| | | | | | | | | | | |
Collapse
|
4
|
Lombardo D, Calandra P, Kiselev MA. Structural Characterization of Biomaterials by Means of Small Angle X-rays and Neutron Scattering (SAXS and SANS), and Light Scattering Experiments. Molecules 2020; 25:E5624. [PMID: 33260426 PMCID: PMC7730346 DOI: 10.3390/molecules25235624] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
Scattering techniques represent non-invasive experimental approaches and powerful tools for the investigation of structure and conformation of biomaterial systems in a wide range of distances, ranging from the nanometric to micrometric scale. More specifically, small-angle X-rays and neutron scattering and light scattering techniques represent well-established experimental techniques for the investigation of the structural properties of biomaterials and, through the use of suitable models, they allow to study and mimic various biological systems under physiologically relevant conditions. They provide the ensemble averaged (and then statistically relevant) information under in situ and operando conditions, and represent useful tools complementary to the various traditional imaging techniques that, on the contrary, reveal more local structural information. Together with the classical structure characterization approaches, we introduce the basic concepts that make it possible to examine inter-particles interactions, and to study the growth processes and conformational changes in nanostructures, which have become increasingly relevant for an accurate understanding and prediction of various mechanisms in the fields of biotechnology and nanotechnology. The upgrade of the various scattering techniques, such as the contrast variation or time resolved experiments, offers unique opportunities to study the nano- and mesoscopic structure and their evolution with time in a way not accessible by other techniques. For this reason, highly performant instruments are installed at most of the facility research centers worldwide. These new insights allow to largely ameliorate the control of (chemico-physical and biologic) processes of complex (bio-)materials at the molecular length scales, and open a full potential for the development and engineering of a variety of nano-scale biomaterials for advanced applications.
Collapse
Affiliation(s)
- Domenico Lombardo
- CNR-IPCF, Consiglio Nazionale delle Ricerche, Istituto per i Processi Chimico-Fisici, 98158 Messina, Italy
| | - Pietro Calandra
- CNR-ISMN, Consiglio Nazionale delle Ricerche, Istituto Studio Materiali Nanostrutturati, 00015 Roma, Italy;
| | - Mikhail A. Kiselev
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, 141980 Moscow, Russia;
| |
Collapse
|
5
|
Niebuur BJ, Chiappisi L, Jung F, Zhang X, Schulte A, Papadakis CM. Kinetics of Mesoglobule Formation and Growth in Aqueous Poly(N-isopropylacrylamide) Solutions: Pressure Jumps at Low and at High Pressure. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00937] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Bart-Jan Niebuur
- Physik-Department, Fachgebiet Physik weicher Materie, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Leonardo Chiappisi
- Large Scale Structures Group, Institut Laue-Langevin, 71, Avenue des Martyrs, 38042 Grenoble, France
- Stranski Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, Sekr. TC7, D-10623 Berlin, Germany
| | - Florian Jung
- Physik-Department, Fachgebiet Physik weicher Materie, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Xiaohan Zhang
- Physik-Department, Fachgebiet Physik weicher Materie, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Alfons Schulte
- Department of Physics and College of Optics and Photonics, University of Central Florida, 4111 Libra Drive, Orlando, Florida 32816-2385, United States
| | - Christine M. Papadakis
- Physik-Department, Fachgebiet Physik weicher Materie, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| |
Collapse
|
6
|
Narayanan T, Sztucki M, Van Vaerenbergh P, Léonardon J, Gorini J, Claustre L, Sever F, Morse J, Boesecke P. A multipurpose instrument for time-resolved ultra-small-angle and coherent X-ray scattering. J Appl Crystallogr 2018; 51:1511-1524. [PMID: 30546286 PMCID: PMC6276275 DOI: 10.1107/s1600576718012748] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/08/2018] [Indexed: 11/17/2022] Open
Abstract
This article presents the main technical features and performance of the upgraded beamline ID02 at the ESRF. The beamline combines different small-angle X-ray scattering techniques in one unique instrument, enabling static and kinetic investigations from ångström to micrometre size scales and time resolution down to the sub-millisecond range. The main component of the instrument is an evacuated detector tube of length 34 m and diameter 2 m. Several different detectors are housed inside a motorized wagon that travels along a rail system, allowing an automated change of the sample-detector distance from about 1 to 31 m as well as selection of the desired detector. For optional combined wide-angle scattering measurements, a wide-angle detector is installed at the entrance cone of the tube. A scattering vector (of magnitude q) range of 0.002 ≤ q ≤ 50 nm-1 is covered with two sample-detector distances and a single-beam setting for an X-ray wavelength of 1 Å. In the high-resolution mode, two-dimensional ultra-small-angle X-ray scattering patterns down to q < 0.001 nm-1 can be recorded, and the resulting one-dimensional profiles have superior quality as compared to those measured with an optimized Bonse-Hart instrument. In the highest-resolution mode, the beam is nearly coherent, thereby permitting multispeckle ultra-small-angle X-ray photon correlation spectroscopy measurements. The main applications of the instrument include the elucidation of static and transient hierarchical structures, and nonequilibrium dynamics in soft matter and biophysical systems.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Franc Sever
- ESRF – The European Synchrotron, 38043 Grenoble, France
| | - John Morse
- ESRF – The European Synchrotron, 38043 Grenoble, France
| | | |
Collapse
|
7
|
Niebuur BJ, Chiappisi L, Zhang X, Jung F, Schulte A, Papadakis CM. Formation and Growth of Mesoglobules in Aqueous Poly( N-isopropylacrylamide) Solutions Revealed with Kinetic Small-Angle Neutron Scattering and Fast Pressure Jumps. ACS Macro Lett 2018; 7:1155-1160. [PMID: 35651267 DOI: 10.1021/acsmacrolett.8b00605] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The phase transition from swollen chains to polymer mesoglobules of an aqueous solution of poly(N-isopropylacrylamide) is investigated with kinetic small-angle neutron scattering with 50 ms time resolution in conjunction with millisecond pressure jumps across the coexistence line. The time-resolved study evidenced three distinct regimes: fractal clusters form during the first second and transform into compact mesoglobules. During the following ∼20 s, these grow by diffusion-limited coalescence. The final step consists of a slow growth characterized by an energy barrier of several kBT. The method opens opportunities for kinetic structural studies of multicomponent systems over wide length and time scales and gives a structural picture spanning from the chain collapse to mesoscopic phase separation.
Collapse
Affiliation(s)
- Bart-Jan Niebuur
- Technische Universität München, Physik-Department, Fachgebiet Physik weicher Materie, James-Franck-Str. 1, 85748 Garching, Germany
| | - Leonardo Chiappisi
- Institut Laue-Langevin, Large Scale Structures Group, 6, rue Jules Horowitz, 38042 Grenoble, France
- Technische Universität Berlin, Stranski Laboratorium für Physikalische Chemie und Theoretische Chemie, Institut für Chemie, Straße des 17. Juni 124, Sekr. TC7, D-10623 Berlin, Germany
| | - Xiaohan Zhang
- Technische Universität München, Physik-Department, Fachgebiet Physik weicher Materie, James-Franck-Str. 1, 85748 Garching, Germany
| | - Florian Jung
- Technische Universität München, Physik-Department, Fachgebiet Physik weicher Materie, James-Franck-Str. 1, 85748 Garching, Germany
| | - Alfons Schulte
- Department of Physics and College of Optics and Photonics, University of Central Florida, 4111 Libra Drive, Orlando, Florida 32816-2385, United States
| | - Christine M. Papadakis
- Technische Universität München, Physik-Department, Fachgebiet Physik weicher Materie, James-Franck-Str. 1, 85748 Garching, Germany
| |
Collapse
|
8
|
Rimmerman D, Leshchev D, Hsu DJ, Hong J, Abraham B, Henning R, Kosheleva I, Chen LX. Probing Cytochrome c Folding Transitions upon Phototriggered Environmental Perturbations Using Time-Resolved X-ray Scattering. J Phys Chem B 2018; 122:5218-5224. [PMID: 29709179 DOI: 10.1021/acs.jpcb.8b03354] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Direct tracking of protein structural dynamics during folding-unfolding processes is important for understanding the roles of hierarchic structural factors in the formation of functional proteins. Using cytochrome c (cyt c) as a platform, we investigated its structural dynamics during folding processes triggered by local environmental changes (i.e., pH or heme iron center oxidation/spin/ligation states) with time-resolved X-ray solution scattering measurements. Starting from partially unfolded cyt c, a sudden pH drop initiated by light excitation of a photoacid caused a structural contraction in microseconds, followed by active site restructuring and unfolding in milliseconds. In contrast, the reduction of iron in the heme via photoinduced electron transfer did not affect conformational stability at short timescales (<1 ms), despite active site coordination geometry changes. These results demonstrate how different environmental perturbations can change the nature of interaction between the active site and protein conformation, even within the same metalloprotein, which will subsequently affect the folding structural dynamics.
Collapse
Affiliation(s)
- Dolev Rimmerman
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| | - Denis Leshchev
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| | - Darren J Hsu
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| | - Jiyun Hong
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| | - Baxter Abraham
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Robert Henning
- Center for Advanced Radiation Sources , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Irina Kosheleva
- Center for Advanced Radiation Sources , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Lin X Chen
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States.,Chemical Sciences and Engineering Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| |
Collapse
|
9
|
Tuukkanen AT, Spilotros A, Svergun DI. Progress in small-angle scattering from biological solutions at high-brilliance synchrotrons. IUCRJ 2017; 4:518-528. [PMID: 28989709 PMCID: PMC5619845 DOI: 10.1107/s2052252517008740] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/12/2017] [Indexed: 05/26/2023]
Abstract
Small-angle X-ray scattering (SAXS) is an established technique that provides low-resolution structural information on macromolecular solutions. Recent decades have witnessed significant progress in both experimental facilities and in novel data-analysis approaches, making SAXS a mainstream method for structural biology. The technique is routinely applied to directly reconstruct low-resolution shapes of proteins and to generate atomistic models of macromolecular assemblies using hybrid approaches. Very importantly, SAXS is capable of yielding structural information on systems with size and conformational polydispersity, including highly flexible objects. In addition, utilizing high-flux synchrotron facilities, time-resolved SAXS allows analysis of kinetic processes over time ranges from microseconds to hours. Dedicated bioSAXS beamlines now offer fully automated data-collection and analysis pipelines, where analysis and modelling is conducted on the fly. This enables SAXS to be employed as a high-throughput method to rapidly screen various sample conditions and additives. The growing SAXS user community is supported by developments in data and model archiving and quality criteria. This review illustrates the latest developments in SAXS, in particular highlighting time-resolved applications aimed at flexible and evolving systems.
Collapse
Affiliation(s)
- Anne T. Tuukkanen
- European Molecular Biology Laboratory, EMBL Hamburg c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Alessandro Spilotros
- European Molecular Biology Laboratory, EMBL Hamburg c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Dmitri I. Svergun
- European Molecular Biology Laboratory, EMBL Hamburg c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|