1
|
Biswas T, Kahl G, Shrivastav GP. Phase separation dynamics in a symmetric binary mixture of ultrasoft particles. J Chem Phys 2024; 160:214901. [PMID: 38828826 DOI: 10.1063/5.0209814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/10/2024] [Indexed: 06/05/2024] Open
Abstract
Phase separation plays a key role in determining the self-assembly of biological and soft-matter systems. In biological systems, liquid-liquid phase separation inside a cell leads to the formation of various macromolecular aggregates. The interaction among these aggregates is soft, i.e., they can significantly overlap at a small energy cost. From a computer simulation point of view, these complex macromolecular aggregates are generally modeled by soft particles. The effective interaction between two particles is defined via the generalized exponential model of index n, with n = 4. Here, using molecular dynamics simulations, we study the phase separation dynamics of a size-symmetric binary mixture of ultrasoft particles. We find that when the mixture is quenched to a temperature below the critical temperature, the two components spontaneously start to separate. Domains of the two components form, and the equal-time order parameter reveals that the domain sizes grow with time in a power-law manner with an exponent of 1/3, which is consistent with the Lifshitz-Slyozov law for conserved systems. Furthermore, the static structure factor shows a power-law decay with an exponent of 4, consistent with the Porod law.
Collapse
Affiliation(s)
- Tanmay Biswas
- Institut für Theoretische Physik, TU Wien, Wiedner Hauptstrasse 8-10, A-1040 Wien, Austria
| | - Gerhard Kahl
- Institut für Theoretische Physik, TU Wien, Wiedner Hauptstrasse 8-10, A-1040 Wien, Austria
| | - Gaurav P Shrivastav
- Institut für Theoretische Physik, TU Wien, Wiedner Hauptstrasse 8-10, A-1040 Wien, Austria
| |
Collapse
|
2
|
Paul S, Bera A, Das SK. How do clusters in phase-separating active matter systems grow? A study for Vicsek activity in systems undergoing vapor-solid transition. SOFT MATTER 2021; 17:645-654. [PMID: 33210696 DOI: 10.1039/d0sm01762k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Via molecular dynamics simulations, we have studied the kinetics of vapor-"solid" phase transition in an active matter model in which self-propulsion is introduced via the well-known Vicsek rule. The overall density of the particles is chosen in such a way that the evolution morphology consists of disconnected clusters that are defined as regions of high density of particles. Our focus has been on understanding the influence of the above-mentioned self-propulsion on structure and growth of these clusters by comparing the results with those for the passive limit of the model that also exhibits vapor-"solid" transition. While in the passive case growth occurs due to a standard diffusive mechanism, the Vicsek activity leads to very rapid growth, via a process that is practically equivalent to the ballistic aggregation mechanism. The emerging growth law in the latter case has been accurately estimated and explained by invoking information on velocity and structural aspects of the clusters into a relevant theory. Some of these results are also discussed with reference to a model for active Brownian particles.
Collapse
Affiliation(s)
- Subhajit Paul
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O, Bangalore 560064, India. and Institut für Theoretische Physik, Universität Leipzig, IPF 231101, 04081, Leipzig, Germany
| | - Arabinda Bera
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O, Bangalore 560064, India. and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O, Bangalore 560064, India
| | - Subir K Das
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O, Bangalore 560064, India. and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O, Bangalore 560064, India
| |
Collapse
|
3
|
Midya J, Das SK. Kinetics of domain growth and aging in a two-dimensional off-lattice system. Phys Rev E 2021; 102:062119. [PMID: 33465989 DOI: 10.1103/physreve.102.062119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/18/2020] [Indexed: 11/07/2022]
Abstract
We have used molecular dynamics simulations for a comprehensive study of phase separation in a two-dimensional single-component off-lattice model where particles interact through the Lennard-Jones potential. Via state-of-the-art methods we have analyzed simulation data on structure, growth, and aging for nonequilibrium evolutions in the model. These data were obtained following quenches of well-equilibrated homogeneous configurations, with density close to the critical value, to various temperatures inside the miscibility gap, having vapor-"liquid" as well as vapor-"solid" coexistence. For the vapor-liquid phase separation we observe that ℓ, the average domain length, grows with time (t) as t^{1/2}, a behavior that has connection with hydrodynamics. At low-enough temperature, a sharp crossover of this time dependence to a much slower, temperature-dependent, growth is identified within the timescale of our simulations, implying "solid"-like final state of the high-density phase. This crossover is, interestingly, accompanied by strong differences in domain morphology and other structural aspects between the two situations. For aging, we have presented results for the order-parameter autocorrelation function. This quantity exhibits data collapse with respect to ℓ/ℓ_{w}, ℓ, and ℓ_{w} being the average domain lengths at times t and t_{w} (≤t), respectively, the latter being the age of a system. Corresponding scaling function follows a power-law decay: ∼(ℓ/ℓ_{w})^{-λ} for t≫t_{w}. The decay exponent λ, for the vapor-liquid case, is accurately estimated via the application of an advanced finite-size scaling method. The obtained value is observed to satisfy a bound.
Collapse
Affiliation(s)
- Jiarul Midya
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany.,Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | - Subir K Das
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India.,School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| |
Collapse
|
4
|
Chakraborty S, Das SK. Relaxation in a phase-separating two-dimensional active matter system with alignment interaction. J Chem Phys 2020; 153:044905. [PMID: 32752724 DOI: 10.1063/5.0010043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Via computer simulations, we study kinetics of pattern formation in a two-dimensional active matter system. Self-propulsion in our model is incorporated via the Vicsek-like activity, i.e., particles have the tendency of aligning their velocities with the average directions of motion of their neighbors. In addition to this dynamic or active interaction, there exists passive inter-particle interaction in the model for which we have chosen the standard Lennard-Jones form. Following quenches of homogeneous configurations to a point deep inside the region of coexistence between high and low density phases, as the systems exhibit formation and evolution of particle-rich clusters, we investigate properties related to the morphology, growth, and aging. A focus of our study is on the understanding of the effects of structure on growth and aging. To quantify the latter, we use the two-time order-parameter autocorrelation function. This correlation, as well as the growth, is observed to follow power-law time dependence, qualitatively similar to the scaling behavior reported for passive systems. The values of the exponents have been estimated and discussed by comparing with the previously obtained numbers for other dimensions as well as with the new results for the passive limit of the considered model. We have also presented results on the effects of temperature on the activity mediated phase separation.
Collapse
Affiliation(s)
- Saikat Chakraborty
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | - Subir K Das
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| |
Collapse
|
5
|
Roy S, Bera A, Majumder S, Das SK. Aging phenomena during phase separation in fluids: decay of autocorrelation for vapor-liquid transitions. SOFT MATTER 2019; 15:4743-4750. [PMID: 31149698 DOI: 10.1039/c9sm00366e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We performed molecular dynamics simulations to study relaxation phenomena during vapor-liquid transitions in a single component Lennard-Jones system. Results from two different overall densities are presented: one in the neighborhood of the vapor branch of the coexistence curve and the other being close to the critical density. The nonequilibrium morphologies, growth mechanisms and growth laws in the two cases are vastly different. In the low density case growth occurs via diffusive coalescence of droplets in a disconnected morphology. On the other hand, the elongated structure in the higher density case grows via advective transport of particles inside the tube-like liquid domains. The objective in this work has been to identify how the decay of the order-parameter autocorrelation, an important quantity to understand aging dynamics, differs in the two cases. In the case of the disconnected morphology, we observe a very robust power-law decay, as a function of the ratio of the characteristic lengths at the observation time and at the age of the system, whereas the results for the percolating structure appear rather complex. To quantify the decay in the latter case, unlike the standard method followed in a previous study, here we have performed a finite-size scaling analysis. The outcome of this analysis shows the presence of a strong preasymptotic correction, while revealing that in this case also, albeit in the asymptotic limit, the decay follows a power-law. Even though the corresponding exponents in the two cases differ drastically, this study, combined with a few recent ones, suggests that power-law behavior of this correlation function is rather universal in coarsening dynamics.
Collapse
Affiliation(s)
- Sutapa Roy
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, 70569 Stuttgart, Germany.
| | | | | | | |
Collapse
|
6
|
Azizi I, Rabin Y. Composition, morphology, and growth of clusters in a gas of particles with random interactions. J Chem Phys 2018; 148:104304. [PMID: 29544331 DOI: 10.1063/1.5017165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We use Langevin dynamics simulations to study the growth kinetics and the steady-state properties of condensed clusters in a dilute two-dimensional system of particles that are all different (APD) in the sense that each particle is characterized by a randomly chosen interaction parameter. The growth exponents, the transition temperatures, and the steady-state properties of the clusters and of the surrounding gas phase are obtained and compared with those of one-component systems. We investigate the fractionation phenomenon, i.e., how particles of different identities are distributed between the coexisting mother (gas) and daughter (clusters) phases. We study the local organization of particles inside clusters, according to their identity-neighbourhood identity ordering (NIO)-and compare the results with those of previous studies of NIO in dense APD systems.
Collapse
Affiliation(s)
- Itay Azizi
- Department of Physics, and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Yitzhak Rabin
- Department of Physics, and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
7
|
Midya J, Das SK. Kinetics of Vapor-Solid Phase Transitions: Structure, Growth, and Mechanism. PHYSICAL REVIEW LETTERS 2017; 118:165701. [PMID: 28474902 DOI: 10.1103/physrevlett.118.165701] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Indexed: 06/07/2023]
Abstract
The kinetics of the separation between low and high density phases in a single component Lennard-Jones model is studied via molecular dynamics simulations, at very low temperatures, in the space dimension d=2. For densities close to the vapor branch of the coexistence curve, disconnected nanoscale clusters of the high density phase exhibit essentially ballistic motion. Starting from nearly circular shapes, at the time of nucleation, these clusters grow via sticky collisions, gaining filamentlike nonequilibrium structure at a later time, with a very low fractal dimensionality. The origin of the latter is shown to lie in the low mobility of the constituent particles, in the corresponding cluster reference frame, due to the (quasi-long-range) crystalline order. Standard self-similarity in the domain pattern, typically observed in the kinetics of phase transitions, is found to be absent. This invalidates the common method, that provides a growth law comparable to that in solid mixtures, of quantifying growth. An appropriate alternative approach, involving the fractality, quantifies the growth of the characteristic "length" to be a power law with time, the exponent being strongly temperature dependent. The observed growth law is in agreement with the outcome of a nonequilibrium kinetic theory.
Collapse
Affiliation(s)
- Jiarul Midya
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | - Subir K Das
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| |
Collapse
|