1
|
Fujisawa T, Shingae T, Ren J, Haraguchi S, Hanamoto T, Hoff WD, Unno M. Spectroscopic Validation of Crystallographic Structures of a Protein Active Site by Chiroptical Spectroscopy. J Phys Chem Lett 2023; 14:9304-9309. [PMID: 37816034 DOI: 10.1021/acs.jpclett.3c01954] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Out-of-plane distortions of a cofactor molecule in a protein active site are functionally important, and in photoreceptors, it has been proposed that they are crucial for spectral tuning and energy storage in photocycle intermediates. However, these subtle structural features are often beyond the grasp of structural biology. This issue is strikingly exemplified by photoactive yellow protein: its 14 independently determined crystal structures exhibit considerable differences in the dihedral angles defining the chromophore geometry, even though most of these are at excellent resolution. Here we developed a strategy to verify cofactor distortions in crystal structures by using quantum chemical calculations and chiroptical spectroscopy, particularly Raman optical activity and electronic circular dichroism spectroscopies. Based on this approach, we identify seven crystal structures with the chromophore geometries inconsistent with the experimentally observed data. The strategy implemented here promises to be widely applicable to uncovering cofactor distortions at active sites and to studies of reaction intermediates.
Collapse
Affiliation(s)
- Tomotsumi Fujisawa
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Takahito Shingae
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Jie Ren
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Shojiro Haraguchi
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Takeshi Hanamoto
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Wouter D Hoff
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Masashi Unno
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| |
Collapse
|
2
|
Yu Z, Zhang W, Yang H, Chou SH, Galperin MY, He J. Gas and light: triggers of c-di-GMP-mediated regulation. FEMS Microbiol Rev 2023; 47:fuad034. [PMID: 37339911 PMCID: PMC10505747 DOI: 10.1093/femsre/fuad034] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/01/2023] [Accepted: 06/17/2023] [Indexed: 06/22/2023] Open
Abstract
The widespread bacterial second messenger c-di-GMP is responsible for regulating many important physiological functions such as biofilm formation, motility, cell differentiation, and virulence. The synthesis and degradation of c-di-GMP in bacterial cells depend, respectively, on diguanylate cyclases and c-di-GMP-specific phosphodiesterases. Since c-di-GMP metabolic enzymes (CMEs) are often fused to sensory domains, their activities are likely controlled by environmental signals, thereby altering cellular c-di-GMP levels and regulating bacterial adaptive behaviors. Previous studies on c-di-GMP-mediated regulation mainly focused on downstream signaling pathways, including the identification of CMEs, cellular c-di-GMP receptors, and c-di-GMP-regulated processes. The mechanisms of CME regulation by upstream signaling modules received less attention, resulting in a limited understanding of the c-di-GMP regulatory networks. We review here the diversity of sensory domains related to bacterial CME regulation. We specifically discuss those domains that are capable of sensing gaseous or light signals and the mechanisms they use for regulating cellular c-di-GMP levels. It is hoped that this review would help refine the complete c-di-GMP regulatory networks and improve our understanding of bacterial behaviors in changing environments. In practical terms, this may eventually provide a way to control c-di-GMP-mediated bacterial biofilm formation and pathogenesis in general.
Collapse
Affiliation(s)
- Zhaoqing Yu
- National Key Laboratory of Agricultural Microbiology and Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei 430070, PR China
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, Jiangsu 210014, PR China
| | - Wei Zhang
- National Key Laboratory of Agricultural Microbiology and Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei 430070, PR China
| | - He Yang
- National Key Laboratory of Agricultural Microbiology and Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei 430070, PR China
| | - Shan-Ho Chou
- National Key Laboratory of Agricultural Microbiology and Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei 430070, PR China
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Jin He
- National Key Laboratory of Agricultural Microbiology and Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei 430070, PR China
| |
Collapse
|
3
|
Abstract
Photoactive yellow protein (PYP) is a model photoreceptor. It binds a p-coumaric acid as a chromophore, thus enabling blue light sensing. The first discovered single-domain PYP from Halorhodospira halophila has been studied thoroughly in terms of its structural dynamics and photochemical properties. However, the evolutionary origins and biological role of PYP homologs are not well understood. Here, we show that PYP is an evolutionarily novel domain family of the ubiquitous PAS (Per-Arnt-Sim) superfamily. It likely originated from the phylum Myxococcota and was then horizontally transferred to representatives of a few other bacterial phyla. We show that PYP is associated with signal transduction either by domain fusion or by genome context. Key cellular functions modulated by PYP-initiated signal transduction pathways likely involve gene expression, motility, and biofilm formation. We identified three clades of the PYP family, one of which is poorly understood and potentially has novel functional properties. The Tyr42, Glu46, and Cys69 residues that are involved in p-coumaric acid binding in the model PYP from H. halophila are well conserved in the PYP family. However, we also identified cases where substitutions in these residues might have led to neofunctionalization, such as the proposed transition from light to redox sensing. Overall, this study provides definition, a newly built hidden Markov model, and the current genomic landscape of the PYP family and sets the stage for the future exploration of its signaling mechanisms and functional diversity. IMPORTANCE Photoactive yellow protein is a model bacterial photoreceptor. For many years, it was considered a prototypical model of the ubiquitous PAS domain superfamily. Here, we show that, in fact, the PYP family is evolutionarily novel, restricted to a few bacterial phyla and distinct from other PAS domains. We also reveal the diversity of PYP-containing signal transduction proteins and their potential mechanisms.
Collapse
|
4
|
van Wilderen LJGW, Blankenburg L, Bredenbeck J. Femtosecond-to-millisecond mid-IR spectroscopy of Photoactive Yellow Protein uncovers structural micro-transitions of the chromophore's protonation mechanism. J Chem Phys 2022; 156:205103. [DOI: 10.1063/5.0091918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Protein structural dynamics can span many orders of magnitude in time. Photoactive Yellow Protein's (PYP) reversible photocycle encompasses picosecond isomerization of the light-absorbing chromophore as well as large scale protein backbone motions occurring on a millisecond timescale. Femtosecond-to-millisecond time-resolved mid-Infrared (IR) spectroscopy is employed here to uncover structural details of photocycle intermediates up to chromophore protonation and the first structural changes leading to formation of the partially-unfolded signalling state pB. The data show that a commonly thought stable transient photocycle intermediate is actually formed after a sequence of several smaller structural changes. We provide residue-specific spectroscopic evidence that protonation of the chromophore on a hundreds of microseconds timescale is delayed with respect to deprotonation of the nearby E46 residue. That implies that the direct proton donor is not E46 but most likely a water molecule. Such details may assist ongoing photocycle and protein folding simulation efforts on the complex and wide time-spanning photocycle of the model system PYP.
Collapse
|
5
|
Timsit Y, Grégoire SP. Towards the Idea of Molecular Brains. Int J Mol Sci 2021; 22:ijms222111868. [PMID: 34769300 PMCID: PMC8584932 DOI: 10.3390/ijms222111868] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 02/06/2023] Open
Abstract
How can single cells without nervous systems perform complex behaviours such as habituation, associative learning and decision making, which are considered the hallmark of animals with a brain? Are there molecular systems that underlie cognitive properties equivalent to those of the brain? This review follows the development of the idea of molecular brains from Darwin’s “root brain hypothesis”, through bacterial chemotaxis, to the recent discovery of neuron-like r-protein networks in the ribosome. By combining a structural biology view with a Bayesian brain approach, this review explores the evolutionary labyrinth of information processing systems across scales. Ribosomal protein networks open a window into what were probably the earliest signalling systems to emerge before the radiation of the three kingdoms. While ribosomal networks are characterised by long-lasting interactions between their protein nodes, cell signalling networks are essentially based on transient interactions. As a corollary, while signals propagated in persistent networks may be ephemeral, networks whose interactions are transient constrain signals diffusing into the cytoplasm to be durable in time, such as post-translational modifications of proteins or second messenger synthesis. The duration and nature of the signals, in turn, implies different mechanisms for the integration of multiple signals and decision making. Evolution then reinvented networks with persistent interactions with the development of nervous systems in metazoans. Ribosomal protein networks and simple nervous systems display architectural and functional analogies whose comparison could suggest scale invariance in information processing. At the molecular level, the significant complexification of eukaryotic ribosomal protein networks is associated with a burst in the acquisition of new conserved aromatic amino acids. Knowing that aromatic residues play a critical role in allosteric receptors and channels, this observation suggests a general role of π systems and their interactions with charged amino acids in multiple signal integration and information processing. We think that these findings may provide the molecular basis for designing future computers with organic processors.
Collapse
Affiliation(s)
- Youri Timsit
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM110, 13288 Marseille, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016 Paris, France
- Correspondence:
| | - Sergeant-Perthuis Grégoire
- Institut de Mathématiques de Jussieu—Paris Rive Gauche (IMJ-PRG), UMR 7586, CNRS-Université Paris Diderot, 75013 Paris, France;
| |
Collapse
|
6
|
Bioluminescence and Photoreception in Unicellular Organisms: Light-Signalling in a Bio-Communication Perspective. Int J Mol Sci 2021; 22:ijms222111311. [PMID: 34768741 PMCID: PMC8582858 DOI: 10.3390/ijms222111311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
Bioluminescence, the emission of light catalysed by luciferases, has evolved in many taxa from bacteria to vertebrates and is predominant in the marine environment. It is now well established that in animals possessing a nervous system capable of integrating light stimuli, bioluminescence triggers various behavioural responses and plays a role in intra- or interspecific visual communication. The function of light emission in unicellular organisms is less clear and it is currently thought that it has evolved in an ecological framework, to be perceived by visual animals. For example, while it is thought that bioluminescence allows bacteria to be ingested by zooplankton or fish, providing them with favourable conditions for growth and dispersal, the luminous flashes emitted by dinoflagellates may have evolved as an anti-predation system against copepods. In this short review, we re-examine this paradigm in light of recent findings in microorganism photoreception, signal integration and complex behaviours. Numerous studies show that on the one hand, bacteria and protists, whether autotrophs or heterotrophs, possess a variety of photoreceptors capable of perceiving and integrating light stimuli of different wavelengths. Single-cell light-perception produces responses ranging from phototaxis to more complex behaviours. On the other hand, there is growing evidence that unicellular prokaryotes and eukaryotes can perform complex tasks ranging from habituation and decision-making to associative learning, despite lacking a nervous system. Here, we focus our analysis on two taxa, bacteria and dinoflagellates, whose bioluminescence is well studied. We propose the hypothesis that similar to visual animals, the interplay between light-emission and reception could play multiple roles in intra- and interspecific communication and participate in complex behaviour in the unicellular world.
Collapse
|
7
|
Monteiro DCF, Amoah E, Rogers C, Pearson AR. Using photocaging for fast time-resolved structural biology studies. Acta Crystallogr D Struct Biol 2021; 77:1218-1232. [PMID: 34605426 PMCID: PMC8489231 DOI: 10.1107/s2059798321008809] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/23/2021] [Indexed: 12/02/2022] Open
Abstract
Careful selection of photocaging approaches is critical to achieve fast and well synchronized reaction initiation and perform successful time-resolved structural biology experiments. This review summarizes the best characterized and most relevant photocaging groups previously described in the literature. It also provides a walkthrough of the essential factors to consider in designing a suitable photocaged molecule to address specific biological questions, focusing on photocaging groups with well characterized spectroscopic properties. The relationships between decay rates (k in s-1), quantum yields (ϕ) and molar extinction coefficients (ϵmax in M-1 cm-1) are highlighted for different groups. The effects of the nature of the photocaged group on these properties is also discussed. Four main photocaging scaffolds are presented in detail, o-nitrobenzyls, p-hydroxyphenyls, coumarinyls and nitrodibenzofuranyls, along with three examples of the use of this technology. Furthermore, a subset of specialty photocages are highlighted: photoacids, molecular photoswitches and metal-containing photocages. These extend the range of photocaging approaches by, for example, controlling pH or generating conformationally locked molecules.
Collapse
Affiliation(s)
- Diana C. F. Monteiro
- Hauptman–Woodward Medical Research Institute, 700 Ellicot Street, Buffalo, NY 14203, USA
| | - Emmanuel Amoah
- Hauptman–Woodward Medical Research Institute, 700 Ellicot Street, Buffalo, NY 14203, USA
| | - Cromarte Rogers
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Chemistry, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Arwen R. Pearson
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
8
|
Suzuki T. Spiers Memorial Lecture: Introduction to ultrafast spectroscopy and imaging of photochemical reactions. Faraday Discuss 2021; 228:11-38. [PMID: 33876168 DOI: 10.1039/d1fd00015b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A brief overview is presented on ultrafast spectroscopy and imaging of photochemical reactions by highlighting several experimental studies reported in the last five years. A particular focus is placed on new experiments performed using high-order harmonic generation, X-ray free electron lasers, and relativistic electron beams. Exploration of fundamental chemical reaction dynamics using these advanced experimental methodologies is in an early stage, and exciting new research opportunities await in this rapidly expanding and advancing research field. At the same time, there is no experimental methodology that provides all aspects of the electronic and structural dynamics in a single experiment, and investigations using different methodologies with various perspectives need to be considered in a comprehensive manner.
Collapse
Affiliation(s)
- Toshinori Suzuki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
9
|
Pump-Probe Time-Resolved Serial Femtosecond Crystallography at X-Ray Free Electron Lasers. CRYSTALS 2020. [DOI: 10.3390/cryst10070628] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
With time-resolved crystallography (TRX), it is possible to follow the reaction dynamics in biological macromolecules by investigating the structure of transient states along the reaction coordinate. X-ray free electron lasers (XFELs) have enabled TRX experiments on previously uncharted femtosecond timescales. Here, we review the recent developments, opportunities, and challenges of pump-probe TRX at XFELs.
Collapse
|
10
|
Szarejko D, Kamiński R, Łaski P, Jarzembska KN. Seed-skewness algorithm for X-ray diffraction signal detection in time-resolved synchrotron Laue photocrystallography. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:405-413. [PMID: 32153279 PMCID: PMC7064106 DOI: 10.1107/s1600577520000077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
A one-dimensional seed-skewness algorithm adapted for X-ray diffraction signal detection is presented and discussed. The method, primarily designed for photocrystallographic time-resolved Laue data processing, was shown to work well for the type of data collected at the Advanced Photon Source and European Synchrotron Radiation Facility. Nevertheless, it is also applicable in the case of standard single-crystal X-ray diffraction data. The reported algorithm enables reasonable separation of signal from the background in single one-dimensional data vectors as well as the capability to determine small changes of reflection shapes and intensities resulting from exposure of the sample to laser light. Otherwise, the procedure is objective, and relies only on skewness computation and its subsequent minimization. The new algorithm was proved to yield comparable results to the Kruskal-Wallis test method [Kalinowski, J. A. et al. (2012). J. Synchrotron Rad. 19, 637], while the processing takes a similar amount of time. Importantly, in contrast to the Kruskal-Wallis test, the reported seed-skewness approach does not need redundant input data, which allows for faster data collections and wider applications. Furthermore, as far as the structure refinement is concerned, the reported algorithm leads to the excited-state geometry closest to the one modelled using the quantum-mechanics/molecular-mechanics approach reported previously [Jarzembska, K. N. et al. (2014). Inorg. Chem. 53, 10594], when the t and s algorithm parameters are set to the recommended values of 0.2 and 3.0, respectively.
Collapse
Affiliation(s)
- Dariusz Szarejko
- Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Radosław Kamiński
- Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Piotr Łaski
- Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | | |
Collapse
|
11
|
Fang C, Tang L, Chen C. Unveiling coupled electronic and vibrational motions of chromophores in condensed phases. J Chem Phys 2019; 151:200901. [PMID: 31779327 DOI: 10.1063/1.5128388] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The quest for capturing molecular movies of functional systems has motivated scientists and engineers for decades. A fundamental understanding of electronic and nuclear motions, two principal components of the molecular Schrödinger equation, has the potential to enable the de novo rational design for targeted functionalities of molecular machines. We discuss the development and application of a relatively new structural dynamics technique, femtosecond stimulated Raman spectroscopy with broadly tunable laser pulses from the UV to near-IR region, in tracking the coupled electronic and vibrational motions of organic chromophores in solution and protein environments. Such light-sensitive moieties hold broad interest and significance in gaining fundamental knowledge about the intramolecular and intermolecular Hamiltonian and developing effective strategies to control macroscopic properties. Inspired by recent experimental and theoretical advances, we focus on the in situ characterization and spectroscopy-guided tuning of photoacidity, excited state proton transfer pathways, emission color, and internal conversion via a conical intersection.
Collapse
Affiliation(s)
- Chong Fang
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Longteng Tang
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Cheng Chen
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| |
Collapse
|
12
|
Trachman RJ, Stagno JR, Conrad C, Jones CP, Fischer P, Meents A, Wang YX, Ferré-D’Amaré AR. Co-crystal structure of the iMango-III fluorescent RNA aptamer using an X-ray free-electron laser. Acta Crystallogr F Struct Biol Commun 2019; 75:547-551. [PMID: 31397326 PMCID: PMC6688663 DOI: 10.1107/s2053230x19010136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 07/15/2019] [Indexed: 11/10/2022] Open
Abstract
Turn-on aptamers are in vitro-selected RNAs that bind to conditionally fluorescent small molecules and enhance their fluorescence. Upon binding TO1-biotin, the iMango-III aptamer achieves the largest fluorescence enhancement reported for turn-on aptamers (over 5000-fold). This aptamer was generated by structure-guided engineering and functional reselection of the parental aptamer Mango-III. Structures of both Mango-III and iMango-III have previously been determined by conventional cryocrystallography using synchrotron X-radiation. Using an X-ray free-electron laser (XFEL), the room-temperature iMango-III-TO1-biotin co-crystal structure has now been determined at 3.0 Å resolution. This structural model, which was refined against a data set of ∼1300 diffraction images (each from a single crystal), is largely consistent with the structures determined from single-crystal data sets collected at 100 K. This constitutes a technical benchmark on the way to XFEL pump-probe experiments on fluorescent RNA-small molecule complexes.
Collapse
Affiliation(s)
- Robert J. Trachman
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, Maryland, USA
| | - Jason R. Stagno
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Chelsie Conrad
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Christopher P. Jones
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, Maryland, USA
| | - Pontus Fischer
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
- DESY Photon Science, Notkestrasse 85, 22607 Hamburg, Germany
| | - Alke Meents
- Center for Free Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
- DESY Photon Science, Notkestrasse 85, 22607 Hamburg, Germany
| | - Yun-Xing Wang
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Adrian R. Ferré-D’Amaré
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, Maryland, USA
| |
Collapse
|
13
|
Blankenburg L, Schroeder L, Habenstein F, Błasiak B, Kottke T, Bredenbeck J. Following local light-induced structure changes and dynamics of the photoreceptor PYP with the thiocyanate IR label. Phys Chem Chem Phys 2019; 21:6622-6634. [PMID: 30855039 DOI: 10.1039/c8cp05399e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoactive Yellow Protein (PYP) is a bacterial blue light receptor that enters a photocycle after excitation. The intermediate states are formed on time scales ranging from femtoseconds up to hundreds of milliseconds, after which the signaling state with a lifetime of about 1 s is reached. To investigate structural changes and dynamics, we incorporated the SCN IR label at distinct positions of the photoreceptor via cysteine mutation and cyanylation. FT-IR measurements of the SCN label at different sites of the well-established dark state structure of PYP characterized the spectral response of the label to differences in the environment. Under constant blue light irradiation, we observed the formation of the signaling state with significant changes of wavenumber and lineshape of the SCN bands. Thereby we deduced light-induced structural changes in the local environment of the labels. These results were supported by molecular dynamics simulations on PYP providing the solvent accessible surface area (SASA) at the different positions. To follow protein dynamics via the SCN label during the photocycle, we performed step-scan FT-IR measurements with a time resolution of 10 μs. Global analysis yielded similar time constants of τ1 = 70 μs, τ2 = 640 μs, and τ3 > 20 ms for the wild type and τ1 = 36 μs, τ2 = 530 μs, and τ3 > 20 ms for the SCN-labeled mutant PYP-A44C*, a mutant which provided a sufficiently large SCN difference signal to measure step-scan FT-IR spectra. In comparison to the protein (amide, E46) and chromophore bands the dynamics of the SCN label show a different behavior. This result indicates that the local kinetics sensed by the label are different from the global protein kinetics.
Collapse
Affiliation(s)
- Larissa Blankenburg
- Johann Wolfgang Goethe-University, Institute of Biophysics, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany.
| | | | | | | | | | | |
Collapse
|
14
|
Schmidt M. Time-Resolved Macromolecular Crystallography at Pulsed X-ray Sources. Int J Mol Sci 2019; 20:ijms20061401. [PMID: 30897736 PMCID: PMC6470897 DOI: 10.3390/ijms20061401] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 11/30/2022] Open
Abstract
The focus of structural biology is shifting from the determination of static structures to the investigation of dynamical aspects of macromolecular function. With time-resolved macromolecular crystallography (TRX), intermediates that form and decay during the macromolecular reaction can be investigated, as well as their reaction dynamics. Time-resolved crystallographic methods were initially developed at synchrotrons. However, about a decade ago, extremely brilliant, femtosecond-pulsed X-ray sources, the free electron lasers for hard X-rays, became available to a wider community. TRX is now possible with femtosecond temporal resolution. This review provides an overview of methodological aspects of TRX, and at the same time, aims to outline the frontiers of this method at modern pulsed X-ray sources.
Collapse
Affiliation(s)
- Marius Schmidt
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| |
Collapse
|
15
|
Opara NL, Mohacsi I, Makita M, Castano-Diez D, Diaz A, Juranić P, Marsh M, Meents A, Milne CJ, Mozzanica A, Padeste C, Panneels V, Sikorski M, Song S, Stahlberg H, Vartiainen I, Vera L, Wang M, Willmott PR, David C. Demonstration of femtosecond X-ray pump X-ray probe diffraction on protein crystals. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2018; 5:054303. [PMID: 30364211 PMCID: PMC6192410 DOI: 10.1063/1.5050618] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/12/2018] [Indexed: 05/24/2023]
Abstract
The development of X-ray free-electron lasers (XFELs) has opened the possibility to investigate the ultrafast dynamics of biomacromolecules using X-ray diffraction. Whereas an increasing number of structures solved by means of serial femtosecond crystallography at XFELs is available, the effect of radiation damage on protein crystals during ultrafast exposures has remained an open question. We used a split-and-delay line based on diffractive X-ray optics at the Linac Coherent Light Source XFEL to investigate the time dependence of X-ray radiation damage to lysozyme crystals. For these tests, crystals were delivered to the X-ray beam using a fixed-target approach. The presented experiments provide probe signals at eight different delay times between 19 and 213 femtoseconds after a single pump event, thereby covering the time-scales relevant for femtosecond serial crystallography. Even though significant impact on the crystals was observed at long time scales after exposure with a single X-ray pulse, the collected diffraction data did not show significant signal reduction that could be assigned to beam damage on the crystals in the sampled time window and resolution range. This observation is in agreement with estimations of the applied radiation dose, which in our experiment was clearly below the values expected to cause damage on the femtosecond time scale. The experiments presented here demonstrate the feasibility of time-resolved pump-multiprobe X-ray diffraction experiments on protein crystals.
Collapse
Affiliation(s)
| | | | | | | | - Ana Diaz
- Paul Scherrer Institut, CH-5232 Villigen-PSI, Switzerland
| | - Pavle Juranić
- Paul Scherrer Institut, CH-5232 Villigen-PSI, Switzerland
| | - May Marsh
- Paul Scherrer Institut, CH-5232 Villigen-PSI, Switzerland
| | - Alke Meents
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany
| | | | - Aldo Mozzanica
- Paul Scherrer Institut, CH-5232 Villigen-PSI, Switzerland
| | | | | | - Marcin Sikorski
- LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Sanghoon Song
- LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | | | | | - Laura Vera
- Paul Scherrer Institut, CH-5232 Villigen-PSI, Switzerland
| | - Meitian Wang
- Paul Scherrer Institut, CH-5232 Villigen-PSI, Switzerland
| | | | | |
Collapse
|
16
|
Iwata K, Terazima M, Masuhara H. Novel physical chemistry approaches in biophysical researches with advanced application of lasers: Detection and manipulation. Biochim Biophys Acta Gen Subj 2017; 1862:335-357. [PMID: 29108958 DOI: 10.1016/j.bbagen.2017.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 10/18/2022]
Abstract
Novel methodologies utilizing pulsed or intense CW irradiation obtained from lasers have a major impact on biological sciences. In this article, recent development in biophysical researches fully utilizing the laser irradiation is described for three topics, time-resolved fluorescence spectroscopy, time-resolved thermodynamics, and manipulation of the biological assemblies by intense laser irradiation. First, experimental techniques for time-resolved fluorescence spectroscopy are concisely explained in Section 2. As an example of the recent application of time-resolved fluorescence spectroscopy to biological systems, evaluation of the viscosity of lipid bilayer membranes is described. The results of the spectroscopic experiments strongly suggest the presence of heterogeneous membrane structure with two different viscosity values in liposomes formed by a single phospholipid. Section 3 covers the time-resolved thermodynamics. Thermodynamical properties are important to characterize biomolecules. However, measurement of these quantities for short-lived intermediate species has been impossible by traditional thermodynamical techniques. Recently, development of a spectroscopic method based on the transient grating method enables us to measure these quantities and also to elucidate reaction kinetics which cannot be detected by other spectroscopic methods. The principle of the measurements and applications to some protein reactions are reviewed. Manipulation and fabrication of supramolecues, amino acids, proteins, and living cells by intense laser irradiation are described in Section 4. Unconventional assembly, crystallization and growth, amyloid fibril formation, and living cell manipulation are achieved by CW laser trapping and femtosecond laser-induced cavitation bubbling. Their spatio-temporal controllability is opening a new avenue in the relevant molecular and bioscience research fields. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato.
Collapse
Affiliation(s)
- Koichi Iwata
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan.
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Hiroshi Masuhara
- Department of Applied Chemistry, National Chiao Tung University, 1001 Ta Hsueh Rd., Hsinchu 30010, Taiwan.
| |
Collapse
|
17
|
Abela R, Beaud P, van Bokhoven JA, Chergui M, Feurer T, Haase J, Ingold G, Johnson SL, Knopp G, Lemke H, Milne CJ, Pedrini B, Radi P, Schertler G, Standfuss J, Staub U, Patthey L. Perspective: Opportunities for ultrafast science at SwissFEL. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:061602. [PMID: 29376109 PMCID: PMC5758366 DOI: 10.1063/1.4997222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 10/17/2017] [Indexed: 05/03/2023]
Abstract
We present the main specifications of the newly constructed Swiss Free Electron Laser, SwissFEL, and explore its potential impact on ultrafast science. In light of recent achievements at current X-ray free electron lasers, we discuss the potential territory for new scientific breakthroughs offered by SwissFEL in Chemistry, Biology, and Materials Science, as well as nonlinear X-ray science.
Collapse
Affiliation(s)
- Rafael Abela
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Paul Beaud
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Jeroen A van Bokhoven
- Laboratory for Catalysis and Sustainable Chemistry, Paul-Scherrer Institute, 5232 Villigen PSI, and Department of Chemistry, ETH-Zürich, 8093 Zürich, Switzerland
| | - Majed Chergui
- Laboratoire de Spectroscopie Ultrarapide (LSU) and Lausanne Centre for Ultrafast Science (LACUS), Ecole Polytechnique Fédérale de Lausanne (EPFL), ISIC-FSB, Station 6, 1015 Lausanne, Switzerland
| | - Thomas Feurer
- Institute of Applied Physics, University of Bern, Bern, Switzerland
| | - Johannes Haase
- Laboratory for Catalysis and Sustainable Chemistry, Paul-Scherrer Institute, 5232 Villigen PSI, and Department of Chemistry, ETH-Zürich, 8093 Zürich, Switzerland
| | - Gerhard Ingold
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Steven L Johnson
- Institute for Quantum Electronics, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zurich, Switzerland
| | - Gregor Knopp
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Henrik Lemke
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Chris J Milne
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Bill Pedrini
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Peter Radi
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| | | | - Jörg Standfuss
- Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Urs Staub
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Luc Patthey
- SwissFEL, Paul-Scherrer Institute, 5232 Villigen PSI, Switzerland
| |
Collapse
|
18
|
Chergui M, Collet E. Photoinduced Structural Dynamics of Molecular Systems Mapped by Time-Resolved X-ray Methods. Chem Rev 2017; 117:11025-11065. [DOI: 10.1021/acs.chemrev.6b00831] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Majed Chergui
- Laboratoire
de Spectroscopie Ultrarapide (LSU), ISIC, and Lausanne Centre for
Ultrafast Science (LACUS), Faculté des Sciences de Base, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Eric Collet
- Univ Rennes 1, CNRS, Institut de Physique de Rennes, UMR 6251, UBL, Rennes F-35042, France
| |
Collapse
|