1
|
Deng G, Reimann M, Meyer D, Xia X, Kaupp M, Riedel S. Oxygen Atom Stabilization by a Main-Group Lewis Acid: Observation and Characterization of an OBeF 2 Complex with a Triplet Ground State. J Am Chem Soc 2024; 146:23972-23977. [PMID: 39147578 PMCID: PMC11363016 DOI: 10.1021/jacs.4c07079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/06/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
Terminal oxygen radicals involving p- and d-block atoms are quite common, but s-block compounds with an oxygen radical character remain rare. Here, we report that alkaline-earth metal beryllium atoms react with OF2 to form the oxygen beryllium fluorides OBeF and OBeF2. These species are characterized by matrix-isolation infrared spectroscopy with isotopic substitution and quantum-chemical calculations. The linear molecule OBeF has a 2Π ground state with an oxyl radical character. The 3A2 (C2v) ground state of OBeF2 represents the unusual case of a triplet oxygen atom stabilized by a relatively weak interaction by the Lewis acidic BeF2. The interaction involves both a donor component from oxygen to empty Be orbitals and a back-bonding contribution from fluorine substituents toward oxygen.
Collapse
Affiliation(s)
- Guohai Deng
- Institut
für Chemie und Biochemie−Anorganische Chemie, Freie Universität Berlin, Fabeckstrasse 34/36, Berlin 14195, Germany
| | - Marc Reimann
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Strasse des 17. Juni 135, Berlin 10623, Germany
| | - Deniz Meyer
- Institut
für Chemie und Biochemie−Anorganische Chemie, Freie Universität Berlin, Fabeckstrasse 34/36, Berlin 14195, Germany
| | - Xiya Xia
- Institut
für Chemie und Biochemie−Anorganische Chemie, Freie Universität Berlin, Fabeckstrasse 34/36, Berlin 14195, Germany
| | - Martin Kaupp
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Strasse des 17. Juni 135, Berlin 10623, Germany
| | - Sebastian Riedel
- Institut
für Chemie und Biochemie−Anorganische Chemie, Freie Universität Berlin, Fabeckstrasse 34/36, Berlin 14195, Germany
| |
Collapse
|
2
|
Borocci S, Cecchi P, Grandinetti F, Sanna N, Zazza C. Noble gas hydrides: theoretical prediction of the first group of anionic species. Phys Chem Chem Phys 2024; 26:7377-7387. [PMID: 38376451 DOI: 10.1039/d3cp05623f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The first group of anionic noble-gas hydrides with the general formula HNgBeO- (Ng = Ar, Kr, Xe, Rn) is predicted through MP2, Coupled-Cluster, and Density Functional Theory computations employing correlation-consistent atomic basis sets. We derive that these species are stable with respect to the loss of H, H-, BeO, and BeO-, but unstable with respect to Ng + HBeO-. The energy barriers of the latter process are, however, high enough to suggest the conceivable existence of the heaviest HNgBeO- species as metastable in nature. Their stability arises from the interaction of the H- moiety with the positively-charged Ng atoms, particularly with the σ-hole ensuing from their ligation to BeO. This actually promotes relatively tight Ng-H bonds featuring a partially-covalent character, whose degree progressively increases when going from HArBeO- to HRnBeO-. The HNgBeO- compounds are also briefly compared with other noble-gas anions observed in the gas phase or isolated in crystal lattices.
Collapse
Affiliation(s)
- Stefano Borocci
- Dipartimento per la Innovazione nei sistemi Biologici, Agroalimentari e Forestali (DIBAF), Università della Tuscia, L.go dell'Università, s.n.c., 01100 Viterbo, Italy.
- Istituto per i Sistemi Biologici del CNR (ISB), Sede di Roma - Meccanismi di Reazione c/o Dipartimento di Chimica, Sapienza Università di Roma, P.le A. Moro 5, Rome, Italy
| | - Patrizio Cecchi
- Dipartimento per la Innovazione nei sistemi Biologici, Agroalimentari e Forestali (DIBAF), Università della Tuscia, L.go dell'Università, s.n.c., 01100 Viterbo, Italy.
| | - Felice Grandinetti
- Dipartimento per la Innovazione nei sistemi Biologici, Agroalimentari e Forestali (DIBAF), Università della Tuscia, L.go dell'Università, s.n.c., 01100 Viterbo, Italy.
- Istituto per i Sistemi Biologici del CNR (ISB), Sede di Roma - Meccanismi di Reazione c/o Dipartimento di Chimica, Sapienza Università di Roma, P.le A. Moro 5, Rome, Italy
| | - Nico Sanna
- Dipartimento per la Innovazione nei sistemi Biologici, Agroalimentari e Forestali (DIBAF), Università della Tuscia, L.go dell'Università, s.n.c., 01100 Viterbo, Italy.
- Istituto per la Scienza e Tecnologia dei Plasmi del CNR (ISTP), Via Amendola 122/D, 70126 Bari, Italy
| | - Costantino Zazza
- Dipartimento per la Innovazione nei sistemi Biologici, Agroalimentari e Forestali (DIBAF), Università della Tuscia, L.go dell'Università, s.n.c., 01100 Viterbo, Italy.
| |
Collapse
|
3
|
Jaffe NB, Stanton JF, Heaven MC. Photoelectron Velocity Map Imaging Spectroscopy of the Beryllium Trimer and Tetramer. J Phys Chem Lett 2023; 14:8339-8344. [PMID: 37699253 PMCID: PMC10518861 DOI: 10.1021/acs.jpclett.3c02169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/08/2023] [Indexed: 09/14/2023]
Abstract
Computational studies of small beryllium clusters (BeN) predict dramatic, nonmonotonic changes in the bonding mechanisms and per-atom cohesion energies with increasing N. To date, experimental tests of these quantum chemistry models are lacking for all but the Be2 molecule. In the present study, we report spectroscopic data for Be3 and Be4 obtained via anion photodetachment spectroscopy. The trimer is predicted to have D3h symmetric equilibrium structures for both the neutral molecule and the anion. Photodetachment spectra reveal transitions that originate from the X2A2″ ground state and the 12A1' electronically excited state. The state symmetries were assigned on the basis of anisotropic photoelectron angular distributions. The neutral and anionic forms of Be4 are predicted to be tetrahedral. Franck-Condon diagonal photodetachment was observed with a photoelectron angular distribution consistent with the expected Be4-X2A1 → Be4X1A1 transition. The electron affinities of Be3 and Be4 were determined to be 11363 ± 60 and 13052 ± 50 cm-1, respectively.
Collapse
Affiliation(s)
- Noah B. Jaffe
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - John F. Stanton
- Department
of Chemistry - Quantum Theory Project, University
of Florida, Gainesville, Florida 32611, United States
| | - Michael C. Heaven
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
4
|
Neumark DM. Spectroscopy of Radicals, Clusters, and Transition States Using Slow Electron Velocity-Map Imaging of Cryogenically Cooled Anions. J Phys Chem A 2023; 127:4207-4223. [PMID: 37094039 DOI: 10.1021/acs.jpca.3c01537] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Slow electron velocity-map imaging of cryogenically cooled anions (cryo-SEVI) is a high-resolution variant of anion photoelectron spectroscopy that has been applied with considerable success over the years to the study of radicals, size-selected clusters, and transition states for unimolecular and bimolecular reactions. Cryo-SEVI retains the versatility of conventional anion photoelectron spectroscopy while offering sub-meV resolution, thereby enabling the resolution of vibrational structure in the photoelectron spectra of complex anions. This Feature Article describes recent experiments in our laboratory using cryo-SEVI, including a new research direction in which anions are vibrationally pre-excited with an infrared laser pulse prior to photodetachment.
Collapse
Affiliation(s)
- Daniel M Neumark
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
5
|
Liu Y, Zhu GZ, Yuan DF, Qian CH, Zhang YR, Rubenstein BM, Wang LS. Observation of a Symmetry-Forbidden Excited Quadrupole-Bound State. J Am Chem Soc 2020; 142:20240-20246. [PMID: 33185446 DOI: 10.1021/jacs.0c10552] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We report the observation of a symmetry-forbidden excited quadrupole-bound state (QBS) in the tetracyanobenzene anion (TCNB-) using both photoelectron and photodetachment spectroscopies of cryogenically-cooled anions. The electron affinity of TCNB is accurately measured as 2.4695 eV. Photodetachment spectroscopy of TCNB- reveals selected symmetry-allowed vibronic transitions to the QBS, but the ground vibrational state was not observed because the transition from the ground state of TCNB- (Au symmetry) to the QBS (Ag symmetry) is triply forbidden by the electric and magnetic dipoles and the electric quadrupole. The binding energy of the QBS is found to be 0.2206 eV, which is unusually large due to strong correlation and polarization effects. A centrifugal barrier is observed for near-threshold autodetachment, as well as relaxations from the QBS vibronic levels to the ground and a valence excited state of TCNB-. The current study shows a rare example where symmetry selection rules, rather than the Franck-Condon principle, govern vibronic transitions to a nonvalence state in an anion.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Guo-Zhu Zhu
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Dao-Fu Yuan
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Chen-Hui Qian
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Yue-Rou Zhang
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Brenda M Rubenstein
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Lai-Sheng Wang
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
6
|
Wang Y, Han C, Fei Z, Dong C, Liu H. Probing the Hydrogen Bonding in Microsolvated Clusters of Au 1,2-(Solv) n (Solv = C 2H 5OH, n-C 3H 7OH; n = 1-3 for Au -; n =1 for Au 2-). J Phys Chem A 2020; 124:5590-5598. [PMID: 32551619 DOI: 10.1021/acs.jpca.0c03746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The microsolvation of gold anions in different alcohol solvents is demonstrated by the combination of anion photoelectron spectroscopy and quantum chemical calculations on the Au1,2-(Solv)n (Solv = C2H5OH, n-C3H7OH; n = 1-3 for Au-; n = 1 for Au2-). The microsolvation structures of these clusters and their corresponding neutrals are assigned by comparing calculations with experiments. In terms of overall regularity, the increasing solvation number (n) and carbon chain extension both can increase the stability of the anion. When n ≥ 2, these clusters have low-energy isomers, where conventional hydrogen bonds (HBs) compete with nonconventional HBs (NHBs). NHBs are dominant when n ≤ 2 and when n is increased, vice versa. Interestingly, a variety of theoretical calculations show that after the hydroxy H atom of the ethanol molecule forms a weak ionic HB with Au-, there are two lowest conformations of ethanol, trans and gauche, which could be coexisting in the molecular beams. Some theoretical methods also suggest that the gauche isomer is more stable than the trans one, which indicates that Au- may exist as a gold gauche effect similar to fluorine.
Collapse
Affiliation(s)
- Yongtian Wang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Changcai Han
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zejie Fei
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
| | - Changwu Dong
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
| | - Hongtao Liu
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
| |
Collapse
|
7
|
Green ML, Jaffe NB, Heaven MC. Characterization of the Ground States of BeC 2 and BeC 2- via Photoelectron Velocity Map Imaging Spectroscopy. J Phys Chem Lett 2020; 11:88-92. [PMID: 31821759 DOI: 10.1021/acs.jpclett.9b03297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Due to their potentially unique properties, beryllium carbide materials have been the subject of many theoretical studies. However, experimental validation has been lacking due to the difficulties of working with Be. Neutral beryllium dicarbide has been predicted to have a T-shaped equilibrium structure (C2v), while previous quantum chemistry calculations for the structure of the anion had not yielded consistent results. In this study, we report photoelectron velocity map imaging spectra for the BeC2- X 2A1 → BeC2 X 1A1 transition. These data provide vibrational frequencies and the electron affinity of BeC2. Ab initio electronic structure calculations, validated against the experimental data, show that both the anion and the neutral form have C2v equilibrium geometries with polar covalent bonding between Be and the C2 subunit. Computed vibrational frequencies and the electron affinity, obtained at the CCSD(T) level of theory, were found to be in good agreement with the measurements.
Collapse
Affiliation(s)
- Mallory L Green
- Department of Chemistry , Emory University , Atlanta , Georgia 30322 , United States
| | - Noah B Jaffe
- Department of Chemistry , Emory University , Atlanta , Georgia 30322 , United States
| | - Michael C Heaven
- Department of Chemistry , Emory University , Atlanta , Georgia 30322 , United States
| |
Collapse
|
8
|
Green ML, Jean P, Heaven MC. Dative Bonding between Closed-Shell Atoms: The BeF - Anion. J Phys Chem Lett 2018; 9:1999-2002. [PMID: 29613801 DOI: 10.1021/acs.jpclett.8b00784] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Beryllium can exhibit unusually strong attractive interactions under conditions where it is nominally a closed-shell atom. Two prominent examples are the Be2 dimer and the He-BeO complex. In the present study, we examine the bonding of the closed-shell Be-F- anion. This molecule preserves the closed-shell character of the individual atoms as the electron affinity of F is high (328.16 kJ mol-1) while that of Be is negative. Photodetachment spectroscopy was used to determine the vibrational frequency for BeF- and the electron affinity of BeF (104.2 kJ mol-1). The latter has been used to determine a lower bound of 343 kJ mol-1 for the bond energy of BeF-. Electronic structure calculations yielded predictions that were in good agreement with the observed data. A natural bond orbital analysis shows that BeF- is primarily bound by a dative interaction.
Collapse
Affiliation(s)
- Mallory L Green
- Department of Chemistry , Emory University , Atlanta , Georgia 30322 , United States
| | - Pearl Jean
- Department of Chemistry , Emory University , Atlanta , Georgia 30322 , United States
| | - Michael C Heaven
- Department of Chemistry , Emory University , Atlanta , Georgia 30322 , United States
| |
Collapse
|
9
|
Abstract
Slow photoelectron velocity-map imaging spectroscopy of cryogenically cooled anions (cryo-SEVI) is a powerful technique for elucidating the vibrational and electronic structure of neutral radicals, clusters, and reaction transition states. SEVI is a high-resolution variant of anion photoelectron spectroscopy based on photoelectron imaging that yields spectra with energy resolution as high as 1-2 cm-1. The preparation of cryogenically cold anions largely eliminates hot bands and dramatically narrows the rotational envelopes of spectral features, enabling the acquisition of well-resolved photoelectron spectra for complex and spectroscopically challenging species. We review the basis and history of the SEVI method, including recent experimental developments that have improved its resolution and versatility. We then survey recent SEVI studies to demonstrate the utility of this technique in the spectroscopy of aromatic radicals, metal and metal oxide clusters, nonadiabatic interactions between excited states of small molecules, and transition states of benchmark bimolecular reactions.
Collapse
Affiliation(s)
- Marissa L Weichman
- Department of Chemistry, University of California, Berkeley, California 94720, USA; , .,Current affiliation: JILA, National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | - Daniel M Neumark
- Department of Chemistry, University of California, Berkeley, California 94720, USA; , .,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
10
|
Dermer AR, Green ML, Mascaritolo KJ, Heaven MC. Photoelectron Velocity Map Imaging Spectroscopy of the Beryllium Sulfide Anion, BeS . J Phys Chem A 2017; 121:5645-5650. [PMID: 28691819 DOI: 10.1021/acs.jpca.7b04894] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Slow electron velocity map imaging (SEVI) spectroscopy was used to examine the BeS- anion to neutral ground-state transition, X 2Σ+ → X 1Σ+. Rotational constants, vibrational intervals, and the electron binding energy of BeS- were determined. Partially resolved rotational contours were seen due to the relatively small moment of inertia of beryllium sulfide. Upon analysis of the rotational contours, it was found that changes in the molecular rotational angular momentum, ΔN = -1, -2, -3, and -4, facilitated photodetachment at near-threshold photon energies. The electron affinity of BeS was found to be 2.3346(2) eV. SEVI spectra recorded using photon energies near the threshold for Δv = -1 processes exhibited features that were associated with a dipole-bound state (DBS) of BeS-. Autodetachment spectroscopy was used to probe this state, and rotationally resolved data were obtained for the DBS 2Σ+, v' = 0 - X 2Σ+, v″ = 0 transition. Analysis of this structure provided the rotational constants for BeS- X, v″ = 0, and the electron binding energy of the DBS. Electronic structure calculations, performed at the RCCSD(T) and MRCI levels of theory, gave predictions that were in good agreement with the experimental observations.
Collapse
Affiliation(s)
- Amanda R Dermer
- Department of Chemistry, Emory University , Atlanta, Georgia 30322, United States
| | - Mallory L Green
- Department of Chemistry, Emory University , Atlanta, Georgia 30322, United States
| | - Kyle J Mascaritolo
- Department of Chemistry, Emory University , Atlanta, Georgia 30322, United States
| | - Michael C Heaven
- Department of Chemistry, Emory University , Atlanta, Georgia 30322, United States
| |
Collapse
|
11
|
Kalemos A. The nature of the chemical bond in BeO 0,-, BeOBe +,0,-, and in their hydrogenated products HBeO 0,-, BeOH, HBeOH, BeOBeH +,0,-, and HBeOBeH. J Chem Phys 2017; 146:104307. [PMID: 28298112 DOI: 10.1063/1.4977930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The nature of the chemical bond in BeO0,-, BeOBe+,0,-, and in their hydrogenated products HBeO0,-, BeOH, HBeOH, BeOBeH+,0,-, and HBeOBeH has been studied through single and multi reference correlation methods. In all these species, excited and ionized atomic states participate in a resonant way making chemically possible molecules that have been termed hypervalent and explain also the "incompatible" geometrical structure of some species.
Collapse
Affiliation(s)
- Apostolos Kalemos
- Department of Chemistry, Laboratory of Physical Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 157 71, Greece
| |
Collapse
|