1
|
Hoffmann L, Toulson BW, Yang J, Saladrigas CA, Zong A, Muvva SB, Figueira Nunes JP, Reid AH, Attar AR, Luo D, Ji F, Lin MF, Fan Q, Weathersby SP, Shen X, Wang X, Wolf TJA, Neumark DM, Leone SR, Zuerch MW, Centurion M, Gessner O. UV-Induced Reaction Pathways in Bromoform Probed with Ultrafast Electron Diffraction. J Am Chem Soc 2024. [PMID: 39374484 DOI: 10.1021/jacs.4c07165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
For many chemical reactions, it remains notoriously difficult to predict and experimentally determine the rates and branching ratios between different reaction channels. This is particularly the case for reactions involving short-lived intermediates, whose observation requires ultrafast methods. The UV photochemistry of bromoform (CHBr3) is among the most intensely studied photoreactions. Yet, a detailed understanding of the chemical pathways leading to the production of atomic Br and molecular Br2 fragments has proven challenging. In particular, the role of isomerization and/or roaming and their competition with direct C-Br bond scission has been a matter of continued debate. Here, gas-phase ultrafast megaelectronvolt electron diffraction (MeV-UED) is used to directly study structural dynamics in bromoform after single 267 nm photon excitation with femtosecond temporal resolution. The results show unambiguously that isomerization contributes significantly to the early stages of the UV photochemistry of bromoform. In addition to direct C-Br bond breaking within <200 fs, formation of iso-CHBr3 (Br-CH-Br-Br) is observed on the same time scale and with an isomer lifetime of >1.1 ps. The branching ratio between direct dissociation and isomerization is determined to be 0.4 ± 0.2:0.6 ± 0.2, i.e., approximately 60% of molecules undergo isomerization within the first few hundred femtoseconds after UV excitation. The structure and time of formation of iso-CHBr3 compare favorably with the results of an ab initio molecular dynamics simulation. The lifetime and interatomic distances of the isomer are consistent with the involvement of a roaming reaction mechanism.
Collapse
Affiliation(s)
- Lars Hoffmann
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Benjamin W Toulson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jie Yang
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Catherine A Saladrigas
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Alfred Zong
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Sri Bhavya Muvva
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Joao Pedro Figueira Nunes
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Alexander H Reid
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Andrew R Attar
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Duan Luo
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Fuhao Ji
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Ming-Fu Lin
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Qingyuan Fan
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Stephen P Weathersby
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Xiaozhe Shen
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Xijie Wang
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Thomas J A Wolf
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Daniel M Neumark
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Stephen R Leone
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Physics, University of California, Berkeley, California 94720, United States
| | - Michael W Zuerch
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Martin Centurion
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Oliver Gessner
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Shu Y, Akher FB, Guo H, Truhlar DG. Parametrically Managed Activation Functions for Improved Global Potential Energy Surfaces for Six Coupled 5A' States and Fourteen Coupled 3A' States of O + O 2. J Phys Chem A 2024; 128:1207-1217. [PMID: 38349764 DOI: 10.1021/acs.jpca.3c06823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
We report new potential energy surfaces for six coupled 5A' states and 14 coupled 3A' states of O3. The new surfaces are created by parametrically managed diabatization by deep neural network (PM-DDNN). The PM-DDNN method uses calculated adiabatic potential energy surfaces to discover and fit an underlying adiabatic-equivalent set of diabatic surfaces and their couplings and obtains the fit to the adiabatic surfaces by diagonalization of the diabatic potential energy matrix (DPEM). The procedure yields the adiabatic surfaces and their gradients, as well as the DPEM and its gradient. If desired one can also compute the nonadiabatic coupling due to the transformation. The present work improves on previous work by using a new coordinate to guide the decay of the neural network contribution to the many-body fit to the whole DPEM. The main objective was to obtain smoother potentials than the previous ones with better suitability for dynamics calculations, and this was achieved. Furthermore, we obtained suitably small deviations from the input reference data. For the six coupled 5A' surfaces, the 60,366 data below 10 eV are fit with a mean unsigned error (MUE) of 49 meV, and for the 14 coupled 3A' surfaces, the 76,733 data below 10 eV are fit with an MUE of 28 meV. The data below 5 eV fit even more accurately with MUEs of 37 meV (5A') and 20 meV (3A').
Collapse
Affiliation(s)
- Yinan Shu
- Department of Chemistry, Chemical Theory Center and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Farideh Badichi Akher
- Department of Chemistry, Chemical Theory Center and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
3
|
Akher FB, Shu Y, Varga Z, Truhlar DG. Semiclassical Multistate Dynamics for Six Coupled 5A' States of O + O 2. J Chem Theory Comput 2023. [PMID: 37441750 DOI: 10.1021/acs.jctc.3c00517] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Dynamics simulations of high-energy O2-O collisions play an important role in simulating thermal energy content and heat flux in flows around hypersonic vehicles. To carry out such dynamics simulations efficiently requires accurate global potential energy surfaces and (in most algorithms) state couplings for many energetically accessible electronic states. The ability to treat collisions involving many coupled electronic states has been a challenge for decades. Very recently, a new diabatization method, the parametrically managed diabatization by deep neural network (PM-DDNN), has been developed. The PM-DDNN method uses a deep neural network architecture with an activation function parametrically dependent on input data to discover and fit the diabatic potential energy matrix (DPEM) as a function of geometry, and the adiabatic potential energy surfaces are obtained by diagonalization of a small matrix with analytic matrix elements. Here, we applied the PM-DDNN method to the six lowest-energy potential energy surfaces in the 5A' manifold of O3 to perform simultaneous diabatization and fitting; the data are obtained by extended multistate complete-active-space second-order perturbation theory. We then used the adiabatic surfaces for dynamics calculations with three methods: coherent switching with decay of mixing (CSDM), curvature-driven CSDM (κCSDM), and electronically curvature-driven CSDM (eκCSDM). The κCSDM calculations require only adiabatic potential energies and gradients. The three dynamical methods are in good agreement. We then calculated electronically nonadiabatic, electronically inelastic, and dissociative cross sections for seven initial collision energies, five initial vibrational levels, and four initial rotational levels. Trends in the electronically inelastic cross sections as functions of the initial collision energy and vibrational level were rationalized in terms of the coordinate ranges where the gaps between the second and third potential energy surfaces are small.
Collapse
Affiliation(s)
- Farideh Badichi Akher
- Department of Chemistry, Chemical Theory Center and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Yinan Shu
- Department of Chemistry, Chemical Theory Center and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Zoltan Varga
- Department of Chemistry, Chemical Theory Center and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
4
|
Zhao X, Shu Y, Zhang L, Xu X, Truhlar DG. Direct Nonadiabatic Dynamics of Ammonia with Curvature-Driven Coherent Switching with Decay of Mixing and with Fewest Switches with Time Uncertainty: An Illustration of Population Leaking in Trajectory Surface Hopping Due to Frustrated Hops. J Chem Theory Comput 2023; 19:1672-1685. [PMID: 36877830 DOI: 10.1021/acs.jctc.2c01260] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Mixed quantum-classical nonadiabatic dynamics is a widely used approach to simulate molecular dynamics involving multiple electronic states. There are two main categories of mixed quantum-classical nonadiabatic dynamics algorithms, namely, trajectory surface hopping (TSH) in which the trajectory propagates on a single potential energy surface, interrupted by hops, and self-consistent-potential (SCP) methods, such as semiclassical Ehrenfest, in which propagation occurs on a mean-field surface without hops. In this work, we will illustrate an example of severe population leaking in TSH. We emphasize that such leaking is a combined effect of frustrated hops and long-time simulations that drive the final excited-state population toward zero as a function of time. We further show that such leaking can be alleviated-but not eliminated-by the fewest switches with time uncertainty TSH algorithm (here implemented in the SHARC program); the time uncertainty algorithm slows down the leaking process by a factor of 4.1. The population leaking is not present in coherent switching with decay of mixing (CSDM), which is an SCP method with non-Markovian decoherence included. Another result in this paper is that we find very similar results with the original CSDM algorithm, with time-derivative CSDM (tCSDM), and with curvature-driven CSDM (κCSDM). Not only do we find good agreement for electronically nonadiabatic transition probabilities but also we find good agreement of the norms of the effective nonadiabatic couplings (NACs) that are derived from the curvature-driven time-derivative couplings as implemented in κCSDM with the time-dependent norms of the nonadiabatic coupling vectors computed by state-averaged complete-active-space self-consistent field theory.
Collapse
Affiliation(s)
- Xiaorui Zhao
- Center for Combustion Energy, Tsinghua University, Beijing 100084, P. R. China.,School of Aerospace Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Yinan Shu
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Linyao Zhang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Xuefei Xu
- Center for Combustion Energy, Tsinghua University, Beijing 100084, P. R. China
| | - Donald G Truhlar
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
5
|
Zhang Z, Du Y, Hou GL, Gao H. Photoionization Spectroscopic and Theoretical Study on the Molecular Structures of cis- and trans-3-Chlorothioanisole. ACS OMEGA 2022; 7:8456-8465. [PMID: 35309466 PMCID: PMC8928339 DOI: 10.1021/acsomega.1c06003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Resonance-enhanced two-photon ionization (R2PI) and mass-analyzed threshold ionization (MATI) spectra are measured for the cis- and trans-3-chlorothioanisole (3ClTA). The first electronic excitation energy (E 1) and the adiabatic ionization energy (IE) of the cis-rotamer are determined to be 33 959±3 and 65 326±5 cm-1, respectively, and those of the trans-rotamer are determined to be 34102±3 and 65 471±5 cm-1, respectively. Density functional theory (DFT) calculations confirm that both the cis- and trans-rotamers of 3ClTA are stable and coexist in their respective S0, S1, and D0 states. Both rotamers adopt planar structures with cis- being slightly more stable than trans- in the respective S0, S1, and D0 states. The conformation, substitution, and isotope effects on the molecular structure, active vibrations, and electronic transition and ionization energies of 3ClTA are analyzed.
Collapse
Affiliation(s)
- Zhe Zhang
- Beijing
National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Yikui Du
- Beijing
National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Gao-Lei Hou
- MOE
Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed
Matter, School of Physics, Xi’an
Jiaotong University, Xi’an 710049, Shaanxi, China
| | - Hong Gao
- Beijing
National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Shu Y, Varga Z, Kanchanakungwankul S, Zhang L, Truhlar DG. Diabatic States of Molecules. J Phys Chem A 2022; 126:992-1018. [PMID: 35138102 DOI: 10.1021/acs.jpca.1c10583] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Quantitative simulations of electronically nonadiabatic molecular processes require both accurate dynamics algorithms and accurate electronic structure information. Direct semiclassical nonadiabatic dynamics is expensive due to the high cost of electronic structure calculations, and hence it is limited to small systems, limited ensemble averaging, ultrafast processes, and/or electronic structure methods that are only semiquantitatively accurate. The cost of dynamics calculations can be made manageable if analytic fits are made to the electronic structure data, and such fits are most conveniently carried out in a diabatic representation because the surfaces are smooth and the couplings between states are smooth scalar functions. Diabatic representations, unlike the adiabatic ones produced by most electronic structure methods, are not unique, and finding suitable diabatic representations often involves time-consuming nonsystematic diabatization steps. The biggest drawback of using diabatic bases is that it can require large amounts of effort to perform a globally consistent diabatization, and one of our goals has been to develop methods to do this efficiently and automatically. In this Feature Article, we introduce the mathematical framework of diabatic representations, and we discuss diabatization methods, including adiabatic-to-diabatic transformations and recent progress toward the goal of automatization.
Collapse
Affiliation(s)
- Yinan Shu
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Zoltan Varga
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Siriluk Kanchanakungwankul
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Linyao Zhang
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States.,School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
7
|
Kim J, Woo KC, Kim KK, Kang M, Kim SK. Tunneling dynamics dictated by the multidimensional conical intersection seam in the πσ*‐mediated photochemistry of heteroaromatic molecules. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Junggil Kim
- Department of Chemistry, KAIST Daejeon Republic of Korea
| | - Kyung Chul Woo
- Department of Chemistry, KAIST Daejeon Republic of Korea
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences Nanyang Technological University Singapore Singapore
| | - Kuk Ki Kim
- Department of Chemistry, KAIST Daejeon Republic of Korea
| | - Minseok Kang
- Department of Chemistry, KAIST Daejeon Republic of Korea
| | - Sang Kyu Kim
- Department of Chemistry, KAIST Daejeon Republic of Korea
| |
Collapse
|
8
|
Farfan CA, Turner DB. A systematic model study quantifying how conical intersection topography modulates photochemical reactions. Phys Chem Chem Phys 2020; 22:20265-20283. [PMID: 32966428 DOI: 10.1039/d0cp03464a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite their important role in photochemistry and expected presence in most polyatomic molecules, conical intersections have been thoroughly characterized in a comparatively small number of systems. Conical intersections can confer molecular photoreactivity or photostability, often with remarkable efficacy, due to their unique structure: at a conical intersection, the adiabatic potential energy surfaces of two or more electronic states are degenerate, enabling ultrafast decay from an excited state without radiative emission, known as nonadiabatic transfer. Furthermore, the precise conical intersection topography determines fundamental properties of photochemical processes, including excited-state decay rate, efficacy, and molecular products that are formed. However, these relationships have yet to be defined comprehensively. In this article, we use an adaptable computational model to investigate a variety of conical intersection topographies, simulate resulting nonadiabatic dynamics, and calculate key photochemical observables. We varied the vibrational mode frequencies to modify conical intersection topography systematically in four primary classes of conical intersections and quantified the resulting rate, total yield, and product yield of nonadiabatic decay. The results reveal that higher vibrational mode frequencies reduce nonadiabatic transfer, but increase the transfer rate and resulting photoproduct formation. These trends can inform progress toward experimental control of photochemical reactions or tuning of molecules' photochemical properties based on conical intersections and their topography.
Collapse
Affiliation(s)
- Camille A Farfan
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Daniel B Turner
- Department of Chemistry, New York University, New York, NY 10003, USA
| |
Collapse
|
9
|
Abstract
Understanding nonadiabatic dynamics is important for chemical and physical processes involving multiple electronic states. Direct nonadiabatic dynamics simulations are often employed to observe such processes on a femtosecond time scale. One often needs to do the simulation on a longer time scale, but direct simulation based on electronic structure calculations of the surfaces and couplings is expensive due to the large number of electronic structure calculations needed for ensemble averaging or simulation of longer-time processes. An alternative approach is to construct an analytical representation of potential energy surfaces (PESs) and couplings, which allows for faster dynamics calculations. Diabatic representations are preferred for such purposes because of the smoothness of the surfaces and couplings and the scalar nature of the couplings. However, many diabatization procedures are complicated by the need to consider orbitals or vector coupling elements, and these can make the process very labor-intensive. To circumvent these difficulties, we here propose diabatization by a deep neural network (DDNN) based on a new architecture for a deep neural network that requires neither orbital input nor vector input. The DDNN method allows convenient and semiautomatic diabatization, and it is demonstrated here for a model problem and for producing diabatic potential energy matrices for thiophenol.
Collapse
Affiliation(s)
- Yinan Shu
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
10
|
Conti I, Cerullo G, Nenov A, Garavelli M. Ultrafast Spectroscopy of Photoactive Molecular Systems from First Principles: Where We Stand Today and Where We Are Going. J Am Chem Soc 2020; 142:16117-16139. [PMID: 32841559 PMCID: PMC7901644 DOI: 10.1021/jacs.0c04952] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
![]()
Computational spectroscopy is becoming a mandatory tool for the interpretation of the
complex, and often congested, spectral maps delivered by modern non-linear multi-pulse
techniques. The fields of Electronic Structure Methods,
Non-Adiabatic Molecular Dynamics, and Theoretical
Spectroscopy represent the three pillars of the virtual ultrafast
optical spectrometer, able to deliver transient spectra in
silico from first principles. A successful simulation strategy requires a
synergistic approach that balances between the three fields, each one having its very
own challenges and bottlenecks. The aim of this Perspective is to demonstrate that,
despite these challenges, an impressive agreement between theory and experiment is
achievable now regarding the modeling of ultrafast photoinduced processes in complex
molecular architectures. Beyond that, some key recent developments in the three fields
are presented that we believe will have major impacts on spectroscopic simulations in
the very near future. Potential directions of development, pending challenges, and
rising opportunities are illustrated.
Collapse
Affiliation(s)
- Irene Conti
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Giulio Cerullo
- Dipartimento di Fisica, Politecnico di Milano, IFN-CNR, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| | - Artur Nenov
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Marco Garavelli
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| |
Collapse
|
11
|
Shu Y, Zhang L, Sun S, Truhlar DG. Time-Derivative Couplings for Self-Consistent Electronically Nonadiabatic Dynamics. J Chem Theory Comput 2020; 16:4098-4106. [PMID: 32456433 DOI: 10.1021/acs.jctc.0c00409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electronically nonadiabatic dynamics methods based on a self-consistent potential, such as semiclassical Ehrenfest and coherent switching with decay of mixing, have a number of advantages but are computationally slower than approximations based on an unaveraged potential because they require evaluation of all components of the nonadiabatic coupling vector. Here we introduce a new approximation to the self-consistent potential that does not have this computational drawback. The new approximation uses time-derivative couplings evaluated by overlap integrals of electronic wave functions to approximate the nonadiabatic coupling terms in the equations of motion. We present a numerical test of the method for ethylene that shows there is little loss of accuracy in the ensemble-averaged results. This new approximation to the self-consistent potential makes direct dynamics calculations with self-consistent potentials more efficient for complex systems and makes them practically affordable for some cases where the cost was previously too high.
Collapse
Affiliation(s)
- Yinan Shu
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Linyao Zhang
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States.,School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Shaozeng Sun
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Donald G Truhlar
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
12
|
Parker KA, Truhlar DG. Semiglobal diabatic potential energy matrix for the N–H photodissociation of methylamine. J Chem Phys 2020; 152:244309. [DOI: 10.1063/5.0008647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Kelsey A. Parker
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| |
Collapse
|
13
|
Lee H, Kim SY, Kim SK. Multidimensional characterization of the conical intersection seam in the normal mode space. Chem Sci 2020; 11:6856-6861. [PMID: 33033600 PMCID: PMC7504900 DOI: 10.1039/d0sc02045a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/15/2020] [Indexed: 11/21/2022] Open
Abstract
Multidimensional conical intersection seam has been characterized by utilizing the dynamic resonances in the nonadiabatic transition probability experimentally observed in the predissociation of thioanisole isotopomers.
Collapse
Affiliation(s)
- Heesung Lee
- Department of Chemistry
- KAIST
- Daejeon 34141
- Republic of Korea
| | | | - Sang Kyu Kim
- Department of Chemistry
- KAIST
- Daejeon 34141
- Republic of Korea
| |
Collapse
|
14
|
Zhang L, Truhlar DG, Sun S. Full-dimensional three-state potential energy surfaces and state couplings for photodissociation of thiophenol. J Chem Phys 2019; 151:154306. [DOI: 10.1063/1.5124870] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Linyao Zhang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Shaozeng Sun
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
| |
Collapse
|
15
|
Shu Y, Kryven J, Sampaio de Oliveira-Filho AG, Zhang L, Song GL, Li SL, Meana-Pañeda R, Fu B, Bowman JM, Truhlar DG. Direct diabatization and analytic representation of coupled potential energy surfaces and couplings for the reactive quenching of the excited 2Σ+ state of OH by molecular hydrogen. J Chem Phys 2019; 151:104311. [DOI: 10.1063/1.5111547] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Yinan Shu
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| | - Joanna Kryven
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| | - Antonio Gustavo Sampaio de Oliveira-Filho
- Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA
- Departamento de Química, Laboratório Computacional de Espectroscopia e Cinética, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto-SP, Brazil
| | - Linyao Zhang
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| | - Guo-Liang Song
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| | - Shaohong L. Li
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| | - Rubén Meana-Pañeda
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| | - Bina Fu
- Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Joel M. Bowman
- Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| |
Collapse
|
16
|
Lim JS, You HS, Han S, Kim SK. Photodissociation Dynamics of Ortho-Substituted Thiophenols at 243 nm. J Phys Chem A 2019; 123:2634-2639. [DOI: 10.1021/acs.jpca.9b00803] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jean Sun Lim
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Hyun Sik You
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Songhee Han
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Sang Kyu Kim
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
17
|
Lim JS, You HS, Kim SY, Kim SK. Experimental observation of nonadiabatic bifurcation dynamics at resonances in the continuum. Chem Sci 2019; 10:2404-2412. [PMID: 30881669 PMCID: PMC6385646 DOI: 10.1039/c8sc04859b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/04/2019] [Indexed: 11/23/2022] Open
Abstract
The surface crossing of bound and unbound electronic states in multidimensional space often gives rise to resonances in the continuum. This situation happens in the πσ*-mediated photodissociation reaction of 2-fluorothioanisole; optically-bright bound S1 (ππ*) vibrational states of 2-fluorothioanisole are strongly coupled to the optically-dark S2 (πσ*) state, which is repulsive along the S-CH3 elongation coordinate. It is revealed here that the reactive flux prepared at such resonances in the continuum bifurcates into two distinct reaction pathways with totally different dynamics in terms of energy disposal and nonadiabatic transition probability. This indicates that the reactive flux in the Franck-Condon region may either undergo nonadiabatic transition funneling through the conical intersection from the upper adiabat, or follow a low-lying adiabatic path, along which multiple dynamic saddle points may be located. Since 2-fluorothioanisole adopts a nonplanar geometry in the S1 minimum energy, the quasi-degenerate S1/S2 crossing seam in the nonplanar geometry, which lies well below the planar S1/S2 conical intersection, is likely responsible for the efficient vibronic coupling, especially in the low S1 internal energy region. As the excitation energy increases, bound-to-continuum coupling is facilitated with the aid of intramolecular vibrational redistribution, along many degrees of freedom spanning the large structural volume. This leads to the rapid domination of the continuum character of the reactive flux. This work reports direct and robust experimental observations of the nonadiabatic bifurcation dynamics of the reactive flux occurring at resonances in the continuum of polyatomic molecules.
Collapse
Affiliation(s)
- Jean Sun Lim
- Department of Chemistry , KAIST , Daejeon 34141 , Republic of Korea .
| | - Hyun Sik You
- Department of Chemistry , KAIST , Daejeon 34141 , Republic of Korea .
| | - So-Yeon Kim
- Department of Chemistry , KAIST , Daejeon 34141 , Republic of Korea .
| | - Sang Kyu Kim
- Department of Chemistry , KAIST , Daejeon 34141 , Republic of Korea .
| |
Collapse
|
18
|
Improved potential energy surfaces of thioanisole and the effect of upper surface variations on the product distribution upon photodissociation. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Vanduyfhuys L, Vandenbrande S, Wieme J, Waroquier M, Verstraelen T, Van Speybroeck V. Extension of the QuickFF force field protocol for an improved accuracy of structural, vibrational, mechanical and thermal properties of metal-organic frameworks. J Comput Chem 2018; 39:999-1011. [PMID: 29396847 PMCID: PMC5947575 DOI: 10.1002/jcc.25173] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 01/16/2023]
Abstract
QuickFF was originally launched in 2015 to derive accurate force fields for isolated and complex molecular systems in a quick and easy way. Apart from the general applicability, the functionality was especially tested for metal-organic frameworks (MOFs), a class of hybrid materials consisting of organic and inorganic building blocks. Herein, we launch a new release of the QuickFF protocol which includes new major features to predict structural, vibrational, mechanical and thermal properties with greater accuracy, without compromising its robustness and transparent workflow. First, the ab initio data necessary for the fitting procedure may now also be derived from periodic models for the molecular system, as opposed to the earlier cluster-based models. This is essential for an accurate description of MOFs with one-dimensional metal-oxide chains. Second, cross terms that couple internal coordinates (ICs) and anharmonic contributions for bond and bend terms are implemented. These features are essential for a proper description of vibrational and thermal properties. Third, the fitting scheme was modified to improve robustness and accuracy. The new features are tested on MIL-53(Al), MOF-5, CAU-13 and NOTT-300. As expected, periodic input data are proven to be essential for a correct description of structural, vibrational and thermodynamic properties of MIL-53(Al). Bulk moduli and thermal expansion coefficients of MOF-5 are very accurately reproduced by static and dynamic simulations using the newly derived force fields which include cross terms and anharmonic corrections. For the flexible materials CAU-13 and NOTT-300, the transition pressure is accurately predicted provided cross terms are taken into account. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Louis Vanduyfhuys
- Center for Molecular Modeling (CMM), Ghent UniversityTechnologiepark903, 9052ZwijnaardeBelgium
| | - Steven Vandenbrande
- Center for Molecular Modeling (CMM), Ghent UniversityTechnologiepark903, 9052ZwijnaardeBelgium
| | - Jelle Wieme
- Center for Molecular Modeling (CMM), Ghent UniversityTechnologiepark903, 9052ZwijnaardeBelgium
| | - Michel Waroquier
- Center for Molecular Modeling (CMM), Ghent UniversityTechnologiepark903, 9052ZwijnaardeBelgium
| | - Toon Verstraelen
- Center for Molecular Modeling (CMM), Ghent UniversityTechnologiepark903, 9052ZwijnaardeBelgium
| | | |
Collapse
|
20
|
Woo KC, Kang DH, Kim SK. Real-Time Observation of Nonadiabatic Bifurcation Dynamics at a Conical Intersection. J Am Chem Soc 2017; 139:17152-17158. [DOI: 10.1021/jacs.7b09677] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kyung Chul Woo
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Do Hyung Kang
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Sang Kyu Kim
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
21
|
Li SL, Truhlar DG. Full-dimensional multi-state simulation of the photodissociation of thioanisole. J Chem Phys 2017; 147:044311. [PMID: 28764367 DOI: 10.1063/1.4994923] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The photodissociation of thioanisole is very interesting because the experiments of Lim and Kim provide evidence for mode-specific effects on the product distribution. They showed that, with a specific S-CH3 stretching mode being excited as the reagent is excited to the S1 electronic state, there is a sharp increase in the proportion of the ground-state product to the excited-state product. In the present work, we report 78 011 full-dimensional semiclassical multi-state trajectories of the photodissociation process using the coherent switching with decay of mixing dynamics method. The potential surfaces and couplings are based on electronic structure calculations that include dynamic correlation through second order perturbation theory. We report results for four sets of initial conditions, one corresponding roughly to 0-0 excitation and three corresponding to exciting one vibrational mode, to look for mode-specific effects. The simulations show no significant mode-specific effect on the product energy distributions, but they do show an effect on the distribution of minimum-energy gaps in the trajectories and on the lifetime for dissociation. In particular, excitation of the S-CH3 stretching mode leads to trajectories passing closer to the S1-S2 conical intersection and to shorter lifetimes. This provides a possible explanation of why experimental results are different for excitation of this vibration.
Collapse
Affiliation(s)
- Shaohong L Li
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, USA
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, USA
| |
Collapse
|
22
|
Kim SY, Lee J, Kim SK. Conformer specific nonadiabatic reaction dynamics in the photodissociation of partially deuterated thioanisoles (C 6H 5S-CH 2D and C 6H 5S-CHD 2). Phys Chem Chem Phys 2017; 19:18902-18912. [PMID: 28707684 DOI: 10.1039/c7cp03036c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we have investigated nonadiabatic dynamics in the vicinity of conical intersections for predissociation reactions of partially deuterated thioanisole molecules: C6H5S-CH2D and C6H5S-CHD2. Each isotopomer has two distinct rotational conformers according to the geometrical position of D or H of the methyl moiety with respect to the molecular plane for C6H5S-CH2D or C6H5S-CHD2, respectively, as spectroscopically characterized in our earlier report [J. Lee, S.-Y. Kim and S. K. Kim, J. Phys. Chem. A, 2014, 118, 1850]. Since identification and separation of two different rotational conformers of each isotopomer have been unambiguously done, we could interrogate nonadiabatic dynamics of thioanisole in terms of both H/D substitutional and conformational structural effects. Nonadiabatic transition probability, estimated by the experimentally measured branching ratio of the nonadiabatically produced ground-state channel giving C6H5S·(X[combining tilde]) versus the adiabatic excited-state channel leading to the C6H5S·(Ã) radical, shows resonance-like increases at symmetric (νs) or asymmetric (7a) S-CH2D (or S-CHD2) stretching mode excitation in S1 for all conformational isomers of two isotopomers. However, absolute probabilistic value of the nonadiabatic transition is found to vary quite drastically depending on different conformers and isotopomers. The experimental finding that nonadiabatic transition dynamics are very sensitive to subtle changes in the nuclear configuration within the Franck-Condon region induced by the H/D substitution indicates that the S1/S2 conical intersection seam is quite narrowly defined in the multi-dimensional nuclear configurational space as far as the S-methyl predissociation reaction is concerned. In order to understand the relation between molecular structure and nonadiabaticity of reaction, potential energy surfaces near S1/S2 conical intersections have been theoretically calculated along νs and 7a normal mode coordinates for all conformational isomers. Slow-electron velocity map imaging (SEVI) spectroscopy is employed to unravel the extent of intramolecular vibrational redistribution (IVR) for particular mode excitations of S1, providing insights into the dynamic interplay between IVR and nonadiabatic transition probability near the conical intersection seam.
Collapse
Affiliation(s)
- So-Yeon Kim
- Department of Chemistry, KAIST, Daejeon 305-701, Republic of Korea.
| | - Jeongmook Lee
- Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, Daejeon 305-353, Korea
| | - Sang Kyu Kim
- Department of Chemistry, KAIST, Daejeon 305-701, Republic of Korea.
| |
Collapse
|
23
|
Ashfold MNR, Bain M, Hansen CS, Ingle RA, Karsili TNV, Marchetti B, Murdock D. Exploring the Dynamics of the Photoinduced Ring-Opening of Heterocyclic Molecules. J Phys Chem Lett 2017; 8:3440-3451. [PMID: 28661140 DOI: 10.1021/acs.jpclett.7b01219] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Excited states formed by electron promotion to an antibonding σ* orbital are now recognized as key to understanding the photofragmentation dynamics of a broad range of heteroatom containing small molecules: alcohols, thiols, amines, and many of their aromatic analogues. Such excited states may be populated by direct photoexcitation, or indirectly by nonadiabatic transfer of population from some other optically excited state (e.g., a ππ* state). This Perspective explores the extent to which the fast-growing literature pertaining to such (n/π)σ*-state mediated bond fissions can inform and enhance our mechanistic understanding of photoinduced ring-opening in heterocyclic molecules.
Collapse
Affiliation(s)
- Michael N R Ashfold
- School of Chemistry, University of Bristol , Bristol, United Kingdom , BS8 1TS
| | - Matthew Bain
- School of Chemistry, University of Bristol , Bristol, United Kingdom , BS8 1TS
| | | | - Rebecca A Ingle
- School of Chemistry, University of Bristol , Bristol, United Kingdom , BS8 1TS
| | - Tolga N V Karsili
- School of Chemistry, University of Bristol , Bristol, United Kingdom , BS8 1TS
| | - Barbara Marchetti
- School of Chemistry, University of Bristol , Bristol, United Kingdom , BS8 1TS
| | - Daniel Murdock
- School of Chemistry, University of Bristol , Bristol, United Kingdom , BS8 1TS
| |
Collapse
|
24
|
Marchetti B, Karsili TNV, Cipriani M, Hansen CS, Ashfold MNR. The near ultraviolet photodissociation dynamics of 2- and 3-substituted thiophenols: Geometric vs. electronic structure effects. J Chem Phys 2017; 147:013923. [DOI: 10.1063/1.4980035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
25
|
Xie C, Malbon C, Yarkony DR, Guo H. Nonadiabatic photodissociation dynamics of the hydroxymethyl radical via the 22A(3s) Rydberg state: A four-dimensional quantum study. J Chem Phys 2017; 146:224306. [DOI: 10.1063/1.4985147] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Changjian Xie
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Christopher Malbon
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - David R. Yarkony
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|