1
|
Kalinkin MO, Kellerman DG, Medvedeva NI. Ab initio study of stability and quadrupole coupling constants in borophosphates. Dalton Trans 2024; 53:11928-11937. [PMID: 38958061 DOI: 10.1039/d4dt01429d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The DFT method was used to predict the formation energies and quadrupole coupling constants CQ in a series of borophosphates: Li3BP2O8, Li2NaBP2O8, Na3BP2O8, Li2B3PO8, Na5B2P3O13, LiNa2B5P2O14 and Na3B6PO13 composed of different networks and different amounts of borate and phosphate units. The change in formation energies with increasing number of B atoms in this series is attributed to the multiplicity of boron sites and is explained by density of states calculations. The calculated CQ values of 7Li, 23Na and 11B are correlated with the coordination and distortion of polyhedra to elucidate the influence of local and more distant environments. As for the CQ of 11B, it should be in the ranges of 0.26-0.36, 0.48-0.84 and ∼1 MHz for boron tetrahedral distortion indices of 0.004-0.013, 0.015-0.019 and 0.033, respectively, whereas CQ ∼3.0 MHz corresponds to boron in a triangular site. The obtained numerical relationships make it possible to predict the quadrupole frequencies for these nuclei based only on their local environment, and vice versa, to propose structural models from NMR data. These results provide guidance for studying similar characteristics of other borophosphates, the structure of which varies depending on the initial reaction, composition and temperature.
Collapse
|
2
|
de Wijs GA, Kresse G, Havenith RWA, Marsman M. Comparing GIPAW with numerically exact chemical shieldings: The role of two-center contributions to the induced current. J Chem Phys 2021; 155:234101. [PMID: 34937373 DOI: 10.1063/5.0069637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In this study, we benchmark density functional theory gauge-including projector-augmented-wave (GIPAW) chemical shieldings against molecular shieldings for which basis set completeness has been achieved [Jensen et al., Phys. Chem. Chem. Phys. 18, 21145 (2016)]. We demonstrate the importance of two-center corrections for GIPAW hydrogen shieldings. For the other nuclei studied, standard GIPAW is sufficiently accurate. We find that GIPAW can be pushed to closely approach the basis set limit. The only source of small inaccuracies lies in the contribution to the shielding that is caused by surface currents, which we estimate comparing GIPAW susceptibilities to converged molecular magnetizabilities.
Collapse
Affiliation(s)
- Gilles A de Wijs
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, NL-6525 AJ Nijmegen, The Netherlands
| | - Georg Kresse
- University of Vienna, Faculty of Physics and Center for Computational Materials Science, Kolingasse 14-16, A-1090 Vienna, Austria
| | - Remco W A Havenith
- Stratingh Institute for Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747 AG Groningen, The Netherlands
| | - Martijn Marsman
- University of Vienna, Faculty of Physics and Center for Computational Materials Science, Kolingasse 14-16, A-1090 Vienna, Austria
| |
Collapse
|
3
|
Dittmer A, Stoychev GL, Maganas D, Auer AA, Neese F. Computation of NMR Shielding Constants for Solids Using an Embedded Cluster Approach with DFT, Double-Hybrid DFT, and MP2. J Chem Theory Comput 2020; 16:6950-6967. [PMID: 32966067 PMCID: PMC7659039 DOI: 10.1021/acs.jctc.0c00067] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
In
this work, we explore the accuracy of post-Hartree–Fock
(HF) methods and double-hybrid density functional theory (DFT) for
the computation of solid-state NMR chemical shifts. We apply an embedded
cluster approach and investigate the convergence with cluster size
and embedding for a series of inorganic solids with long-range electrostatic
interactions. In a systematic study, we discuss the cluster design,
the embedding procedure, and basis set convergence using gauge-including
atomic orbital (GIAO) NMR calculations at the DFT and MP2 levels of
theory. We demonstrate that the accuracy obtained for the prediction
of NMR chemical shifts, which can be achieved for molecular systems,
can be carried over to solid systems. An appropriate embedded cluster
approach allows one to apply methods beyond standard DFT even for
systems for which long-range electrostatic effects are important. We find that an embedded
cluster should include at least one sphere of explicit neighbors around
the nuclei of interest, given that a sufficiently large point charge
and boundary effective potential embedding is applied. Using the pcSseg-3
basis set and GIAOs for the computation of nuclear shielding constants,
accuracies of 1.6 ppm for 7Li, 1.5 ppm for 23Na, and 5.1 ppm for 39K as well as 9.3 ppm for 19F, 6.5 ppm for 35Cl, 7.4 ppm for 79Br, and
7.5 ppm for 25Mg as well as 3.8 ppm for 67Zn
can be achieved with MP2. Comparing various DFT functionals with HF
and MP2, we report the superior quality of results for methods that
include post-HF correlation like MP2 and double-hybrid DFT.
Collapse
Affiliation(s)
- Anneke Dittmer
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Georgi L Stoychev
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Dimitrios Maganas
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Alexander A Auer
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
4
|
Stouten J, Vanpoucke DEP, Van Assche G, Bernaerts KV. UV-Curable Biobased Polyacrylates Based on a Multifunctional Monomer Derived from Furfural. Macromolecules 2020; 53:1388-1404. [PMID: 32116389 PMCID: PMC7045705 DOI: 10.1021/acs.macromol.9b02659] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/23/2020] [Indexed: 11/30/2022]
Abstract
The controlled polymerization of a new biobased monomer, 4-oxocyclopent-2-en-1-yl acrylate (4CPA), was established via reversible addition-fragmentation chain transfer (RAFT) (co)polymerization to yield polymers bearing pendent cyclopentenone units. 4CPA contains two reactive functionalities, namely, a vinyl group and an internal double bond, and is an unsymmetrical monomer. Therefore, competition between the internal double bond and the vinyl group eventually leads to gel formation. With RAFT polymerization, when aiming for a degree of polymerization (DP) of 100, maximum 4CPA conversions of the vinyl group between 19.0 and 45.2% were obtained without gel formation or extensive broadening of the dispersity. When the same conditions were applied in the copolymerization of 4CPA with lauryl acrylate (LA), methyl acrylate (MA), and isobornyl acrylate, 4CPA conversions of the vinyl group between 63 and 95% were reached. The additional functionality of 4CPA in copolymers was demonstrated by model studies with 4-oxocyclopent-2-en-1-yl acetate (1), which readily dimerized under UV light via [2 + 2] photocyclodimerization. First-principles quantum mechanical simulations supported the experimental observations made in NMR. Based on the calculated energetics and chemical shifts, a mixture of head-to-head and head-to-tail dimers of (1) were identified. Using the dimerization mechanism, solvent-cast LA and MA copolymers containing 30 mol % 4CPA were cross-linked under UV light to obtain thin films. The cross-linked films were characterized by dynamic scanning calorimetry, dynamic mechanical analysis, IR, and swelling experiments. This is the first case where 4CPA is described as a monomer for functional biobased polymers that can undergo additional UV curing via photodimerization.
Collapse
Affiliation(s)
- Jules Stouten
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Danny E P Vanpoucke
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands.,Institute for Materials Research (IMO), Hasselt University, 3590 Diepenbeek, Belgium
| | - Guy Van Assche
- Department of Physical Chemistry and Polymer Science, Faculty of Engineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Katrien V Bernaerts
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Faculty of Science and Engineering, Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| |
Collapse
|
5
|
Blaha P, Schwarz K, Tran F, Laskowski R, Madsen GKH, Marks LD. WIEN2k: An APW+lo program for calculating the properties of solids. J Chem Phys 2020; 152:074101. [DOI: 10.1063/1.5143061] [Citation(s) in RCA: 585] [Impact Index Per Article: 146.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Peter Blaha
- Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9/165-TC, A-1060 Vienna, Austria
| | - Karlheinz Schwarz
- Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9/165-TC, A-1060 Vienna, Austria
| | - Fabien Tran
- Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9/165-TC, A-1060 Vienna, Austria
| | - Robert Laskowski
- Institute of High Performance Computing, A*STAR, 1 Fusionopolis Way, #16-16, Connexis 138632, Singapore
| | - Georg K. H. Madsen
- Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9/165-TC, A-1060 Vienna, Austria
| | - Laurence D. Marks
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
6
|
Schneider AG, Schomborg L, Rüscher CH, Bredow T. Identification of Intermediates during the Hydration of Na 8[AlSiO 4] 6(BH 4) 2: A Combined Theoretical and Experimental Approach. J Phys Chem A 2018. [DOI: 10.1021/acs.jpca.8b00898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alexander G. Schneider
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstrasse 4-6, D-53115 Bonn, Germany
| | - Lars Schomborg
- Institut für Mineralogie, Leibniz Universität Hannover, Callinstrasse 3, D-30167 Hannover, Germany
| | - Claus H. Rüscher
- Institut für Mineralogie, Leibniz Universität Hannover, Callinstrasse 3, D-30167 Hannover, Germany
| | - Thomas Bredow
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstrasse 4-6, D-53115 Bonn, Germany
| |
Collapse
|
7
|
Marín-Luna M, Alkorta I, Elguero J. A theoretical NMR study of selected benzazoles: Comparison of GIPAW and GIAO-PCM (DMSO) calculations. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:164-171. [PMID: 29077221 DOI: 10.1002/mrc.4674] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/14/2017] [Accepted: 10/16/2017] [Indexed: 06/07/2023]
Abstract
This paper compares the absolute shieldings obtained by gauge-including-projected-augmented-wave (GIPAW) to those obtained by gauge-invariant atomic orbital/Becke, 3-parameter, Lee-Yang-Parr (GIAO/B3LYP)/6-311++G(d,p)-polarizable continuum model (PCM, dimethyl sulfoxide) for nine benzazoles (benzimidazoles, indazoles, and benzotriazoles) recorded in the solid-state. Three nuclei were explored, 13 C, 15 N, and 19 F, and the gauge-including-projected-augmented-wave approach only proved better for 15 N MAS NMR.
Collapse
Affiliation(s)
- Marta Marín-Luna
- Departamento de Química Orgánica, Universidad de Vigo, Vigo, Spain
| | - Ibon Alkorta
- Instituto de Química Médica, CSIC, Juan de la Cierva, 3, E-28006, Madrid, Spain
| | - José Elguero
- Instituto de Química Médica, CSIC, Juan de la Cierva, 3, E-28006, Madrid, Spain
| |
Collapse
|
8
|
Smets MH, Pitak MB, Cadden J, Kip VR, de Wijs GA, van Eck ERH, Tinnemans P, Meekes H, Vlieg E, Coles SJ, Cuppen HM. The Rich Solid-State Phase Behavior of dl-Aminoheptanoic Acid: Five Polymorphic Forms and Their Phase Transitions. CRYSTAL GROWTH & DESIGN 2018; 18:242-252. [PMID: 30258304 PMCID: PMC6150639 DOI: 10.1021/acs.cgd.7b01175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/20/2017] [Indexed: 06/02/2023]
Abstract
The rich landscape of enantiotropically related polymorphic forms and their solid-state phase transitions of dl-2-aminoheptanoic acid (dl-AHE) has been explored using a range of complementary characterization techniques, and is largely exemplary of the polymorphic behavior of linear aliphatic amino acids. As many as five new polymorphic forms were found, connected by four fully reversible solid-state phase transitions. Two low temperature forms were refined in a high Z' crystal structure, which is a new phenomenon for linear aliphatic amino acids. All five structures consist of two-dimensional hydrogen-bonded bilayers interconnected by weak van der Waals interactions. The single-crystal-to-single-crystal phase transitions involve shifts of bilayers and/or conformational changes in the aliphatic chain. Compared to two similar phase transitions of the related amino acid dl-norleucine, the enthalpies of transition and NMR chemical shift differences are notably smaller in dl-aminoheptanoic acid. This is explained to be a result of both the nature of the conformational changes and the increased chain length, weakening the interactions between the bilayers.
Collapse
Affiliation(s)
- Mireille
M. H. Smets
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Mateusz B. Pitak
- Chemistry,
Faculty of Natural and Environmental Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| | - Joseph Cadden
- Chemistry,
Faculty of Natural and Environmental Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| | - Vincent R. Kip
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Gilles A. de Wijs
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Ernst R. H. van Eck
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Paul Tinnemans
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Hugo Meekes
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Elias Vlieg
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Simon J. Coles
- Chemistry,
Faculty of Natural and Environmental Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| | - Herma M. Cuppen
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|