1
|
Schultz JD, Yuly JL, Arsenault EA, Parker K, Chowdhury SN, Dani R, Kundu S, Nuomin H, Zhang Z, Valdiviezo J, Zhang P, Orcutt K, Jang SJ, Fleming GR, Makri N, Ogilvie JP, Therien MJ, Wasielewski MR, Beratan DN. Coherence in Chemistry: Foundations and Frontiers. Chem Rev 2024; 124:11641-11766. [PMID: 39441172 DOI: 10.1021/acs.chemrev.3c00643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Coherence refers to correlations in waves. Because matter has a wave-particle nature, it is unsurprising that coherence has deep connections with the most contemporary issues in chemistry research (e.g., energy harvesting, femtosecond spectroscopy, molecular qubits and more). But what does the word "coherence" really mean in the context of molecules and other quantum systems? We provide a review of key concepts, definitions, and methodologies, surrounding coherence phenomena in chemistry, and we describe how the terms "coherence" and "quantum coherence" refer to many different phenomena in chemistry. Moreover, we show how these notions are related to the concept of an interference pattern. Coherence phenomena are indeed complex, and ambiguous definitions may spawn confusion. By describing the many definitions and contexts for coherence in the molecular sciences, we aim to enhance understanding and communication in this broad and active area of chemistry.
Collapse
Affiliation(s)
- Jonathan D Schultz
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jonathon L Yuly
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - Eric A Arsenault
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Kelsey Parker
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Sutirtha N Chowdhury
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Reshmi Dani
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Sohang Kundu
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Hanggai Nuomin
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Zhendian Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jesús Valdiviezo
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Sección Química, Departamento de Ciencias, Pontificia Universidad Católica del Perú, San Miguel, Lima 15088, Peru
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Kaydren Orcutt
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan Street, Albany, California 94710, United States
| | - Seogjoo J Jang
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Queens, New York 11367, United States
- Chemistry and Physics PhD programs, Graduate Center, City University of New York, New York, New York 10016, United States
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Nancy Makri
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois, Urbana, Illinois 61801, United States
- Illinois Quantum Information Science and Technology Center, University of Illinois, Urbana, Illinois 61801, United States
| | - Jennifer P Ogilvie
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Michael J Therien
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - David N Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|
2
|
Bhattacharyya S, Sayer T, Montoya-Castillo A. Mori generalized master equations offer an efficient route to predict and interpret polaron transport. Chem Sci 2024:d4sc03144j. [PMID: 39323516 PMCID: PMC11420857 DOI: 10.1039/d4sc03144j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024] Open
Abstract
Predicting how a material's microscopic structure and dynamics determine its transport properties remains a fundamental challenge. To alleviate this task's often prohibitive computational expense, we propose a Mori-based generalized quantum master equation (GQME) to predict the frequency-resolved conductivity of small-polaron forming systems described by the dispersive Holstein model. Unlike previous GQME-based approaches to transport that scale with the system size and only give access to the DC conductivity, our method requires only one calculation and yields both the DC and AC mobilities. We further show how to easily augment our GQME with numerically accessible derivatives of the current to increase computational efficiency, collectively offering computational cost reductions of up to 90%, depending on the transport regime. Finally, we leverage our exact simulations to demonstrate the limited applicability of the celebrated and widely invoked Drude-Smith model in small-polaron forming systems. We instead introduce a cumulant-based analysis of experimentally accessible frequency data to infer the microscopic Hamiltonian parameters. This approach promises to provide valuable insights into material properties and facilitate guided design by linking macroscopic terahertz measurements to the microscopic details of small polaron-forming systems.
Collapse
Affiliation(s)
| | - Thomas Sayer
- Department of Chemistry, University of Colorado Boulder Boulder CO 80309 USA
| | | |
Collapse
|
3
|
Dutta R, Cabral DGA, Lyu N, Vu NP, Wang Y, Allen B, Dan X, Cortiñas RG, Khazaei P, Schäfer M, Albornoz ACCD, Smart SE, Nie S, Devoret MH, Mazziotti DA, Narang P, Wang C, Whitfield JD, Wilson AK, Hendrickson HP, Lidar DA, Pérez-Bernal F, Santos LF, Kais S, Geva E, Batista VS. Simulating Chemistry on Bosonic Quantum Devices. J Chem Theory Comput 2024; 20:6426-6441. [PMID: 39068594 DOI: 10.1021/acs.jctc.4c00544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Bosonic quantum devices offer a novel approach to realize quantum computations, where the quantum two-level system (qubit) is replaced with the quantum (an)harmonic oscillator (qumode) as the fundamental building block of the quantum simulator. The simulation of chemical structure and dynamics can then be achieved by representing or mapping the system Hamiltonians in terms of bosonic operators. In this Perspective, we review recent progress and future potential of using bosonic quantum devices for addressing a wide range of challenging chemical problems, including the calculation of molecular vibronic spectra, the simulation of gas-phase and solution-phase adiabatic and nonadiabatic chemical dynamics, the efficient solution of molecular graph theory problems, and the calculations of electronic structure.
Collapse
Affiliation(s)
- Rishab Dutta
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Delmar G A Cabral
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Ningyi Lyu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Nam P Vu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Department of Chemistry, Lafayette College, Easton, Pennsylvania 18042, United States
| | - Yuchen Wang
- Department of Chemistry, Department of Physics, and Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, United States
| | - Brandon Allen
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Xiaohan Dan
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Rodrigo G Cortiñas
- Department of Applied Physics and Department of Physics, Yale University, New Haven, Connecticut 06520, United States
- Yale Quantum Institute, Yale University, New Haven, Connecticut 06511, United States
| | - Pouya Khazaei
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Max Schäfer
- Department of Applied Physics and Department of Physics, Yale University, New Haven, Connecticut 06520, United States
- Yale Quantum Institute, Yale University, New Haven, Connecticut 06511, United States
| | - Alejandro C C D Albornoz
- Department of Applied Physics and Department of Physics, Yale University, New Haven, Connecticut 06520, United States
- Yale Quantum Institute, Yale University, New Haven, Connecticut 06511, United States
| | - Scott E Smart
- Division of Physical Sciences, College of Letters and Science and Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Scott Nie
- Division of Physical Sciences, College of Letters and Science and Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Michel H Devoret
- Department of Applied Physics and Department of Physics, Yale University, New Haven, Connecticut 06520, United States
- Yale Quantum Institute, Yale University, New Haven, Connecticut 06511, United States
| | - David A Mazziotti
- Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Prineha Narang
- Division of Physical Sciences, College of Letters and Science and Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Chen Wang
- Department of Physics, University of Massachusetts - Amherst, Amherst, Massachusetts 01003, United States
| | - James D Whitfield
- Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 01003, United States
| | - Angela K Wilson
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48864, United States
| | - Heidi P Hendrickson
- Department of Chemistry, Lafayette College, Easton, Pennsylvania 18042, United States
| | - Daniel A Lidar
- Department of Electrical & Computer Engineering, Department of Chemistry, Department of Physics & Astronomy, and Center for Quantum Information Science & Technology, University of Southern California, Los Angeles, California 90089, United States
| | - Francisco Pérez-Bernal
- Departamento de Ciencias Integradas y Centro de Estudios Avanzados en Física, Matemáticas y Computación, Universidad de Huelva, Huelva 21071, Spain
- Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Granada 18071, Spain
| | - Lea F Santos
- Department of Physics, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Sabre Kais
- Department of Chemistry, Department of Physics, and Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, United States
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Yale Quantum Institute, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
4
|
Sayer T, Montoya-Castillo A. Generalized quantum master equations can improve the accuracy of semiclassical predictions of multitime correlation functions. J Chem Phys 2024; 161:011101. [PMID: 38949578 DOI: 10.1063/5.0219205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/12/2024] [Indexed: 07/02/2024] Open
Abstract
Multitime quantum correlation functions are central objects in physical science, offering a direct link between the experimental observables and the dynamics of an underlying model. While experiments such as 2D spectroscopy and quantum control can now measure such quantities, the accurate simulation of such responses remains computationally expensive and sometimes impossible, depending on the system's complexity. A natural tool to employ is the generalized quantum master equation (GQME), which can offer computational savings by extending reference dynamics at a comparatively trivial cost. However, dynamical methods that can tackle chemical systems with atomistic resolution, such as those in the semiclassical hierarchy, often suffer from poor accuracy, limiting the credence one might lend to their results. By combining work on the accuracy-boosting formulation of semiclassical memory kernels with recent work on the multitime GQME, here we show for the first time that one can exploit a multitime semiclassical GQME to dramatically improve both the accuracy of coarse mean-field Ehrenfest dynamics and obtain orders of magnitude efficiency gains.
Collapse
Affiliation(s)
- Thomas Sayer
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | | |
Collapse
|
5
|
Dominic AJ, Cao S, Montoya-Castillo A, Huang X. Memory Unlocks the Future of Biomolecular Dynamics: Transformative Tools to Uncover Physical Insights Accurately and Efficiently. J Am Chem Soc 2023; 145:9916-9927. [PMID: 37104720 DOI: 10.1021/jacs.3c01095] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Conformational changes underpin function and encode complex biomolecular mechanisms. Gaining atomic-level detail of how such changes occur has the potential to reveal these mechanisms and is of critical importance in identifying drug targets, facilitating rational drug design, and enabling bioengineering applications. While the past two decades have brought Markov state model techniques to the point where practitioners can regularly use them to glimpse the long-time dynamics of slow conformations in complex systems, many systems are still beyond their reach. In this Perspective, we discuss how including memory (i.e., non-Markovian effects) can reduce the computational cost to predict the long-time dynamics in these complex systems by orders of magnitude and with greater accuracy and resolution than state-of-the-art Markov state models. We illustrate how memory lies at the heart of successful and promising techniques, ranging from the Fokker-Planck and generalized Langevin equations to deep-learning recurrent neural networks and generalized master equations. We delineate how these techniques work, identify insights that they can offer in biomolecular systems, and discuss their advantages and disadvantages in practical settings. We show how generalized master equations can enable the investigation of, for example, the gate-opening process in RNA polymerase II and demonstrate how our recent advances tame the deleterious influence of statistical underconvergence of the molecular dynamics simulations used to parameterize these techniques. This represents a significant leap forward that will enable our memory-based techniques to interrogate systems that are currently beyond the reach of even the best Markov state models. We conclude by discussing some current challenges and future prospects for how exploiting memory will open the door to many exciting opportunities.
Collapse
Affiliation(s)
- Anthony J Dominic
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Siqin Cao
- Department of Chemistry, Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | - Xuhui Huang
- Department of Chemistry, Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
6
|
Joubert-Doriol L, Jung KA, Izmaylov AF, Brumer P. Quantum Kinetic Rates within the Nonequilibrium Steady State. J Chem Theory Comput 2023; 19:1130-1143. [PMID: 36728919 DOI: 10.1021/acs.jctc.2c00987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The nonequilibrium steady state (NESS) of a quantum network is central to a host of physical and biological scenarios. Examples include natural processes such as vision and photosynthesis as well as technical devices such as photocells, both activated by incoherent light (e.g., sunlight) and leading to quantum transport. Assessing time scales of the relevant chemical processes in the steady state is thus of utmost interest and is our goal in this paper. Here, a completely general approach to defining components of a quantum network in the NESS and obtaining rates of processes between these components is provided. Quantum effects are explicitly included throughout, both in (a) defining network components via projection operators and (b) determining the role of coherences in rate processes. As examples, the methodology is applied to model cases, two versions of the V-level system, and to the spin-boson model, wherein the roles of the environment and of internal system properties in determining the rates are examined. In addition, the role of Markovian vs non-Markovian contributions is quantified, exposing conditions under which NESS rates can be obtained by perturbing the nonequilibrium steady state.
Collapse
Affiliation(s)
- Loïc Joubert-Doriol
- Université Gustave Eiffel, Université Paris Est Creteil, CNRS, UMR 8208, MSME, F-77454 Marne-la-Vallée, France
| | - Kenneth A Jung
- Chemical Physics Theory Group, Department of Chemistry, and Center for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Artur F Izmaylov
- Chemical Physics Theory Group, Department of Chemistry, and Center for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Paul Brumer
- Chemical Physics Theory Group, Department of Chemistry, and Center for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
7
|
Amati G, Runeson JE, Richardson JO. On detailed balance in nonadiabatic dynamics: From spin spheres to equilibrium ellipsoids. J Chem Phys 2023; 158:064113. [PMID: 36792511 DOI: 10.1063/5.0137828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Trajectory-based methods that propagate classical nuclei on multiple quantum electronic states are often used to simulate nonadiabatic processes in the condensed phase. A long-standing problem of these methods is their lack of detailed balance, meaning that they do not conserve the equilibrium distribution. In this article, we investigate ideas for restoring detailed balance in mixed quantum-classical systems by tailoring the previously proposed spin-mapping approach to thermal equilibrium. We find that adapting the spin magnitude can recover the correct long-time populations but is insufficient to conserve the full equilibrium distribution. The latter can however be achieved by a more flexible mapping of the spin onto an ellipsoid, which is constructed to fulfill detailed balance for arbitrary potentials. This ellipsoid approach solves the problem of negative populations that has plagued previous mapping approaches and can therefore be applied also to strongly asymmetric and anharmonic systems. Because it conserves the thermal distribution, the method can also exploit efficient sampling schemes used in standard molecular dynamics, which drastically reduces the number of trajectories needed for convergence. The dynamics does however still have mean-field character, as is observed most clearly by evaluating reaction rates in the golden-rule limit. This implies that although the ellipsoid mapping provides a rigorous framework, further work is required to find an accurate classical-trajectory approximation that captures more properties of the true quantum dynamics.
Collapse
Affiliation(s)
- Graziano Amati
- Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Johan E Runeson
- Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | | |
Collapse
|
8
|
Sayer T, Montoya-Castillo A. Compact and complete description of non-Markovian dynamics. J Chem Phys 2023; 158:014105. [PMID: 36610963 DOI: 10.1063/5.0132614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Generalized master equations provide a theoretically rigorous framework to capture the dynamics of processes ranging from energy harvesting in plants and photovoltaic devices to qubit decoherence in quantum technologies and even protein folding. At their center is the concept of memory. The explicit time-nonlocal description of memory is both protracted and elaborate. When physical intuition is at a premium, one would desire a more compact, yet complete, description. Here, we demonstrate how and when the time-convolutionless formalism constitutes such a description. In particular, by focusing on the dissipative dynamics of the spin-boson and Frenkel exciton models, we show how to: easily construct the time-local generator from reference reduced dynamics, elucidate the dependence of its existence on the system parameters and the choice of reduced observables, identify the physical origin of its apparent divergences, and offer analysis tools to diagnose their severity and circumvent their deleterious effects. We demonstrate that, when applicable, the time-local approach requires as little information as the more commonly used time-nonlocal scheme, with the important advantages of providing a more compact description, greater algorithmic simplicity, and physical interpretability. We conclude by introducing the discrete-time analog and a straightforward protocol to employ it in cases where the reference dynamics have limited resolution. The insights we present here offer the potential for extending the reach of dynamical methods, reducing both their cost and conceptual complexity.
Collapse
Affiliation(s)
- Thomas Sayer
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | | |
Collapse
|
9
|
Dan X, Xu M, Yan Y, Shi Q. Generalized master equation for charge transport in a molecular junction: Exact memory kernels and their high order expansion. J Chem Phys 2022; 156:134114. [PMID: 35395901 DOI: 10.1063/5.0086663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We derive a set of generalized master equations (GMEs) to study charge transport dynamics in molecular junctions using the Nakajima-Zwanzig-Mori projection operator approach. In the new GME, time derivatives of population on each quantum state of the molecule, as well as the tunneling current, are calculated as the convolution of time non-local memory kernels with populations on all system states. The non-Markovian memory kernels are obtained by combining the hierarchical equations of motion (HEOM) method and a previous derived Dyson relation for the exact kernel. A perturbative expansion of these memory kernels is then calculated using the extended HEOM developed in our previous work [M. Xu et al., J. Chem. Phys. 146, 064102 (2017)]. By using the resonant level model and the Anderson impurity model, we study properties of the exact memory kernels and analyze convergence properties of their perturbative expansions with respect to the system-bath coupling strength and the electron-electron repulsive energy. It is found that exact memory kernels calculated from HEOM exhibit short memory times and decay faster than the population and current dynamics. The high order perturbation expansion of the memory kernels can give converged results in certain parameter regimes. The Padé and Landau-Zener resummation schemes are also found to give improved results over low order perturbation theory.
Collapse
Affiliation(s)
- Xiaohan Dan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaming Yan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Mathematical Models with Nonlocal Initial Conditions: An Exemplification from Quantum Mechanics. MATHEMATICAL AND COMPUTATIONAL APPLICATIONS 2021. [DOI: 10.3390/mca26040073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nonlocal models are ubiquitous in all branches of science and engineering, with a rapidly expanding range of mathematical and computational applications due to the ability of such models to capture effects and phenomena that traditional models cannot. While spatial nonlocalities have received considerable attention in the research community, the same cannot be said about nonlocality in time, in particular when nonlocal initial conditions are present. This paper aims at filling this gap, providing an overview of the current status of nonlocal models and focusing on the mathematical treatment of such models when nonlocal initial conditions are at the heart of the problem. Specifically, our representative example is given for a nonlocal-in-time problem for the abstract Schrödinger equation. By exploiting the linear nature of nonlocal conditions, we derive an exact representation of the solution operator under assumptions that the spectrum of Hamiltonian is contained in the horizontal strip of the complex plane. The derived representation permits us to establish the necessary and sufficient conditions for the problem’s well-posedness and the existence of its solution under different regularities. Furthermore, we present new sufficient conditions for the existence of the solution that extend the existing results in this field to the case when some nonlocal parameters are unbounded. Two further examples demonstrate the developed methodology and highlight the importance of its computer algebra component in the reduction procedures and parameter estimations for nonlocal models. Finally, a connection of the considered models and developed analysis is discussed in the context of other reduction techniques, concentrating on the most promising from the viewpoint of data-driven modelling environments, and providing directions for further generalizations.
Collapse
|
11
|
Brian D, Sun X. Generalized quantum master equation: A tutorial review and recent advances. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2109157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Dominikus Brian
- Division of Arts and Sciences, NYU Shanghai, Shanghai 200122, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- Department of Chemistry, New York University, New York 10003, USA
| | - Xiang Sun
- Division of Arts and Sciences, NYU Shanghai, Shanghai 200122, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- Department of Chemistry, New York University, New York 10003, USA
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| |
Collapse
|
12
|
Head-Marsden K, Flick J, Ciccarino CJ, Narang P. Quantum Information and Algorithms for Correlated Quantum Matter. Chem Rev 2020; 121:3061-3120. [PMID: 33326218 DOI: 10.1021/acs.chemrev.0c00620] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Discoveries in quantum materials, which are characterized by the strongly quantum-mechanical nature of electrons and atoms, have revealed exotic properties that arise from correlations. It is the promise of quantum materials for quantum information science superimposed with the potential of new computational quantum algorithms to discover new quantum materials that inspires this Review. We anticipate that quantum materials to be discovered and developed in the next years will transform the areas of quantum information processing including communication, storage, and computing. Simultaneously, efforts toward developing new quantum algorithmic approaches for quantum simulation and advanced calculation methods for many-body quantum systems enable major advances toward functional quantum materials and their deployment. The advent of quantum computing brings new possibilities for eliminating the exponential complexity that has stymied simulation of correlated quantum systems on high-performance classical computers. Here, we review new algorithms and computational approaches to predict and understand the behavior of correlated quantum matter. The strongly interdisciplinary nature of the topics covered necessitates a common language to integrate ideas from these fields. We aim to provide this common language while weaving together fields across electronic structure theory, quantum electrodynamics, algorithm design, and open quantum systems. Our Review is timely in presenting the state-of-the-art in the field toward algorithms with nonexponential complexity for correlated quantum matter with applications in grand-challenge problems. Looking to the future, at the intersection of quantum information science and algorithms for correlated quantum matter, we envision seminal advances in predicting many-body quantum states and describing excitonic quantum matter and large-scale entangled states, a better understanding of high-temperature superconductivity, and quantifying open quantum system dynamics.
Collapse
Affiliation(s)
- Kade Head-Marsden
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Johannes Flick
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, United States
| | - Christopher J Ciccarino
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Prineha Narang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
13
|
Mannouch JR, Richardson JO. A partially linearized spin-mapping approach for nonadiabatic dynamics. I. Derivation of the theory. J Chem Phys 2020; 153:194109. [DOI: 10.1063/5.0031168] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
14
|
Runeson JE, Richardson JO. Generalized spin mapping for quantum-classical dynamics. J Chem Phys 2020; 152:084110. [DOI: 10.1063/1.5143412] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Johan E. Runeson
- Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | | |
Collapse
|
15
|
Runeson JE, Richardson JO. Spin-mapping approach for nonadiabatic molecular dynamics. J Chem Phys 2019; 151:044119. [DOI: 10.1063/1.5100506] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Johan E. Runeson
- Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | | |
Collapse
|
16
|
Pfalzgraff WC, Montoya-Castillo A, Kelly A, Markland TE. Efficient construction of generalized master equation memory kernels for multi-state systems from nonadiabatic quantum-classical dynamics. J Chem Phys 2019; 150:244109. [DOI: 10.1063/1.5095715] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- William C. Pfalzgraff
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
- Department of Chemistry, Chatham University, Pittsburgh, Pennsylvania 15232, USA
| | | | - Aaron Kelly
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Thomas E. Markland
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
17
|
Kelly A. Mean field theory of thermal energy transport in molecular junctions. J Chem Phys 2019; 150:204107. [DOI: 10.1063/1.5089885] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Aaron Kelly
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
18
|
Saller MAC, Kelly A, Richardson JO. On the identity of the identity operator in nonadiabatic linearized semiclassical dynamics. J Chem Phys 2019; 150:071101. [DOI: 10.1063/1.5082596] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Aaron Kelly
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | | |
Collapse
|
19
|
Mulvihill E, Schubert A, Sun X, Dunietz BD, Geva E. A modified approach for simulating electronically nonadiabatic dynamics via the generalized quantum master equation. J Chem Phys 2019; 150:034101. [DOI: 10.1063/1.5055756] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ellen Mulvihill
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Alexander Schubert
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, USA
| | - Xiang Sun
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Barry D. Dunietz
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, USA
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
20
|
Kidon L, Wang H, Thoss M, Rabani E. On the memory kernel and the reduced system propagator. J Chem Phys 2018; 149:104105. [DOI: 10.1063/1.5047446] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Lyran Kidon
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Haobin Wang
- Department of Chemistry, University of Colorado Denver, Denver, Colorado 80217-3364, USA
| | - Michael Thoss
- Institute of Physics, University of Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg, Germany
| | - Eran Rabani
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
21
|
Ke Y, Zhao Y. An extension of stochastic hierarchy equations of motion for the equilibrium correlation functions. J Chem Phys 2017; 146:214105. [PMID: 28576086 PMCID: PMC5453806 DOI: 10.1063/1.4984260] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 05/16/2017] [Indexed: 11/14/2022] Open
Abstract
A traditional stochastic hierarchy equations of motion method is extended into the correlated real-time and imaginary-time propagations, in this paper, for its applications in calculating the equilibrium correlation functions. The central idea is based on a combined employment of stochastic unravelling and hierarchical techniques for the temperature-dependent and temperature-free parts of the influence functional, respectively, in the path integral formalism of the open quantum systems coupled to a harmonic bath. The feasibility and validity of the proposed method are justified in the emission spectra of homodimer compared to those obtained through the deterministic hierarchy equations of motion. Besides, it is interesting to find that the complex noises generated from a small portion of real-time and imaginary-time cross terms can be safely dropped to produce the stable and accurate position and flux correlation functions in a broad parameter regime.
Collapse
Affiliation(s)
- Yaling Ke
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yi Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|