1
|
Tiwari N, Tiwari AK. Confinement Effects of Two-Dimensional Surfaces on Water Adsorption and Dissociation over Pt(111). Chemphyschem 2024:e202400586. [PMID: 39221988 DOI: 10.1002/cphc.202400586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
It has been established that the confined space created by stacking a two dimensional (2D) surface atop a metal catalyst serves as a nano-reactor. According to recent research, when a graphene (Gr) overlayer encloses a catalyst from above, the activation barrier for the water dissociation reaction, a process with major industrial significance, decreases. In order to investigate how the effect of confinement varies among different two-dimensional (2D) materials, we study the adsorption and dissociation barriers of water molecule on (111) under graphene, hexagonal boron nitride (h-BN), and heptazine-based graphitic carbon nitride (g-C3N4) layers using density functional theory calculations. Our findings reveal that the strength of adsorption does not decrease consistently with a reduction in the height of the 2D overlayer. Furthermore, a smaller barrier is not always the consequence of poorer adsorption of the reactant. We also examine the effect of confinement on the shape of the reaction path, on the frequencies of vibrational modes, and on the rate constants derived using the harmonic transition state theory. Overall, all three 2D surfaces cause a decrease in barrier height and a weakening of adsorption, though to differing degrees due to a mix of mechanical, geometric and electronic variables.
Collapse
Affiliation(s)
- Nidhi Tiwari
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Ashwani K Tiwari
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| |
Collapse
|
2
|
Roy S, Tiwari A. Mode Selective Chemistry for the Dissociation of Methane on Efficient Ni/Pt-Bimetallic Alloy Catalysts. Phys Chem Chem Phys 2022; 24:16596-16610. [DOI: 10.1039/d2cp02030k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mode selectivity of methane dissociation is studied on three different Ni/Pt-bimetallic alloy surfaces using a fully quantum approach based on reaction path Hamiltonian. Dissociative sticking probability depends on the...
Collapse
|
3
|
OH and O mediated interaction of CO2 with Ni(1 1 0) surface, and its implications on biomimetic CO2 hydration. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Monaco F, Effori E, Hubert M, Siebert E, Geneste G, Morel B, Djurado E, Montinaro D, Laurencin J. Electrode kinetics of porous Ni-3YSZ cermet operated in fuel cell and electrolysis modes for solid oxide cell application. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Chen S, Peterson CW, Parker JA, Rice SA, Ferguson AL, Scherer NF. Data-driven reaction coordinate discovery in overdamped and non-conservative systems: application to optical matter structural isomerization. Nat Commun 2021; 12:2548. [PMID: 33953159 PMCID: PMC8099877 DOI: 10.1038/s41467-021-22794-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/22/2021] [Indexed: 11/09/2022] Open
Abstract
Optical matter (OM) systems consist of (nano-)particle constituents in solution that can self-organize into ordered arrays that are bound by electrodynamic interactions. They also manifest non-conservative forces, and the motions of the nano-particles are overdamped; i.e., they exhibit diffusive trajectories. We propose a data-driven approach based on principal components analysis (PCA) to determine the collective modes of non-conservative overdamped systems, such as OM structures, and harmonic linear discriminant analysis (HLDA) of time trajectories to estimate the reaction coordinate for structural transitions. We demonstrate the approach via electrodynamics-Langevin dynamics simulations of six electrodynamically-bound nanoparticles in an incident laser beam. The reaction coordinate we discover is in excellent accord with a rigorous committor analysis, and the identified mechanism for structural isomerization is in very good agreement with the experimental observations. The PCA-HLDA approach to data-driven discovery of reaction coordinates can aid in understanding and eventually controlling non-conservative and overdamped systems including optical and active matter systems.
Collapse
Affiliation(s)
- Shiqi Chen
- Department of Chemistry, University of Chicago, Chicago, IL, USA
- James Franck Institute, University of Chicago, Chicago, IL, USA
| | - Curtis W Peterson
- Department of Chemistry, University of Chicago, Chicago, IL, USA
- James Franck Institute, University of Chicago, Chicago, IL, USA
| | - John A Parker
- James Franck Institute, University of Chicago, Chicago, IL, USA
- Department of Physics, University of Chicago, Chicago, IL, USA
| | - Stuart A Rice
- Department of Chemistry, University of Chicago, Chicago, IL, USA
- James Franck Institute, University of Chicago, Chicago, IL, USA
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.
| | - Norbert F Scherer
- Department of Chemistry, University of Chicago, Chicago, IL, USA.
- James Franck Institute, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
6
|
Kroes GJ. Computational approaches to dissociative chemisorption on metals: towards chemical accuracy. Phys Chem Chem Phys 2021; 23:8962-9048. [PMID: 33885053 DOI: 10.1039/d1cp00044f] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We review the state-of-the-art in the theory of dissociative chemisorption (DC) of small gas phase molecules on metal surfaces, which is important to modeling heterogeneous catalysis for practical reasons, and for achieving an understanding of the wealth of experimental information that exists for this topic, for fundamental reasons. We first give a quick overview of the experimental state of the field. Turning to the theory, we address the challenge that barrier heights (Eb, which are not observables) for DC on metals cannot yet be calculated with chemical accuracy, although embedded correlated wave function theory and diffusion Monte-Carlo are moving in this direction. For benchmarking, at present chemically accurate Eb can only be derived from dynamics calculations based on a semi-empirically derived density functional (DF), by computing a sticking curve and demonstrating that it is shifted from the curve measured in a supersonic beam experiment by no more than 1 kcal mol-1. The approach capable of delivering this accuracy is called the specific reaction parameter (SRP) approach to density functional theory (DFT). SRP-DFT relies on DFT and on dynamics calculations, which are most efficiently performed if a potential energy surface (PES) is available. We therefore present a brief review of the DFs that now exist, also considering their performance on databases for Eb for gas phase reactions and DC on metals, and for adsorption to metals. We also consider expressions for SRP-DFs and briefly discuss other electronic structure methods that have addressed the interaction of molecules with metal surfaces. An overview is presented of dynamical models, which make a distinction as to whether or not, and which dissipative channels are modeled, the dissipative channels being surface phonons and electronically non-adiabatic channels such as electron-hole pair excitation. We also discuss the dynamical methods that have been used, such as the quasi-classical trajectory method and quantum dynamical methods like the time-dependent wave packet method and the reaction path Hamiltonian method. Limits on the accuracy of these methods are discussed for DC of diatomic and polyatomic molecules on metal surfaces, paying particular attention to reduced dimensionality approximations that still have to be invoked in wave packet calculations on polyatomic molecules like CH4. We also address the accuracy of fitting methods, such as recent machine learning methods (like neural network methods) and the corrugation reducing procedure. In discussing the calculation of observables we emphasize the importance of modeling the properties of the supersonic beams in simulating the sticking probability curves measured in the associated experiments. We show that chemically accurate barrier heights have now been extracted for DC in 11 molecule-metal surface systems, some of which form the most accurate core of the only existing database of Eb for DC reactions on metal surfaces (SBH10). The SRP-DFs (or candidate SRP-DFs) that have been derived show transferability in many cases, i.e., they have been shown also to yield chemically accurate Eb for chemically related systems. This can in principle be exploited in simulating rates of catalyzed reactions on nano-particles containing facets and edges, as SRP-DFs may be transferable among systems in which a molecule dissociates on low index and stepped surfaces of the same metal. In many instances SRP-DFs have allowed important conclusions regarding the mechanisms underlying observed experimental trends. An important recent observation is that SRP-DFT based on semi-local exchange DFs has so far only been successful for systems for which the difference of the metal work function and the molecule's electron affinity exceeds 7 eV. A main challenge to SRP-DFT is to extend its applicability to the other systems, which involve a range of important DC reactions of e.g. O2, H2O, NH3, CO2, and CH3OH. Recent calculations employing a PES based on a screened hybrid exchange functional suggest that the road to success may be based on using exchange functionals of this category.
Collapse
Affiliation(s)
- Geert-Jan Kroes
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| |
Collapse
|
7
|
Liu T, Fu B, Zhang DH. A comparison study of the six-dimensional quantum dynamics for the dissociative chemisorption of HCl on different facets of Ag. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.138078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Wang W. Physisorbed State Regulates the Dissociation Mechanism of H 2O on Ni(100). J Phys Chem A 2020; 124:8724-8732. [PMID: 33045831 DOI: 10.1021/acs.jpca.0c06130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Water dissociation is a key step in many industrial catalytic processes. The dissociation of H2O on a rigid Ni(100) surface was investigated by the quantum instanton method with a full-dimensional potential energy surface. The calculated free-energy barrier maps showed that the free-energy barrier varied dramatically with the surface site. The free-energy well map demonstrated that the physisorption well of H2O was existent at all of the surface sites, and H2O could be dissociated by both the direct and steady-state processes. The calculated direct dissociation rate constants at different surface sites decreased rapidly in the order transition state (TS) > bridge > top > hollow. The steady-state dissociation rate constants had the same trend as that of the direct process but the steady-state dissociation rate constant at the top site became the largest at high temperatures. The direct dissociation rate constants were always larger than those of the steady-state process at a given temperature. The calculated kinetic isotope effects for the direct and steady-state processes were extremely large at low temperatures, which was caused by the zero-point energy correction and remarkable quantum tunneling. From low temperature to high temperature, H2O would undergo stable molecular adsorption at the top site, steady-state dissociation at the TS site, direct rupture at the TS site, and direct decomposition at the impact site.
Collapse
Affiliation(s)
- Wenji Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi Province, P. R. China
| |
Collapse
|
9
|
Roy S, K. J. N, Tiwari N, Tiwari AK. Energetics and dynamics of CH4 and H2O dissociation on metal surfaces. INT REV PHYS CHEM 2020. [DOI: 10.1080/0144235x.2020.1765598] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Sudipta Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Nayanthara K. J.
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Nidhi Tiwari
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Ashwani K. Tiwari
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| |
Collapse
|
10
|
Liu T, Fu B, Zhang DH. Six-dimensional potential energy surfaces for the dissociative chemisorption of HCl on rigid Ag(100) and Ag(110) surfaces. J Chem Phys 2019; 151:144707. [DOI: 10.1063/1.5122218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Tianhui Liu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Dong H. Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| |
Collapse
|
11
|
Park GB, Krüger BC, Borodin D, Kitsopoulos TN, Wodtke AM. Fundamental mechanisms for molecular energy conversion and chemical reactions at surfaces. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2019; 82:096401. [PMID: 31304916 DOI: 10.1088/1361-6633/ab320e] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The dream of theoretical surface chemistry is to predict the outcome of reactions in order to find the ideal catalyst for a certain application. Having a working ab initio theory in hand would not only enable these predictions but also provide insights into the mechanisms of surface reactions. The development of theoretical models can be assisted by experimental studies providing benchmark data. Though for some reactions a quantitative agreement between experimental observations and theoretical calculations has been achieved, theoretical surface chemistry is in general still far away from gaining predictive power. Here we review recent experimental developments towards the understanding of surface reactions. It is demonstrated how quantum-state resolved scattering experiments on reactive and nonreactive systems can be used to test front-running theoretical approaches. Two challenges for describing dynamics at surfaces are addressed: nonadiabaticity in diatomic molecule surface scattering and the increasing system size when observing and describing the dynamics of polyatomic molecules at surfaces. Finally recent experimental studies on reactive systems are presented. It is shown how elementary steps in a complex surface reaction can be revealed experimentally.
Collapse
Affiliation(s)
- G Barratt Park
- Max Planck Institute for Biophysical Chemistry, Göttingen, Am Fassberg 11, 37077 Göttingen, Germany. Institute for Physical Chemistry, University of Goettingen, Tammannstr. 6, 37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
12
|
Ghosh S, Ray D, Tiwari AK. Effects of alloying on mode-selectivity in H2O dissociation on Cu/Ni bimetallic surfaces. J Chem Phys 2019; 150:114702. [DOI: 10.1063/1.5085696] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Smita Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Dhiman Ray
- Department of Chemistry, University of California Irvine, Irvine, California 92617, USA
| | - Ashwani K. Tiwari
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| |
Collapse
|
13
|
Zhu L, Liu C, Wen X, Li YW, Jiao H. Coverage dependent structure and energy of water dissociative adsorption on clean and O-pre-covered Ni (100) and Ni(110). Catal Sci Technol 2019. [DOI: 10.1039/c9cy01251f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
H2O dissociative adsorption on clean and O pre-covered Ni(100) and Ni(110) surfaces has been computed systematically on the basis of periodic density functional theory and ab initio atomistic thermodynamics.
Collapse
Affiliation(s)
- Ling Zhu
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan
- China
| | - Chunli Liu
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan
- China
| | - Xiaodong Wen
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan
- China
| | - Yong-Wang Li
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan
- China
| | - Haijun Jiao
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan
- China
| |
Collapse
|
14
|
Migliorini D, Nattino F, Tiwari AK, Kroes GJ. HOD on Ni(111): Ab Initio molecular dynamics prediction of molecular beam experiments. J Chem Phys 2018; 149:244706. [DOI: 10.1063/1.5059357] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Davide Migliorini
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Francesco Nattino
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Ashwani K. Tiwari
- Indian Institute of Science Education and Research Kolkata, Mohanpur 741246 West Bengal, India
| | - Geert-Jan Kroes
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
15
|
Liu T, Chen J, Zhang Z, Shen X, Fu B, Zhang DH. Water dissociating on rigid Ni(100): A quantum dynamics study on a full-dimensional potential energy surface. J Chem Phys 2018; 148:144705. [PMID: 29655332 DOI: 10.1063/1.5023069] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We constructed a nine-dimensional (9D) potential energy surface (PES) for the dissociative chemisorption of H2O on a rigid Ni(100) surface using the neural network method based on roughly 110 000 energies obtained from extensive density functional theory (DFT) calculations. The resulting PES is accurate and smooth, based on the small fitting errors and the good agreement between the fitted PES and the direct DFT calculations. Time dependent wave packet calculations also showed that the PES is very well converged with respect to the fitting procedure. The dissociation probabilities of H2O initially in the ground rovibrational state from 9D quantum dynamics calculations are quite different from the site-specific results from the seven-dimensional (7D) calculations, indicating the importance of full-dimensional quantum dynamics to quantitatively characterize this gas-surface reaction. It is found that the validity of the site-averaging approximation with exact potential holds well, where the site-averaging dissociation probability over 15 fixed impact sites obtained from 7D quantum dynamics calculations can accurately approximate the 9D dissociation probability for H2O in the ground rovibrational state.
Collapse
Affiliation(s)
- Tianhui Liu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Jun Chen
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Zhaojun Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Xiangjian Shen
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Dong H Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| |
Collapse
|
16
|
Ray D, Ghosh S, Tiwari AK. Controlling Heterogeneous Catalysis of Water Dissociation Using Cu–Ni Bimetallic Alloy Surfaces: A Quantum Dynamics Study. J Phys Chem A 2018; 122:5698-5709. [PMID: 29879359 DOI: 10.1021/acs.jpca.8b03237] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dhiman Ray
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Smita Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Ashwani K. Tiwari
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|
17
|
Jiang B. Rotational and steric effects in water dissociative chemisorption on Ni(111). Chem Sci 2017; 8:6662-6669. [PMID: 28989694 PMCID: PMC5625257 DOI: 10.1039/c7sc02659e] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/26/2017] [Indexed: 12/19/2022] Open
Abstract
Powerful laser techniques have recently enabled quantum-state resolved molecular beam experiments for investigating gas-surface reactions, which have unveiled intriguing vibrational, rotational, and also steric effects. For reactions involving polyatomic molecules, e.g., the dissociative chemisorption of methane and water, the rotational and related steric effects are far less understood despite a large body of theoretical work having been able to reproduce the observed vibrational mode specificity and related bond selectivity semi-quantitatively or even within chemical accuracy. Herein, we report a high dimensional quantum dynamics study of water dissociation on Ni(111) on a first-principles potential energy surface, focusing on the reactivities of D2O in various rotational quantum states with different spatial orientations. Through an accurate quantum mechanical description of this asymmetric top, remarkable dependence of the reactivity on the orientation is observed. This dependence is site specific and rotational state specific. These single site rotational and steric effects are partially justified by a sudden model on the basis of the overlap between the rotational wavefunctions and the angular potential near the transition state, but rotational steering also plays a significant role which complicates the dynamics. Although site averaging weakens the influence of initial rotational excitations and leads to minor effects to the reactivity, steric effects are predicted to be observable if the water molecule is selectively excited and aligned by a linearly polarized laser.
Collapse
Affiliation(s)
- Bin Jiang
- Department of Chemical Physics , University of Science and Technology of China , Hefei 230026 , China .
| |
Collapse
|