1
|
Phan AD, Schweizer KS. Effect of the nature of the solid substrate on spatially heterogeneous activated dynamics in glass forming supported films. J Chem Phys 2024; 160:074902. [PMID: 38364012 DOI: 10.1063/5.0188016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/10/2024] [Indexed: 02/18/2024] Open
Abstract
We extend the force-level elastically collective nonlinear Langevin equation theory to treat the spatial gradients of the alpha relaxation time and glass transition temperature, and the corresponding film-averaged quantities, to the geometrically asymmetric case of finite thickness supported films with variable fluid-substrate coupling. The latter typically nonuniversally slows down motion near the solid-liquid interface as modeled via modification of the surface dynamic free energy caging constraints that are spatially transferred into the film and which compete with the accelerated relaxation gradient induced by the vapor interface. Quantitative applications to the foundational hard sphere fluid and a polymer melt are presented. The strength of the effective fluid-substrate coupling has very large consequences for the dynamical gradients and film-averaged quantities in a film thickness and thermodynamic state dependent manner. The interference of the dynamical gradients of opposite nature emanating from the vapor and solid interfaces is determined, including the conditions for the disappearance of a bulk-like region in the film center. The relative importance of surface-induced modification of local caging vs the generic truncation of the long range collective elastic component of the activation barrier is studied. The conditions for the accuracy and failure of a simple superposition approximation for dynamical gradients in thin films are also determined. The emergence of near substrate dead layers, large gradient effects on film-averaged response functions, and a weak non-monotonic evolution of dynamic gradients in thick and cold films are briefly discussed. The connection of our theoretical results to simulations and experiments is briefly discussed, as is the extension to treat more complex glass-forming systems under nanoconfinement.
Collapse
Affiliation(s)
- Anh D Phan
- Faculty of Materials Science and Engineering, Phenikaa University, Hanoi 12116, Vietnam
- Phenikaa Institute for Advanced Study, Phenikaa University, Hanoi 12116, Vietnam
| | - Kenneth S Schweizer
- Departments of Materials Science, Chemistry, Chemical and Biomolecular Engineering and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, USA
| |
Collapse
|
2
|
Nie W, Douglas JF, Xia W. Competing Effects of Molecular Additives and Cross-Link Density on the Segmental Dynamics and Mechanical Properties of Cross-Linked Polymers. ACS ENGINEERING AU 2023; 3:512-526. [PMID: 38144677 PMCID: PMC10739619 DOI: 10.1021/acsengineeringau.3c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/30/2023] [Accepted: 10/06/2023] [Indexed: 12/26/2023]
Abstract
The introduction of molecular additives into thermosets often results in changes in their dynamics and mechanical properties that can have significant ramifications for diverse applications of this broad class of materials such as coatings, high-performance composites, etc. Currently, there is limited fundamental understanding of how such additives influence glass formation in these materials, a problem of broader significance in glass-forming materials. To address this fundamental problem, here, we employ a simplified coarse-grained (CG) model of a polymer network as a model of thermoset materials and then introduce a polymer additive having the same inherent rigidity and polymer-polymer interaction strength as the cross-linked polymer matrix. This energetically "neutral" or "self-plasticizing" additive model gives rise to non-trivial changes in the dynamics of glass formation and provides an important theoretical reference point for the technologically more important case of interacting additives. Based on this rather idealized model, we systematically explore the combined effect of varying the additive mass percentage (m) and cross-link density (c) on the segmental relaxation dynamics and mechanical properties of a model thermoset material with additives. We find that increasing the additive mass percentage m progressively decreases both the glass-transition temperature Tg and the fragility of glass formation, a trend opposite to increasing c so that these thermoset variables clearly have a competing effect on glass formation in these model materials. Moreover, basic mechanical properties (i.e., bulk, shear, and tensile moduli) likewise exhibit a competitive variation with the increase of m and c, which are strongly correlated with the Debye-Waller parameter ⟨u2⟩, a measure of material stiffness at a molecular scale. Our findings prove beneficial in the development of structure-property relationships for the cross-linked polymers, which could help guide the design of such network materials with tailored physical properties.
Collapse
Affiliation(s)
- Wenjian Nie
- Department
of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Jack F. Douglas
- Materials
Science and Engineering Division, National
Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Wenjie Xia
- Department
of Aerospace Engineering, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
3
|
Zheng X, Guo Y, Douglas JF, Xia W. Competing Effects of Cohesive Energy and Cross-Link Density on the Segmental Dynamics and Mechanical Properties of Cross-Linked Polymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiangrui Zheng
- Department of Mechanics, School of Physical Science and Engineering, Beijing Jiaotong Uiversity, Beijing, 100044, China
| | - Yafang Guo
- Department of Mechanics, School of Physical Science and Engineering, Beijing Jiaotong Uiversity, Beijing, 100044, China
| | - Jack F. Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Wenjie Xia
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58108, United States
| |
Collapse
|
4
|
Local conformations and heterogeneities in structures and dynamics of isotactic polypropylene adsorbed onto carbon fiber. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
5
|
Relaxation behavior of polymer thin films: Effects of free surface, buried interface, and geometrical confinement. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101431] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Galukhin A, Nosov R, Taimova G, Nikolaev I, Islamov D, Vyazovkin S. Polymerization kinetics of adamantane-based dicyanate ester and thermal properties of resulting polymer. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Xu WS, Douglas JF, Xu X. Role of Cohesive Energy in Glass Formation of Polymers with and without Bending Constraints. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01876] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Wen-Sheng Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jack F. Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Xiaolei Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
8
|
Storey AN, Zhang W, Douglas JF, Starr FW. How Does Monomer Structure Affect the Interfacial Dynamics of Supported Ultrathin Polymer Films? Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Amber N. Storey
- Department of Physics, Wesleyan University, Middletown, Connecticut 06459-0155, United States
| | - Wengang Zhang
- Department of Physics, Wesleyan University, Middletown, Connecticut 06459-0155, United States
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Jack F. Douglas
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Francis W. Starr
- Department of Physics, Wesleyan University, Middletown, Connecticut 06459-0155, United States
| |
Collapse
|
9
|
Xu WS, Douglas JF, Xu X. Molecular Dynamics Study of Glass Formation in Polymer Melts with Varying Chain Stiffness. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00731] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Wen-Sheng Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jack F. Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Xiaolei Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
10
|
Zhang W, Emamy H, Pazmiño Betancourt BA, Vargas-Lara F, Starr FW, Douglas JF. The interfacial zone in thin polymer films and around nanoparticles in polymer nanocomposites. J Chem Phys 2019; 151:124705. [DOI: 10.1063/1.5119269] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Wengang Zhang
- Department of Physics, Wesleyan University, Middletown, Connecticut 06459, USA
- Materials Science and Engineering, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Hamed Emamy
- Department of Physics, Wesleyan University, Middletown, Connecticut 06459, USA
- Department of Chemical Engineering, Columbia University, New York, New York 10027, USA
| | - Beatriz A. Pazmiño Betancourt
- Department of Physics, Wesleyan University, Middletown, Connecticut 06459, USA
- Materials Science and Engineering, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Fernando Vargas-Lara
- Department of Physics, Wesleyan University, Middletown, Connecticut 06459, USA
- Materials Science and Engineering, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Francis W. Starr
- Department of Physics, Wesleyan University, Middletown, Connecticut 06459, USA
| | - Jack F. Douglas
- Materials Science and Engineering, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
11
|
Xia W, Lan T. Interfacial Dynamics Governs the Mechanical Properties of Glassy Polymer Thin Films. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01235] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wenjie Xia
- Department of Civil & Environmental Engineering, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Tian Lan
- Formulation, Automation & Materials Science, Core R&D, The Dow Chemical Company, 400 Arcola Rd., Collegeville, Pennsylvania 19426, United States
| |
Collapse
|
12
|
Xia W, Qin X, Zhang Y, Sinko R, Keten S. Achieving Enhanced Interfacial Adhesion and Dispersion in Cellulose Nanocomposites via Amorphous Interfaces. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b02243] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Wenjie Xia
- Department of Civil & Environmental Engineering, North Dakota State University, NDSU Dept. 2470, PO Box 6050, Fargo, North Dakota 58108, United States
| | | | | | - Robert Sinko
- Department of Mechanical Engineering, Northern Illinois University, 590 Garden Rd., Dekalb, Illinois 60115, United States
| | | |
Collapse
|
13
|
Xia W, Vargas-Lara F, Keten S, Douglas JF. Structure and Dynamics of a Graphene Melt. ACS NANO 2018; 12:5427-5435. [PMID: 29787245 DOI: 10.1021/acsnano.8b00524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We explore the structural and dynamic properties of bulk materials composed of graphene nanosheets using coarse-grained molecular dynamics simulations. Remarkably, our results show clear evidence that bulk graphene materials exhibit a fluid-like behavior similar to linear polymer melts at elevated temperatures and that these materials transform into a glassy-like "foam" state at temperatures below the glass-transition temperature ( Tg) of these materials. Distinct from an isolated graphene sheet, which exhibits a relatively flat shape with fluctuations, we find that graphene sheets in a melt state structurally adopt more "crumpled" configurations and correspondingly smaller sizes, as normally found for ordinary polymers in the melt. Upon approaching the glass transition, these two-dimensional polymeric materials exhibit a dramatic slowing down of their dynamics that is likewise similar to ordinary linear polymer glass-forming liquids. Bulk graphene materials in their glassy foam state have an exceptionally large free-volume and high thermal stability due to their high Tg (≈ 1600 K) as compared to conventional polymer materials. Our findings show that graphene melts have interesting lubricating and "plastic" flow properties at elevated temperatures, and suggest that graphene foams are highly promising as high surface filtration materials and fire suppression additives for improving the thermal conductivities and mechanical reinforcement of polymer materials.
Collapse
Affiliation(s)
- Wenjie Xia
- Materials Science & Engineering Division , National Institute of Standards and Technology , Gaithersburg , Maryland 20899 , United States
| | - Fernando Vargas-Lara
- Materials Science & Engineering Division , National Institute of Standards and Technology , Gaithersburg , Maryland 20899 , United States
| | | | - Jack F Douglas
- Materials Science & Engineering Division , National Institute of Standards and Technology , Gaithersburg , Maryland 20899 , United States
| |
Collapse
|
14
|
Snyder CR, DeLongchamp DM. Glassy phases in organic semiconductors. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE 2018; 22:10.1016/j.cossms.2018.03.001. [PMID: 35529422 PMCID: PMC9074799 DOI: 10.1016/j.cossms.2018.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Organic semiconductors may be processed from fluids using graphical arts printing and patterning techniques to create complex circuitry. Because organic semiconductors are weak van der Waals solids, the creation of glassy phases during processing is quite common. Because structural disorder leads to electronic disorder, it is necessary to understand these phases to optimize and control the electronic properties of these materials. Here we review the significance of glassy phases in organic semiconductors. We examine challenges in the measurement of the glass transition temperature and the accurate classification of phases in these relatively rigid materials. Device implications of glassy phases are discussed. Processing schemes that are grounded in the principles of glass physics and sound glass transition temperature measurement will more quickly achieve desired structure and electronic characteristics, accelerating the exciting progress of organic semiconductor technology development.
Collapse
Affiliation(s)
- Chad R Snyder
- Materials Science and Engineering Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Dean M DeLongchamp
- Materials Science and Engineering Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| |
Collapse
|
15
|
Xia W, Song J, Hansoge NK, Phelan FR, Keten S, Douglas JF. Energy Renormalization for Coarse-Graining the Dynamics of a Model Glass-Forming Liquid. J Phys Chem B 2018; 122:2040-2045. [PMID: 29400063 PMCID: PMC6217959 DOI: 10.1021/acs.jpcb.8b00321] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Coarse-grained modeling achieves the enhanced computational efficiency required to model glass-forming materials by integrating out "unessential" molecular degrees of freedom, but no effective temperature transferable coarse-graining method currently exists to capture dynamics. We address this fundamental problem through an energy-renormalization scheme, in conjunction with the localization model of relaxation relating the Debye-Waller factor ⟨u2⟩ to the structural relaxation time τ. Taking ortho-terphenyl as a model small-molecule glass-forming liquid, we show that preserving ⟨u2⟩ (at picosecond time scale) under coarse-graining by renormalizing the cohesive interaction strength allows for quantitative prediction of both short- and long-time dynamics covering the entire temperature range of glass formation. Our findings provide physical insights into the dynamics of cooled liquids and make progress for building temperature-transferable coarse-grained models that predict key properties of glass-forming materials.
Collapse
Affiliation(s)
- Wenjie Xia
- Materials Science & Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Center for Hierarchical Materials Design, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, United States
- Department of Civil & Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, United States
| | - Jake Song
- Department of Materials Science & Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, United States
| | - Nitin K. Hansoge
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, United States
| | - Frederick R. Phelan
- Materials Science & Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Sinan Keten
- Department of Civil & Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, United States
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, United States
| | - Jack F. Douglas
- Materials Science & Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
16
|
Mani S, Khare R. Effect of Chain Flexibility and Interlayer Interactions on the Local Dynamics of Layered Polymer Systems. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b01519] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sriramvignesh Mani
- Department of Chemical Engineering, Texas Tech University, Box 43121, Lubbock, Texas 79409-3121, United States
| | - Rajesh Khare
- Department of Chemical Engineering, Texas Tech University, Box 43121, Lubbock, Texas 79409-3121, United States
| |
Collapse
|
17
|
Tam LH, Chow CL, Lau D. Moisture effect on interfacial integrity of epoxy-bonded system: a hierarchical approach. NANOTECHNOLOGY 2018; 29:024001. [PMID: 29057750 DOI: 10.1088/1361-6528/aa9537] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The epoxy-bonded system has been widely used in various applications across different scale lengths. Prior investigations have indicated that the moisture-affected interfacial debonding is the major failure mode of such a system, but the fundamental mechanism remains unknown, such as the basis for the invasion of water molecules in the cross-linked epoxy and the epoxy-bonded interface. This prevents us from predicting the long-term performance of the epoxy-related applications under the effect of the moisture. Here, we use full atomistic models to investigate the response of the epoxy-bonded system towards the adhesion test, and provide a detailed analysis of the interfacial integrity under the moisture effect and the associated debonding mechanism. Molecular dynamics simulations show that water molecules affect the hierarchical structure of the epoxy-bonded system at the nanoscale by disrupting the film-substrate interaction and the molecular interaction within the epoxy, which leads to the detachment of the epoxy thin film, and the final interfacial debonding. The simulation results show good agreement with the experimental results of the epoxy-bonded system. Through identifying the relationship between the epoxy structure and the debonding mechanism at multiple scales, it is shown that the hierarchical structure of the epoxy-bonded system is crucial for the interfacial integrity. In particular, the available space of the epoxy-bonded system, which consists of various sizes ranging from the atomistic scale to the macroscale and is close to the interface facilitates the moisture accumulation, leading to a distinct interfacial debonding when compared to the dry scenario.
Collapse
Affiliation(s)
- Lik-Ho Tam
- School of Transportation Science and Engineering, Beihang University, 37 Xueyuan Road, Beijing 100191, People's Republic of China
| | | | | |
Collapse
|
18
|
Song J, Hsu DD, Shull KR, Phelan FR, Douglas JF, Xia W, Keten S. Energy Renormalization Method for the Coarse-Graining of Polymer Viscoelasticity. Macromolecules 2018; 51:10.1021/acs.macromol.7b02560. [PMID: 30996476 PMCID: PMC6463302 DOI: 10.1021/acs.macromol.7b02560] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Developing temperature transferable coarse-grained (CG) models is essential for the computational prediction of polymeric glass-forming (GF) material behavior, but their dynamics are often greatly altered from those of all-atom (AA) models mainly because of the reduced fluid configurational entropy under coarse-graining. To address this issue, we have recently introduced an energy renormalization (ER) strategy that corrects the activation free energy of the CG polymer model by renormalizing the cohesive interaction strength ε as a function of temperature T, i.e., ε(T), thus semiempirically preserving the T-dependent dynamics of the AA model. Here we apply our ER method to consider-in addition to T-dependency-the frequency f-dependent polymer viscoelasticity. Through smallamplitude oscillatory shear molecular dynamics simulations, we show that changing the imposed oscillation f on the CG systems requires changes in ε values (i.e., ε(T, f)) to reproduce the AA viscoelasticity. By accounting for the dynamic fragility of polymers as a material parameter, we are able to predict ε(T, f) under coarse-graining in order to capture the AA viscoelasticity, and consequently the activation energy, across a wide range of T and f in the GF regime. Specifically, we showcase our achievements on two representative polymers of distinct fragilities, polybutadiene (PB) and polystyrene (PS), and show that our CG models are able to sample viscoelasticity up to the megahertz regime, which approaches state-of-the-art experimental resolutions, and capture results sampled via AA simulations and prior experiments.
Collapse
Affiliation(s)
- Jake Song
- Department of Materials Science & Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, United States
| | - David D. Hsu
- Department of Physics and Engineering, Wheaton College, 501 College Avenue, Wheaton, Illinois 60187, United States
| | - Kenneth R. Shull
- Department of Materials Science & Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, United States
| | - Frederick R. Phelan
- Materials Science & Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Jack F. Douglas
- Materials Science & Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Wenjie Xia
- Department of Civil & Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, United States
- Center for Hierarchical Materials Design, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, United States
- Materials Science & Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Sinan Keten
- Department of Civil & Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, United States
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, United States
| |
Collapse
|
19
|
Kobayashi S, Kataoka H, Goseki R, Ishizone T. Living Anionic Polymerization of 4-(1-Adamantyl)-α-Methylstyrene. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700450] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shingo Kobayashi
- Department of Chemical Science and Engineering; School of Materials and Chemical Technology; Tokyo Institute of Technology; 2-12-1-S1-13 Ohokayama Meguro-ku Tokyo 152-8552 Japan
| | - Hiroshi Kataoka
- Department of Chemical Science and Engineering; School of Materials and Chemical Technology; Tokyo Institute of Technology; 2-12-1-S1-13 Ohokayama Meguro-ku Tokyo 152-8552 Japan
| | - Raita Goseki
- Department of Chemical Science and Engineering; School of Materials and Chemical Technology; Tokyo Institute of Technology; 2-12-1-S1-13 Ohokayama Meguro-ku Tokyo 152-8552 Japan
| | - Takashi Ishizone
- Department of Chemical Science and Engineering; School of Materials and Chemical Technology; Tokyo Institute of Technology; 2-12-1-S1-13 Ohokayama Meguro-ku Tokyo 152-8552 Japan
| |
Collapse
|
20
|
Xia W, Song J, Jeong C, Hsu DD, Phelan FR, Douglas JF, Keten S. Energy-Renormalization for Achieving Temperature Transferable Coarse-Graining of Polymer Dynamics. Macromolecules 2017; 50:10.1021/acs.macromol.7b01717. [PMID: 30996475 PMCID: PMC6463524 DOI: 10.1021/acs.macromol.7b01717] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The bottom-up prediction of the properties of polymeric materials based on molecular dynamics simulation is a major challenge in soft matter physics. Coarse-grained (CG) models are often employed to access greater spatiotemporal scales required for many applications, but these models normally experience significantly altered thermodynamics and highly accelerated dynamics due to the reduced number of degrees of freedom upon coarse-graining. While CG models can be calibrated to meet certain properties at particular state points, there is unfortunately no temperature transferable and chemically specific coarse-graining method that allows for modeling of polymer dynamics over a wide temperature range. Here, we pragmatically address this problem by "correcting" for deviations in activation free energies that occur upon coarse-graining the dynamics of a model polymeric material (polystyrene). In particular, we propose a new strategy based on concepts drawn from the Adam-Gibbs (AG) theory of glass formation. Namely we renormalize the cohesive interaction strength and effective interaction length-scale parameters to modify the activation free energy. We show that this energy-renormalization method for CG modeling allows accurate prediction of atomistic dynamics over the Arrhenius regime, the non-Arrhenius regime of glass formation, and even the non-equilibrium glassy regime, thus allowing for the predictive modeling of dynamic properties of polymer over the entire range of glass formation. Our work provides a practical scheme for establishing temperature transferable coarse-grained models for predicting and designing the properties of polymeric materials.
Collapse
Affiliation(s)
- Wenjie Xia
- Materials Science & Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Department of Civil & Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, United States
- Center for Hierarchical Materials Design, Northwestern University, Evanston, Illinois 60208-3109, United States
| | - Jake Song
- Department of Materials Science & Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, United States
| | - Cheol Jeong
- Materials Science & Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - David D. Hsu
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, United States
| | - Frederick R. Phelan
- Materials Science & Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Jack F. Douglas
- Materials Science & Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Sinan Keten
- Department of Civil & Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, United States
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3109, United States
| |
Collapse
|