1
|
Bedolla-Montiel EA, Lange JT, Pérez de Alba Ortíz A, Dijkstra M. Inverse design of crystals and quasicrystals in a non-additive binary mixture of hard disks. J Chem Phys 2024; 160:244902. [PMID: 38916271 DOI: 10.1063/5.0210034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/07/2024] [Indexed: 06/26/2024] Open
Abstract
The development of new materials typically involves a process of trial and error, guided by insights from past experimental and theoretical findings. The inverse design approach for soft-matter systems has the potential to optimize specific physical parameters, such as particle interactions, particle shape, or composition and packing fraction. This optimization aims to facilitate the spontaneous formation of specific target structures through self-assembly. In this study, we expand upon a recently introduced inverse design protocol for monodisperse systems to identify the required conditions and interactions for assembling crystal and quasicrystal phases within a binary mixture of two distinct species. This method utilizes an evolution algorithm to identify the optimal state point and interaction parameters, enabling the self-assembly of the desired structure. In addition, we employ a convolutional neural network (CNN) that classifies different phases based on their diffraction patterns, serving as a fitness function for the desired structure. Using our protocol, we successfully inverse design two-dimensional crystalline structures, including a hexagonal lattice and a dodecagonal quasicrystal, within a non-additive binary mixture of hard disks. Finally, we introduce a symmetry-based order parameter that leverages the encoded symmetry within the diffraction pattern. This order parameter circumvents the need for training a CNN and is used as a fitness function to inverse design an octagonal quasicrystal.
Collapse
Affiliation(s)
- Edwin A Bedolla-Montiel
- Soft Condensed Matter and Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, Netherlands
| | - Jochem T Lange
- Soft Condensed Matter and Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, Netherlands
| | - Alberto Pérez de Alba Ortíz
- Soft Condensed Matter and Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, Netherlands
- Computational Soft Matter Lab, Computational Chemistry Group and Computational Science Lab, van 't Hoff Institute for Molecular Science and Informatics Institute, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - Marjolein Dijkstra
- Soft Condensed Matter and Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, Netherlands
| |
Collapse
|
2
|
Muragishi R, Sato M. Structures Formed by Particles with Shoulderlike Repulsive Interaction in Thin Systems. ACS OMEGA 2023; 8:30450-30458. [PMID: 37636963 PMCID: PMC10448489 DOI: 10.1021/acsomega.3c03624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023]
Abstract
When particles are constructed in thin systems between two parallel flat walls, structures that are not observed in bulk systems are created and the created structures change, depending on the width between the walls. In this study, the structures formed by particles constructed in thin systems were investigated through performing isothermal-isobaric Monte Carlo simulations, where the interaction between the particles is given by the hard-core square shoulder potential. By controlling the width of the shoulder-like repulsive interaction and the system width, several novel structures such as the connection of rhombuses and the square lattice of the (100) face of the body-centered cubic lattice were created.
Collapse
Affiliation(s)
- Ryo Muragishi
- Graduate
School of Natural Science and Technology, Kanazawa University, 920-1192 Kanazawa, Japan
| | - Masahide Sato
- Emerging
Media Initiative, Kanazawa University, 920-1192 Kanazawa, Japan
| |
Collapse
|
3
|
Munguía-Valadez J, Chávez-Rojo MA, Sambriski EJ, Moreno-Razo JA. The generalized continuous multiple step (GCMS) potential: model systems and benchmarks. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:184002. [PMID: 35090143 DOI: 10.1088/1361-648x/ac4fe8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
The generalized continuous multiple step (GCMS) potential is presented in this work. Its flexible form allows forrepulsiveand/orattractivecontributions to be encoded through adjustable energy and length scales. The GCMS interaction provides a continuous representation of square-well, square-shoulder potentials and their variants for implementation in computer simulations. A continuous and differentiable energy representation is required to derive forces in conventional simulation algorithms. Molecular dynamics simulations are of particular interest when considering the dynamic properties of a system. The GCMS potential can mimic other interactions with a judicious choice of parameters due to the versatile sigmoid form. In this study, our benchmarks for the GCMS representation include triangular, Yukawa, Franzese, and Lennard-Jones potentials. Comparisons made with published data on volumetric phase diagrams, liquid structure, and diffusivity from model systems are in excellent agreement.
Collapse
Affiliation(s)
- Jorge Munguía-Valadez
- Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco No. 186, Colonia Vicentina, Delegación Iztapalapa, Mexico City 09340 Mexico
| | - Marco Antonio Chávez-Rojo
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario s/n, Campus II, Chihuahua, Chihuahua 31125, Mexico
| | - Edward John Sambriski
- Department of Chemistry, Delaware Valley University, 700 East Butler Avenue, Doylestown, PA 18901 United States of America
| | - José Antonio Moreno-Razo
- Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco No. 186, Colonia Vicentina, Delegación Iztapalapa, Mexico City 09340 Mexico
| |
Collapse
|
4
|
Coli GM, Boattini E, Filion L, Dijkstra M. Inverse design of soft materials via a deep learning-based evolutionary strategy. SCIENCE ADVANCES 2022; 8:eabj6731. [PMID: 35044828 PMCID: PMC8769546 DOI: 10.1126/sciadv.abj6731] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/22/2021] [Indexed: 05/19/2023]
Abstract
Colloidal self-assembly—the spontaneous organization of colloids into ordered structures—has been considered key to produce next-generation materials. However, the present-day staggering variety of colloidal building blocks and the limitless number of thermodynamic conditions make a systematic exploration intractable. The true challenge in this field is to turn this logic around and to develop a robust, versatile algorithm to inverse design colloids that self-assemble into a target structure. Here, we introduce a generic inverse design method to efficiently reverse-engineer crystals, quasicrystals, and liquid crystals by targeting their diffraction patterns. Our algorithm relies on the synergetic use of an evolutionary strategy for parameter optimization, and a convolutional neural network as an order parameter, and provides a way forward for the inverse design of experimentally feasible colloidal interactions, specifically optimized to stabilize the desired structure.
Collapse
|
5
|
|
6
|
Jayaraman A, Baez-Cotto CM, Mann TJ, Mahanthappa MK. Dodecagonal quasicrystals of oil-swollen ionic surfactant micelles. Proc Natl Acad Sci U S A 2021; 118:e2101598118. [PMID: 34326256 PMCID: PMC8346870 DOI: 10.1073/pnas.2101598118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A delicate balance of noncovalent interactions directs the hierarchical self-assembly of molecular amphiphiles into spherical micelles that pack into three-dimensional periodic arrays, which mimic intermetallic crystals. Herein, we report the discovery that adding water to a mixture of an ionic surfactant and n-decane induces aperiodic ordering of oil-swollen spherical micelles into previously unrecognized, aqueous lyotropic dodecagonal quasicrystals (DDQCs), which exhibit local 12-fold rotational symmetry and no long-range translational order. The emergence of these DDQCs at the nexus of dynamically arrested micellar glasses and a periodic Frank-Kasper (FK) σ phase approximant sensitively depends on the mixing order of molecular constituents in the assembly process and on sample thermal history. Addition of n-decane to mixtures of surfactant and water instead leads only to periodic FK A15 and σ approximants with no evidence for aperiodic order, while extended ambient temperature annealing of the DDQC also reveals its transformation into a σ phase. Thus, these lyotropic DDQCs are long-lived metastable morphologies, which nucleate and grow from a stochastic distribution of micelle sizes formed by abrupt segregation of varied amounts of oil into surfactant micelles on hydration. These findings indicate that molecular building block complexity is not a prerequisite for the formation of aperiodic supramolecular order, while also establishing the generic nature of quasicrystalline states across metal alloys and self-assembled micellar materials.
Collapse
Affiliation(s)
- Ashish Jayaraman
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455
| | | | - Tyler J Mann
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455
| | - Mahesh K Mahanthappa
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455;
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
7
|
Tsiok EN, Fomin YD, Gaiduk EA, Ryzhov VN. Structural transition in two-dimensional Hertzian spheres in the presence of random pinning. Phys Rev E 2021; 103:062612. [PMID: 34271643 DOI: 10.1103/physreve.103.062612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/03/2021] [Indexed: 11/07/2022]
Abstract
Using molecular dynamics simulation we have investigated the influence of random pinning on the phase diagram and melting scenarios of a two-dimensional system with the Hertz potential for α=5/2. It has been shown that random pinning can cardinally change the mechanism of first-order transition between the different crystalline phases (triangular and square) by virtue of generating hexatic and tetratic phases: a triangular crystal to hexatic transition is of the continuous Berezinskii-Kosterlitz-Thouless (BKT) type, a hexatic to tetratic transition is of first order, and finally, there is a continuous BKT-type transition from tetratic to the square crystal.
Collapse
Affiliation(s)
- E N Tsiok
- Institute of High Pressure Physics RAS, Kaluzhskoe shosse, 14, Troitsk, 108840 Moscow, Russia
| | - Yu D Fomin
- Institute of High Pressure Physics RAS, Kaluzhskoe shosse, 14, Troitsk, 108840 Moscow, Russia
| | - E A Gaiduk
- Institute of High Pressure Physics RAS, Kaluzhskoe shosse, 14, Troitsk, 108840 Moscow, Russia
| | - V N Ryzhov
- Institute of High Pressure Physics RAS, Kaluzhskoe shosse, 14, Troitsk, 108840 Moscow, Russia
| |
Collapse
|
8
|
Terao T. Semi-supervised learning for the study of structural formation in colloidal systems via image recognition. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:325901. [PMID: 33962403 DOI: 10.1088/1361-648x/abfee4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
The analysis of the structural formation of colloidal systems using machine learning techniques has recently attracted much attention. In many of these studies, local bond-order parameters (LBOPs) were employed as descriptors, where such LBOPs are suitable mainly for the detection of crystal structures. On the other hand, image-based convolutional neural networks (CNNs) are quite effective in detecting not only crystals but also random structures, and the author demonstrated their efficiency in a previous paper. However, in supervised learning, it is difficult to obtain a correct result when there is an unexpected new phase that was unknown when training the CNN. In this paper, we propose a hybrid scheme that consists of supervised and unsupervised learning techniques, employing two different approaches: image-based CNN and generalized LBOP. The proposed method was applied to two-dimensional colloidal systems, and its efficiency was demonstrated.
Collapse
Affiliation(s)
- Takamichi Terao
- Department of Electrical, Electronic and Computer Engineering, Gifu University, Gifu, Japan
| |
Collapse
|
9
|
Campos-Villalobos G, Dijkstra M, Patti A. Nonconventional Phases of Colloidal Nanorods with a Soft Corona. PHYSICAL REVIEW LETTERS 2021; 126:158001. [PMID: 33929217 DOI: 10.1103/physrevlett.126.158001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Using computer simulations, we investigate the phase behavior of hard-core spherocylinders with a length-to-diameter ratio L/σ=5 and coated by a soft deformable corona of length λ/σ=1.35. When quasi-two-dimensional layers are formed in smectic and solid phases at low temperatures, the competition between the two intrinsic length scales of the parallel aligned particles leads to the stabilization of different in-plane lattices of nonconventional symmetry, including low-density hexagonal, square, and high-density hexagonal crystals, as well as an intriguing dodecagonal quasicrystal. Our Letter opens up the opportunity to control the assembly of anisotropic nanoparticles into structures with preengineered symmetry-dependent physical properties.
Collapse
Affiliation(s)
- Gerardo Campos-Villalobos
- Department of Chemical Engineering and Analytical Science, University of Manchester, Sackville Street, Manchester M13 9PL, United Kingdom
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Department of Physics, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Marjolein Dijkstra
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Department of Physics, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Alessandro Patti
- Department of Chemical Engineering and Analytical Science, University of Manchester, Sackville Street, Manchester M13 9PL, United Kingdom
| |
Collapse
|
10
|
Eslami H, Gharibi A, Müller-Plathe F. Mechanisms of Nucleation and Solid-Solid-Phase Transitions in Triblock Janus Assemblies. J Chem Theory Comput 2021; 17:1742-1754. [PMID: 33529019 DOI: 10.1021/acs.jctc.0c01080] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A model, including the chemical details of core nanoparticles as well as explicit surface charges and hydrophobic patches, of triblock Janus particles is employed to simulate nucleation and solid-solid phase transitions in two-dimensional layers. An explicit solvent and a substrate are included in the model, and hydrodynamic and many-body interactions were taken into account within many-body dissipative particle dynamics simulation. In order not to impose a mechanism a priori, we performed free (unbiased) simulations, leaving the system the freedom to choose its own pathways. In agreement with the experiment and previous biased simulations, a two-step mechanism for the nucleation of a kagome lattice from solution was detected. However, a distinct feature of the present unbiased versus biased simulations is that multiple nuclei emerge from the solution; upon their growth, the aligned and misaligned facets at the grain boundaries are introduced into the system. The liquid-like particles trapped between the neighboring nuclei connect them together. A mismatch in the symmetry planes of neighboring nuclei hinders the growth of less stable (smaller) nuclei. Unification of such nuclei at the grain boundaries of misaligned facets obeys a two-step mechanism: melting of the smaller nuclei, followed by subsequent nucleation of liquid-like particles at the interface of bigger neighboring nuclei. Besides, multiple postcritical nuclei are formed in the simulation box; the growth of some of which stops due to introduction of a strain in the system. Such an incomplete nucleation/growth mechanism is in complete agreement with the recent experiments. The solid-solid (hexagonal-to-kagome) phase transition, at weak superheatings, obeys a two-step mechanism: a slower step (formation of a liquid droplet), followed by a faster step (nucleation of kagome from the liquid droplet).
Collapse
Affiliation(s)
- Hossein Eslami
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany.,Department of Chemistry, College of Sciences, Persian Gulf University, 75168 Boushehr, Iran
| | - Ali Gharibi
- Department of Chemistry, College of Sciences, Persian Gulf University, 75168 Boushehr, Iran
| | - Florian Müller-Plathe
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany
| |
Collapse
|
11
|
Sastre F, Sotelo-Serna MG, Moreno-Hilario E, Benavides AL. Helmholtz free-energy high-temperature perturbation expansion for square-well and square-shoulder potentials. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1887527] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Francisco Sastre
- Departamento de Ingeniería Física, División de Ciencias e Ingenierías, Campus León de la Universidad de Guanajuato, León, Guanajuato, Mexico
| | | | | | - Ana Laura Benavides
- Departamento de Ingeniería Física, División de Ciencias e Ingenierías, Campus León de la Universidad de Guanajuato, León, Guanajuato, Mexico
| |
Collapse
|
12
|
Padilla LA, Ramírez-Hernández A. Phase behavior of a two-dimensional core-softened system: new physical insights. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:275103. [PMID: 32155598 DOI: 10.1088/1361-648x/ab7e5c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work, we report results of extensive computer simulations regarding the phase behavior of a core-softened system. By using structural and thermodynamic descriptors, as well as self-diffusion coefficients, we provide a comprehensive view of the rich phase behavior displayed by the particular instance of the model studied in here. Our calculations agree with previously published results focused on a smaller region in the temperature-density parameter space (Dudalov et al 2014 Soft Matter 10 4966). In this work, we explore a broader region in this parameter space, and uncover interesting fluid phases with low-symmetry local order, that were not reported by previous works. Solid phases were also found, and have been previously characterized in detail by (Kryuchkov et al 2018 Soft Matter 14 2152). Our results support previously reported findings, and provide new physical insights regarding the emergence of order as disordered phases transform into solids by providing radial distribution function maps and specific heat data. Our results are summarized in terms of a phase diagram.
Collapse
Affiliation(s)
- Luis A Padilla
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, United States of America
| | | |
Collapse
|
13
|
Tsiok EN, Gaiduk EA, Fomin YD, Ryzhov VN. Melting scenarios of two-dimensional Hertzian spheres with a single triangular lattice. SOFT MATTER 2020; 16:3962-3972. [PMID: 32249869 DOI: 10.1039/c9sm02262g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We present a molecular dynamics simulation study of the phase diagram and melting scenarios of two-dimensional Hertzian spheres with exponent 7/2. We have found multiple re-entrant melting of a single crystal with a triangular lattice in a wide range of densities from 0.5 to 10.0. Depending on the position on the phase diagram, the triangular crystal has been shown to melt through both two-stage melting with a first-order hexatic-isotropic liquid transition and a continuous solid-hexatic transition as well as in accordance with the Berezinskii-Kosterlitz-Thouless-Halperin-Nelson-Young (BKTHNY) scenario (two continuous transitions with an intermediate hexatic phase). We studied the behavior of heat capacity and have shown that despite two-stage melting, the heat capacity has one peak which seems to correspond to a solid-hexatic transition.
Collapse
Affiliation(s)
- E N Tsiok
- Vereshchagin Institute of High Pressure Physics, Russian Academy of Sciences, Troitsk 108840, Moscow, Russia.
| | - E A Gaiduk
- Vereshchagin Institute of High Pressure Physics, Russian Academy of Sciences, Troitsk 108840, Moscow, Russia.
| | - Yu D Fomin
- Vereshchagin Institute of High Pressure Physics, Russian Academy of Sciences, Troitsk 108840, Moscow, Russia. and Moscow Institute of Physics and Technology, 9 Institutskiy Lane, Dolgoprudny City, Moscow Region, Russia
| | - V N Ryzhov
- Vereshchagin Institute of High Pressure Physics, Russian Academy of Sciences, Troitsk 108840, Moscow, Russia.
| |
Collapse
|
14
|
Coquand O, Sperl M. Temperature expansions in the square-shoulder fluid. II. Thermodynamics. J Chem Phys 2020; 152:124113. [PMID: 32241153 DOI: 10.1063/1.5142662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In Paper I [O. Coquand and M. Sperl, J. Chem. Phys. 152, 124112 (2020)], we derived analytical expressions for the structure factor of the square-shoulder potential in a perturbative way around the high- and low-temperature regimes. Here, various physical properties of these solutions are derived. In particular, we investigate the large wave number sector and relate it to the contact values of the pair-correlation function. Then, the thermoelastic properties of the square-shoulder fluids are discussed.
Collapse
Affiliation(s)
- O Coquand
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany
| | - M Sperl
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany
| |
Collapse
|
15
|
Nowack L, Rice SA. Sequential phase transitions and transient structured fluctuations in two-dimensional systems with a high-density Kagome lattice phase. J Chem Phys 2019; 151:244504. [DOI: 10.1063/1.5130558] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Linsey Nowack
- Department of Chemistry and the Chicago Center for Theoretical Chemistry, James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Stuart A. Rice
- Department of Chemistry and the Chicago Center for Theoretical Chemistry, James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
16
|
Pérez-Lemus GR, Armas-Pérez JC, Mendoza A, Quintana-H J, Ramírez-Hernández A. Hierarchical complex self-assembly in binary nanoparticle mixtures. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:475102. [PMID: 31398718 DOI: 10.1088/1361-648x/ab39fd] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hierarchical self-assembly of soft matter provides a powerful route to create complex materials with enhanced physical properties. The understanding of the fundamental processes leading to such organization can provide design rules to create new functional materials. In this work, we use a simple model of polymer-grafted nanoparticles to explore the self-assembly of binary mixtures. By using Monte Carlo simulations we study the interplay of composition, density and particle sizes on the self-organization of such nanoparticle systems. It is found that complex hierarchical organization can take place for conditions where one-component systems form simple lattices. In particular, a mixture where one component forms a structure with 18-fold symmetry in a sea of an apparent disordered phase of the second component is observed to emerge for certain parameter combinations.
Collapse
Affiliation(s)
- Gustavo R Pérez-Lemus
- Instituto de Química, Universidad Nacional Autónoma de México, Apdo. Postal 70213, 04510 México D.F., Mexico
| | | | | | | | | |
Collapse
|
17
|
Fomin YD, Gaiduk EA, Tsiok EN, Ryzhov VN. The phase diagram and melting scenarios of two-dimensional Hertzian spheres. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1464676] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yu. D. Fomin
- Institute for High Pressure Physics RAS, Moscow, Russia
| | - E. A. Gaiduk
- Institute for High Pressure Physics RAS, Moscow, Russia
| | - E. N. Tsiok
- Institute for High Pressure Physics RAS, Moscow, Russia
| | - V. N. Ryzhov
- Institute for High Pressure Physics RAS, Moscow, Russia
| |
Collapse
|
18
|
Savitz S, Babadi M, Lifshitz R. Multiple-scale structures: from Faraday waves to soft-matter quasicrystals. IUCRJ 2018; 5:247-268. [PMID: 29755742 PMCID: PMC5929372 DOI: 10.1107/s2052252518001161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/18/2018] [Indexed: 06/08/2023]
Abstract
For many years, quasicrystals were observed only as solid-state metallic alloys, yet current research is now actively exploring their formation in a variety of soft materials, including systems of macromolecules, nanoparticles and colloids. Much effort is being invested in understanding the thermodynamic properties of these soft-matter quasicrystals in order to predict and possibly control the structures that form, and hopefully to shed light on the broader yet unresolved general questions of quasicrystal formation and stability. Moreover, the ability to control the self-assembly of soft quasicrystals may contribute to the development of novel photonics or other applications based on self-assembled metamaterials. Here a path is followed, leading to quantitative stability predictions, that starts with a model developed two decades ago to treat the formation of multiple-scale quasiperiodic Faraday waves (standing wave patterns in vibrating fluid surfaces) and which was later mapped onto systems of soft particles, interacting via multiple-scale pair potentials. The article reviews, and substantially expands, the quantitative predictions of these models, while correcting a few discrepancies in earlier calculations, and presents new analytical methods for treating the models. In so doing, a number of new stable quasicrystalline structures are found with octagonal, octadecagonal and higher-order symmetries, some of which may, it is hoped, be observed in future experiments.
Collapse
Affiliation(s)
- Samuel Savitz
- Condensed Matter Physics, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mehrtash Babadi
- Condensed Matter Physics, California Institute of Technology, Pasadena, CA 91125, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ron Lifshitz
- Condensed Matter Physics, California Institute of Technology, Pasadena, CA 91125, USA
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
19
|
Kryuchkov NP, Yurchenko SO, Fomin YD, Tsiok EN, Ryzhov VN. Complex crystalline structures in a two-dimensional core-softened system. SOFT MATTER 2018; 14:2152-2162. [PMID: 29488995 DOI: 10.1039/c7sm02429k] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A transition from a square to a hexagonal lattice is studied in a 2D system of particles interacting via a core-softened potential. Due to the presence of two length scales of repulsion, different local configurations with four, five, and six neighbors are possible, leading to the formation of complex crystals. The previously proposed interpolation method is generalized to calculate pair correlations in crystals whose unit cell consists of more than one particle. The high efficiency of the method is illustrated using a snub square lattice as a representative example. Molecular dynamics simulations show that the snub square lattice is broken upon heating, generating a high-density quasicrystalline phase with 12-fold symmetry (HD12 phase). A simple theoretical model is proposed to explain the physical mechanism responsible for this phenomenon: with an increase in the density (from square to hexagonal phases), the concentrations of different local configurations randomly realized through a plane tiling change, which minimizes the energy of the system. The calculated phase diagram in the intermediate density range justifies the existence of the HD12 phase and demonstrates a cascade of first-order transitions "square - HD12 - hexagonal" solid phases with increasing density. The results allow us to better understand the physical mechanisms responsible for the formation of quasicrystals, and, therefore, should be of interest for broad community in materials science and soft matter.
Collapse
Affiliation(s)
- Nikita P Kryuchkov
- Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, 105005 Moscow, Russia.
| | | | | | | | | |
Collapse
|
20
|
Bordin JR, Barbosa MC. Waterlike anomalies in a two-dimensional core-softened potential. Phys Rev E 2018; 97:022604. [PMID: 29548200 DOI: 10.1103/physreve.97.022604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Indexed: 06/08/2023]
Abstract
We investigate the structural, thermodynamic, and dynamic behavior of a two-dimensional (2D) core-corona system using Langevin dynamics simulations. The particles are modeled by employing a core-softened potential which exhibits waterlike anomalies in three dimensions. In previous studies in a quasi-2D system a new region in the pressure versus temperature phase diagram of structural anomalies was observed. Here we show that for the two-dimensional case two regions in the pressure versus temperature phase diagram with structural, density, and diffusion anomalies are observed. Our findings indicate that, while the anomalous region at lower densities is due the competition between the two length scales in the potential at higher densities, the anomalous region is related to the reentrance of the melting line.
Collapse
Affiliation(s)
- José Rafael Bordin
- Campus Caçapava do Sul, Universidade Federal do Pampa, Avenida Pedro Anunciação, 111, CEP 96570-000 Caçapava do Sul, Rio Grande do Sul, Brazil
| | - Marcia C Barbosa
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
21
|
Gabriëlse A, Löwen H, Smallenburg F. Low-Temperature Crystal Structures of the Hard Core Square Shoulder Model. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E1280. [PMID: 29112168 PMCID: PMC5706227 DOI: 10.3390/ma10111280] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 10/22/2017] [Accepted: 11/03/2017] [Indexed: 01/07/2023]
Abstract
In many cases, the stability of complex structures in colloidal systems is enhanced by a competition between different length scales. Inspired by recent experiments on nanoparticles coated with polymers, we use Monte Carlo simulations to explore the types of crystal structures that can form in a simple hard-core square shoulder model that explicitly incorporates two favored distances between the particles. To this end, we combine Monte Carlo-based crystal structure finding algorithms with free energies obtained using a mean-field cell theory approach, and draw phase diagrams for two different values of the square shoulder width as a function of the density and temperature. Moreover, we map out the zero-temperature phase diagram for a broad range of shoulder widths. Our results show the stability of a rich variety of crystal phases, such as body-centered orthogonal (BCO) lattices not previously considered for the square shoulder model.
Collapse
Affiliation(s)
- Alexander Gabriëlse
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Frank Smallenburg
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|