1
|
Xie H, Jin B, Luo P, Zhou Q, Yang D, Zhang X. Effects of Ferroelastic Domain Walls on the Macroscopic Transport and Photoluminescent Properties of Bulk CsPbBr 3 Single Crystals. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54252-54258. [PMID: 39342511 DOI: 10.1021/acsami.4c13085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The all-inorganic halide perovskite CsPbBr3 has emerged as an excellent class of semiconductive and optoelectronic materials, in which its excellent properties are strongly related to the dynamics of its microstructures, i.e., ferroelastic domain walls. Here, the influence of ferroelastic domain walls on the macroscopic charge transport and photoluminescent properties in bulk single-crystal CsPbBr3 is experimentally and intrinsically studied across wide temperature intervals. The larger area of the same domain orientation, along with denser and thinner domain walls in a bulk CsPbBr3 single crystal, is formed through the Pnma↔P4/mbm↔Pm3̅m phase transitions. Remarkable motion of the domain walls near the P4/mbm↔Pm3̅m transition point is observed using in situ polarized optical microscopy. We initially observed a sharp decrease in resistivity after inducing larger areas with long-range order and denser, thinner domain walls in the temperature range from 273 to 343 K upon heating. In addition, the ferroelastic domain walls modulate exciton-phonon interactions and enhance radiative recombination in the CsPbBr3 single crystal, which correlates with the decrease in resistivity. These results will motivate strategies to design high-performance semiconductive and optoelectronic materials or devices by inducing specific ferroelastic domain walls in metal halide perovskites.
Collapse
Affiliation(s)
- He Xie
- Institute of Advanced Magnetic Materials, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Bangwei Jin
- Institute of Advanced Magnetic Materials, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Pingjing Luo
- Institute of Advanced Magnetic Materials, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Qi Zhou
- Institute of Advanced Magnetic Materials, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Dexin Yang
- Institute of Advanced Magnetic Materials, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, United Kingdom
| | - Xuefeng Zhang
- Institute of Advanced Magnetic Materials, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
- Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| |
Collapse
|
2
|
Taimori A, Mills B, Gaughan E, Ali A, Dhaliwal K, Williams G, Finlayson N, Hopgood JR. A Novel Fit-Flexible Fluorescence Soft Imager: Tri-Sensing of Intensity, Fall-Time, and Life Profile. IEEE Trans Biomed Eng 2024; 71:1864-1878. [PMID: 38300773 DOI: 10.1109/tbme.2024.3354856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Time-resolved fluorescence imaging techniques, like confocal fluorescence lifetime imaging microscopy, are powerful photonic instrumentation tools of modern science with diverse applications, including: biology, medicine, and chemistry. However, complexities of the systems, both at specimen and device levels, cause difficulties in quantifying soft biomarkers. To address the problems, we first aim to understand and model the underlying photophysics of fluorescence decay curves. For this purpose, we provide a set of mathematical functions, called "life models", fittable with the real temporal recordings of histogram of photon counts. For each model, an equivalent electrical circuit, called a "life circuit", is derived for explaining the whole process. In confocal endomicroscopy, the components of excitation laser, specimen, and fluorescence-emission signal as the histogram of photon counts are modelled by a power source, network of resistor-inductor-capacitor circuitry, and multimetre, respectively. We then design a novel pixel-level temporal classification algorithm, called a "fit-flexible approach", where qualities of "intensity", "fall-time", and "life profile" are identified for each point. A model selection mechanism is used at each pixel to flexibly choose the best representative life model based on a proposed Misfit-percent metric. A two-dimensional arrangement of the quantified information detects some kind of structural information. This approach showed a potential of separating microbeads from lung tissue, distinguishing the tri-sensing from conventional methods. We alleviated by 7% the error of the Misfit-percent for recovering the histograms on real samples than the best state-of-the-art competitor. Codes are available online.
Collapse
|
3
|
Cho K, Park Y, Jo H, Seo S, Moon J, Lee SJ, Park SY, Yoon SJ, Park J. Identification and Dynamics of Microsecond Long-Lived Charge Carriers for CsPbBr 3 Perovskite Quantum Dots, Featuring Ambient Long-Term Stability. J Phys Chem Lett 2024; 15:5795-5803. [PMID: 38780120 DOI: 10.1021/acs.jpclett.4c01024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
We analyze the stability and photophysical dynamics of CsPbBr3 perovskite quantum dots (PeQDs), fabricated under mild synthetic conditions and embedded in an amorphous silica (SiOx) matrix (CsPbBr3@SiOx), underscoring their sustained performance in ambient conditions for over 300 days with minimal optical degradation. However, this stability comes at the cost of a reduced photoluminescence efficiency. Time-resolved spectroscopic analyses, including flash-photolysis time-resolved microwave conductivity and time-resolved photoluminescence, show that excitons in CsPbBr3@SiOx films decay within 2.5 ns, while charge carriers recombine over approximately 230 ns. This longevity of the charge carriers is due to photoinduced electron transfer to the SiOx matrix, enabling hole retention. The measured hole mobility in these PeQDs is 0.880 cm2 V-1 s-1, underscoring their potential in optoelectronic applications. This study highlights the role of the silica matrix in enhancing the durability of PeQDs in humid environments and modifying exciton dynamics and photoluminescence, providing valuable insights for developing robust optoelectronic materials.
Collapse
Affiliation(s)
- Kayoung Cho
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Youmin Park
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hyeonyeong Jo
- Department of Chemistry, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sumi Seo
- Department of Chemistry, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jiyoung Moon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Soo Jeong Lee
- Department of Chemistry, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Seong Yeon Park
- Department of Chemistry, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Seog Joon Yoon
- Department of Chemistry, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - JaeHong Park
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
4
|
Martins JR, Krivenkov V, Bernardo CR, Samokhvalov P, Nabiev I, Rakovich YP, Vasilevskiy MI. Statistical Analysis of Photoluminescence Decay Kinetics in Quantum Dot Ensembles: Effects of Inorganic Shell Composition and Environment. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:20480-20490. [PMID: 36523488 PMCID: PMC9743207 DOI: 10.1021/acs.jpcc.2c06134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/05/2022] [Indexed: 06/17/2023]
Abstract
Discerning the kinetics of photoluminescence (PL) decay of packed quantum dots (QDs) and QD-based hybrid materials is of crucial importance for achieving their promising potential. However, the interpretation of the decay kinetics of QD-based systems, which usually are not single-exponential, remains challenging. Here, we present a method for analyzing photoluminescence (PL) decay curves of fluorophores by studying their statistical moments. A certain combination of such moments, named as the n-th order moments' ratio, R n , is studied for several theoretical decay curves and experimental PL kinetics of CdSe quantum dots (QDs) acquired by time-correlated single photon counting (TCSPC). For the latter, three different case studies using the R n ratio analysis are presented, namely, (i) the effect of the inorganic shell composition and thickness of the core-shell QDs, (ii) QD systems with Förster resonance energy transfer (FRET) decay channels, and (iii) system of QDs near a layer of plasmonic nanoparticles. The proposed method is shown to be efficient for the detection of slight changes in the PL kinetics, being time-efficient and requiring low computing power for performing the analysis. It can also be a powerful tool to identify the most appropriate physically meaningful theoretical decay function, which best describes the systems under study.
Collapse
Affiliation(s)
- João R. Martins
- Center
of Physics-CF-UM-UP, Laboratório de Física para Materiais
e Tecnologias Emergentes (LaPMET), University
of Minho, 4710-057Braga, Portugal
| | - Victor Krivenkov
- Department
of Polymers and Advanced Materials: Physics, Chemistry and Technology, University of Basque Country (UPV/EHU), and Materials
Physics Center (CFM, CSIC-UPV/EHU), 20018Donostia-San Sebastian, Spain
| | - César R. Bernardo
- Center
of Physics-CF-UM-UP, Laboratório de Física para Materiais
e Tecnologias Emergentes (LaPMET), University
of Minho, 4710-057Braga, Portugal
| | - Pavel Samokhvalov
- Laboratory
of Nano-Bioengineering, National Research
Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409Moscow, Russian Federation
| | - Igor Nabiev
- Laboratory
of Research in Nanosciences, University
of Reims Champagne-Ardenne, 51100Reims, France
| | - Yury P. Rakovich
- Department
of Polymers and Advanced Materials: Physics, Chemistry and Technology, University of Basque Country (UPV/EHU), and Materials
Physics Center (CFM, CSIC-UPV/EHU), 20018Donostia-San Sebastian, Spain
- Donostia
International Physics Centre (DIPC), 20018Donostia-San Sebastian, Spain
| | - Mikhail I. Vasilevskiy
- Center
of Physics-CF-UM-UP, Laboratório de Física para Materiais
e Tecnologias Emergentes (LaPMET), University
of Minho, 4710-057Braga, Portugal
- Theory of
Quantum Nanostructures Group, International
Iberian Nano Laboratory (INL), 4715-330Braga, Portugal
| |
Collapse
|
5
|
Nielsen CL, Turtos RM, Bondesgaard M, Nyemann JS, Jensen ML, Iversen BB, Muren LP, Julsgaard B, Balling P. A Novel Nanocomposite Material for Optically Stimulated Luminescence Dosimetry. NANO LETTERS 2022; 22:1566-1572. [PMID: 35130696 DOI: 10.1021/acs.nanolett.1c04384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Radiotherapy is a well-established and important treatment for cancer tumors, and advanced technologies can deliver doses in complex three-dimensional geometries tailored to each patient's specific anatomy. A 3D dosimeter, based on optically stimulated luminescence (OSL), could provide a high accuracy and reusable tool for verifying such dose delivery. Nanoparticles of an OSL material embedded in a transparent matrix have previously been proposed as an inexpensive dosimeter, which can be read out using laser-based methods. Here, we show that Cu-doped LiF nanocubes (nano-LiF:Cu) are excellent candidates for 3D OSL dosimetry owing to their high sensitivity, dose linearity, and stability at ambient conditions. We demonstrate a scalable synthesis technique producing a material with the attractive properties of a single dosimetric trap and a single near-ultraviolet emission line well separated from visible-light stimulation sources. The observed transparency and light yield of silicone sheets with embedded nanocubes hold promise for future 3D OSL-based dosimetry.
Collapse
Affiliation(s)
- Camilla L Nielsen
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - Rosana M Turtos
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Jacob S Nyemann
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - Mads L Jensen
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - Bo B Iversen
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
- Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
| | - Ludvig P Muren
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
- Danish Center for Proton Therapy, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Brian Julsgaard
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
- Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
| | - Peter Balling
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
- Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
6
|
Interface engineering of Ta3N5 thin film photoanode for highly efficient photoelectrochemical water splitting. Nat Commun 2022; 13:729. [PMID: 35132086 PMCID: PMC8821563 DOI: 10.1038/s41467-022-28415-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/20/2022] [Indexed: 01/26/2023] Open
Abstract
Interface engineering is a proven strategy to improve the efficiency of thin film semiconductor based solar energy conversion devices. Ta3N5 thin film photoanode is a promising candidate for photoelectrochemical (PEC) water splitting. Yet, a concerted effort to engineer both the bottom and top interfaces of Ta3N5 thin film photoanode is still lacking. Here, we employ n-type In:GaN and p-type Mg:GaN to modify the bottom and top interfaces of Ta3N5 thin film photoanode, respectively. The obtained In:GaN/Ta3N5/Mg:GaN heterojunction photoanode shows enhanced bulk carrier separation capability and better injection efficiency at photoanode/electrolyte interface, which lead to a record-high applied bias photon-to-current efficiency of 3.46% for Ta3N5-based photoanode. Furthermore, the roles of the In:GaN and Mg:GaN layers are distinguished through mechanistic studies. While the In:GaN layer contributes mainly to the enhanced bulk charge separation efficiency, the Mg:GaN layer improves the surface charge inject efficiency. This work demonstrates the crucial role of proper interface engineering for thin film-based photoanode in achieving efficient PEC water splitting. Solar-to-fuel energy conversion requires well-designed materials properties to ensure favorable charge carrier movement. Here, authors employ interface engineering of Ta3N5 thin film to enhance bulk carrier separation and interface carrier injection to improve the water-splitting efficiency.
Collapse
|
7
|
Araki T, Gomez-Solano JR, Maciołek A. Relaxation to steady states of a binary liquid mixture around an optically heated colloid. Phys Rev E 2022; 105:014123. [PMID: 35193287 DOI: 10.1103/physreve.105.014123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
We study the relaxation dynamics of a binary liquid mixture near a light-absorbing Janus particle after switching on and off illumination using experiments and theoretical models. The dynamics is controlled by the temperature gradient formed around the heated particle. Our results show that the relaxation is asymmetric: The approach to a nonequilibrium steady state is much slower than the return to thermal equilibrium. Approaching a nonequilibrium steady state after a sudden temperature change is a two-step process that overshoots the response of spatial variance of the concentration field. The initial growth of concentration fluctuations after switching on illumination follows a power law in agreement with the hydrodynamic and purely diffusive model. The energy outflow from the system after switching off illumination is well described by a stretched exponential function of time with characteristic time proportional to the ratio of the energy stored in the steady state to the total energy flux in this state.
Collapse
Affiliation(s)
- Takeaki Araki
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| | - Juan Ruben Gomez-Solano
- Instituto de Física, Universidad Nacional Autónoma de Mexico, Ciudad de Mexico, Código Postal 04510, Mexico
| | - Anna Maciołek
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, PL-01-224 Warsaw, Poland
- Max-Planck-Institut für Intelligente Systeme Stuttgart, Heisenbergstraße 3, D-70569 Stuttgart, Germany
| |
Collapse
|
8
|
Cao J, Yin Z, Pang Q, Lu Y, Nong X, Zhang JZ. Modulating optical properties and interfacial electron transfer of CsPbBr 3 perovskite nanocrystals via indium ion and chlorine ion co-doping. J Chem Phys 2021; 155:234701. [PMID: 34937354 DOI: 10.1063/5.0076037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In this work, we demonstrated an in situ approach for doping CsPbBr3 nanocrystals (NCs) with In3+ and Cl- with a ligand-assisted precipitation method at room temperature. The In3+ and Cl- co-doped NCs are characterized by the powder x-ray diffraction patterns, ultraviolet-visible, photoluminescence (PL) spectroscopy, time-resolved PL (TRPL), ultraviolet photoelectron spectroscopy, x-ray photoelectron spectroscopy, and transmission electron microscopy. Based on PL and TRPL results, the non-radiative nature of In3+-doping induced localized impurity states is revealed. Furthermore, the impact of In3+ and Cl- doping on charge transfer (CT) from the NCs to molecular acceptors was investigated and the results indicate that the CT at the interface of NCs can be tuned and promoted by In3+ and Cl- co-doping. This enhanced CT is attributed to the enlarged energy difference between relevant states of the molecular acceptor and the NCs by In3+ and Cl- upon co-doping. This work provides insight into how to control interfacial CT in perovskite NCs, which is important for optoelectronic applications.
Collapse
Affiliation(s)
- Jianfei Cao
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, People's Republic of China
| | - Zuodong Yin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, People's Republic of China
| | - Qi Pang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, People's Republic of China
| | - Yuexi Lu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, People's Republic of China
| | - Xiuqing Nong
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, People's Republic of China
| | - Jin Zhong Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA
| |
Collapse
|
9
|
Self-assembly of semiconductor quantum dots with porphyrin chromophores: Energy relaxation processes and biomedical applications. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
10
|
Xiao J, Liu Y, Steinmetz V, Çaǧlar M, Mc Hugh J, Baikie T, Gauriot N, Nguyen M, Ruggeri E, Andaji-Garmaroudi Z, Stranks SD, Legrand L, Barisien T, Friend RH, Greenham NC, Rao A, Pandya R. Optical and Electronic Properties of Colloidal CdSe Quantum Rings. ACS NANO 2020; 14:14740-14760. [PMID: 33044058 DOI: 10.1021/acsnano.0c01752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Luminescent colloidal CdSe nanorings are a recently developed type of semiconductor structure that have attracted interest due to the potential for rich physics arising from their nontrivial toroidal shape. However, the exciton properties and dynamics of these materials with complex topology are not yet well understood. Here, we use a combination of femtosecond vibrational spectroscopy, temperature-resolved photoluminescence (PL), and single-particle measurements to study these materials. We find that on transformation of CdSe nanoplatelets to nanorings, by perforating the center of platelets, the emission lifetime decreases and the emission spectrum broadens due to ensemble variations in the ring size and thickness. The reduced PL quantum yield of nanorings (∼10%) compared to platelets (∼30%) is attributed to an enhanced coupling between (i) excitons and CdSe LO-phonons at 200 cm-1 and (ii) negatively charged selenium-rich traps, which give nanorings a high surface charge (∼-50 mV). Population of these weakly emissive trap sites dominates the emission properties with an increased trap emission at low temperatures relative to excitonic emission. Our results provide a detailed picture of the nature of excitons in nanorings and the influence of phonons and surface charge in explaining the broad shape of the PL spectrum and the origin of PL quantum yield losses. Furthermore, they suggest that the excitonic properties of nanorings are not solely a consequence of the toroidal shape but also a result of traps introduced by puncturing the platelet center.
Collapse
Affiliation(s)
- James Xiao
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, United Kingdom
| | - Yun Liu
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, United Kingdom
| | - Violette Steinmetz
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, United Kingdom
| | - Mustafa Çaǧlar
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, United Kingdom
| | - Jeffrey Mc Hugh
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, United Kingdom
| | - Tomi Baikie
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, United Kingdom
| | - Nicolas Gauriot
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, United Kingdom
| | - Malgorzata Nguyen
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, United Kingdom
| | - Edoardo Ruggeri
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, United Kingdom
| | - Zahra Andaji-Garmaroudi
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, United Kingdom
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB3 0AS, Cambridge, United Kingdom
| | - Samuel D Stranks
- Sorbonne Université, CNRS-UMR 7588, Institut des NanoSciences de Paris, INSP, 4 Place Jussieu, F-75005 Paris, France
| | - Laurent Legrand
- Sorbonne Université, CNRS-UMR 7588, Institut des NanoSciences de Paris, INSP, 4 Place Jussieu, F-75005 Paris, France
| | - Thierry Barisien
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, United Kingdom
| | - Richard H Friend
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, United Kingdom
| | - Neil C Greenham
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, United Kingdom
| | - Akshay Rao
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, United Kingdom
| | | |
Collapse
|
11
|
Wang H, Zhang X, Sui N, Hu Y, Colvin VL, Bai X, Zhang Y, Rogach AL, Yu WW. Emission Quenching and Recovery of Illuminated Perovskite Quantum Dots Due to Iodide Ion Migration. J Phys Chem Lett 2020; 11:6168-6175. [PMID: 32659092 DOI: 10.1021/acs.jpclett.0c01844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
All-inorganic lead halide perovskite quantum dots (PQDs) are well-known to easily lose their luminescence emission under light illumination, which is often attributed to a photoinduced degradation mechanism. Here, we demonstrate that such quenched emission of PQDs can completely recover in the dark at room temperature, which occurs through a spontaneous "self-healing" mechanism. Our findings indicate that the loss of emission under light illumination is not due to the generally accepted photoinduced degradation, as otherwise the complete recovery would not be possible. Instead, we attribute the emission loss and its subsequent recovery to the migration of iodide ions on the PQD surface. Under illumination, the iodide ions migrate out and associate to adjacent lead ions on the PQD surface, leading to halide vacancies, lattice distortions, and fluorescence quenching. During the recovery process, the migrated iodide ions spontaneously migrate back and fill halide vacancies, resulting in fluorescence recovery. The results of this study offer a useful solution on how to improve the emission and photostability of PQDs.
Collapse
Affiliation(s)
- Hua Wang
- College of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Xiangtong Zhang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
- Department of Chemistry and Physics, Louisiana State University, Shreveport, Louisiana 71115, United States
| | - Ning Sui
- College of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yue Hu
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Vicki L Colvin
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Xue Bai
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Yu Zhang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Andrey L Rogach
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon, Hong Kong SAR ,China
| | - William W Yu
- College of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Department of Chemistry and Physics, Louisiana State University, Shreveport, Louisiana 71115, United States
| |
Collapse
|
12
|
Olshansky JH, Harvey SM, Pennel ML, Krzyaniak MD, Schaller RD, Wasielewski MR. Using Photoexcited Core/Shell Quantum Dots To Spin Polarize Appended Radical Qubits. J Am Chem Soc 2020; 142:13590-13597. [DOI: 10.1021/jacs.0c06073] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jacob H. Olshansky
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Samantha M. Harvey
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Makenna L. Pennel
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Matthew D. Krzyaniak
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Richard D. Schaller
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Michael R. Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
13
|
Preeyanka N, Dey H, Seth S, Rahaman A, Sarkar M. Highly efficient energy transfer from a water soluble zinc silver indium sulphide quantum dot to organic J-aggregates. Phys Chem Chem Phys 2020; 22:12772-12784. [DOI: 10.1039/d0cp01845g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Highly efficient energy transfer from a water soluble quantum dot to organic J-aggregates in an inorganic–organic nanohybrid associate.
Collapse
Affiliation(s)
- Naupada Preeyanka
- School of Chemical Sciences
- National Institute of Science Education and Research
- Bhubaneswar
- HBNI
- Jatni, Khorda-752050
| | - Himani Dey
- School of Chemical Sciences
- National Institute of Science Education and Research
- Bhubaneswar
- HBNI
- Jatni, Khorda-752050
| | - Sudipta Seth
- Division of Chemical Physics
- Chemical Centre
- Lund University
- Se-22100
- Sweden
| | - Abdur Rahaman
- School of Chemical Sciences
- National Institute of Science Education and Research
- Bhubaneswar
- HBNI
- Jatni, Khorda-752050
| | - Moloy Sarkar
- School of Chemical Sciences
- National Institute of Science Education and Research
- Bhubaneswar
- HBNI
- Jatni, Khorda-752050
| |
Collapse
|
14
|
van Bruggen E, van der Linden E, Habibi M. Tailoring relaxation dynamics and mechanical memory of crumpled materials by friction and ductility. SOFT MATTER 2019; 15:1633-1639. [PMID: 30672957 PMCID: PMC8612726 DOI: 10.1039/c8sm01951g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/15/2019] [Indexed: 05/22/2023]
Abstract
Crumpled sheets show slow mechanical relaxation and long lasting memory of previous mechanical states. By using uniaxial compression tests, the role of friction and ductility on the stress relaxation dynamics of crumpled systems is investigated. We find a material dependent relaxation constant that can be tuned by changing ductility and adhesive properties of the sheet. After a two-step compression protocol, nonmonotonic aging is reported for polymeric, elastomeric and metal sheets, with relaxation dynamics that are dependent on the material's properties. These findings can contribute to tailoring and programming of crumpled materials to get desirable mechanical properties.
Collapse
Affiliation(s)
- Eric van Bruggen
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Wageningen, The Netherlands.
| | - Erik van der Linden
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Wageningen, The Netherlands.
| | - Mehdi Habibi
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
15
|
Beckmann PA, Ford J, Malachowski WP, McGhie AR, Moore CE, Rheingold AL, Sloan GJ, Szewczyk ST. Proton Spin-Lattice Relaxation in Organic Molecular Solids: Polymorphism and the Dependence on Sample Preparation. Chemphyschem 2018; 19:2423-2436. [PMID: 29956438 DOI: 10.1002/cphc.201800237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Indexed: 11/07/2022]
Abstract
We report solid-state nuclear magnetic resonance 1 H spin-lattice relaxation, single-crystal X-ray diffraction, powder X-ray diffraction, field emission scanning electron microscopy, and differential scanning calorimetry in solid samples of 2-ethylanthracene (EA) and 2-ethylanthraquinone (EAQ) that have been physically purified in different ways from the same commercial starting compounds. The solid-state 1 H spin-lattice relaxation is always non-exponential at high temperatures as expected when CH3 rotation is responsible for the relaxation. The 1 H spin-lattice relaxation experiments are very sensitive to the "several-molecule" (clusters) structure of these van der Waals molecular solids. In the three differently prepared samples of EAQ, the relaxation also becomes very non-exponential at low temperatures. This is very unusual and the decay of the nuclear magnetization can be fitted with both a stretched exponential and a double exponential. This unusual result correlates with the powder X-ray diffractometry results and suggests that the anomalous relaxation is due to crystallites of two (or more) different polymorphs (concomitant polymorphism).
Collapse
Affiliation(s)
- Peter A Beckmann
- Department of Physics, Bryn Mawr College, Bryn Mawr, Pennsylvania, USA
| | - Jamie Ford
- Nanoscale Characterization Facility Singh Center for Nanotechnology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Andrew R McGhie
- Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Curtis E Moore
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Arnold L Rheingold
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Gilbert J Sloan
- Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Steven T Szewczyk
- Department of Materials Science and Engineering School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
16
|
Stupak AP, Blaudeck T, Zenkevich EI, Krause S, von Borczyskowski C. The nature of non-FRET photoluminescence quenching in nanoassemblies from semiconductor quantum dots and dye molecules. Phys Chem Chem Phys 2018; 20:18579-18600. [PMID: 29953143 DOI: 10.1039/c8cp02846j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanoassemblies formed via self-assembly based on colloidal CdSe quantum dots (QDs) and porphyrin (H2P) dye molecules show Fluorescence Resonant Energy Transfer (FRET) and non-FRET quenching of QD photoluminescence (PL). We present a procedure to unravel and quantify these two relaxation pathways via dynamic and static PL quenching experiments. Accordingly, FRET amounts at maximum to 10% of the total quenching efficiency. Since the degree of ligand coverage is inhomogeneously distributed across the QD ensemble PL quantum yields vary broadly. The attachment of H2P molecules occurs preferentially to those QDs with low ligand coverage. Along with that, nanoassembly formation deviates strongly from Poisson statistics. Like FRET, non-FRET depends on the QD size. We assign non-FRET quenching to the formation of specific new Cd2+ trap states following depletion of several ligands by the spacious dye molecules. While FRET follows quantitatively the Förster model, non-FRET appears on time scales of 1-3 ns in new and enhanced non-radiative near-band-edge QD PL decay channels caused by a trapping of the electrons in long-lived intra-gap states which then manifests itself in a subsequent weak PL emission. We assign the related intra-band emission to a recombination of deep-trap electrons and shallow-trap holes.
Collapse
Affiliation(s)
- Aleksander P Stupak
- B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Prospect Nezavisimosti 70, 220072 Minsk, Belarus
| | | | | | | | | |
Collapse
|