1
|
Zironi I, Cramer T, Fuschi A, Cioni M, Guerra G, Giuliani G, Calienni M, Caramazza L, Liberti M, Apollonio F, Remondini D, Castellani G. Enhancing cell motility via non-contact capacitively coupled electrostatic field. Sci Rep 2024; 14:28085. [PMID: 39543219 PMCID: PMC11564694 DOI: 10.1038/s41598-024-77384-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024] Open
Abstract
Cellular motility is essential for making and maintaining multicellular organisms throughout their lifespan. Migrating cells can move either individually or collectively by a crawling movement that links the cytoskeletal activity to the adhesion surface. In vitro stimulation by electric fields can be achieved by direct, capacitive or inductive coupled setups. We tested the effects of electrical stimulation provided by capacitive coupling on glioma cells, using a capacitive-coupled system powered by a potential difference of 35 V between two electrodes placed outside the culture dish. Numerical dosimetry identified two different fields: (i) in the order of 103 V/m at the level of the dielectric substrates, with almost uniform distribution; (ii) in the order of 10-1 V/m at the level of the culture medium, with spatial and material-dependent distribution. The scratch assay and the tracking of single-cell movement showed a boosted motility when crawling occurs on polystyrene surfaces, demonstrating the feasibility of this peculiar exposure system to generate forces capable of influencing cell behavior.
Collapse
Affiliation(s)
- Isabella Zironi
- Department of Physics and Astronomy (DIFA), Alma Mater Studiorum University of Bologna, Viale Berti Pichat 6/2, Bologna, 40127, Italy.
- National Institute for Nuclear Physics (INFN BO), Bologna section, Viale Berti Pichat 6/2, Bologna, 40127, Italy.
| | - Tobias Cramer
- Department of Physics and Astronomy (DIFA), Alma Mater Studiorum University of Bologna, Viale Berti Pichat 6/2, Bologna, 40127, Italy
| | - Alessandro Fuschi
- Department of Physics and Astronomy (DIFA), Alma Mater Studiorum University of Bologna, Viale Berti Pichat 6/2, Bologna, 40127, Italy
| | - Margherita Cioni
- Department of Physics and Astronomy (DIFA), Alma Mater Studiorum University of Bologna, Viale Berti Pichat 6/2, Bologna, 40127, Italy.
| | - Giada Guerra
- Department for Life Quality Studies (QUVI), Alma Mater Studiorum University of Bologna, C.so d'Augusto, 237, Rimini, 47921, Italy
| | - Giacomo Giuliani
- Department of Physics and Astronomy (DIFA), Alma Mater Studiorum University of Bologna, Viale Berti Pichat 6/2, Bologna, 40127, Italy
| | - Maria Calienni
- Centro Laboratori di Didattica Chimica (CILDIC), Alma Mater Studiorum University of Bologna, Via Gobetti 87, Bologna, 40129, Italy
| | - Laura Caramazza
- BioEM Lab, Department of Information Engineering, Electronics and Telecommunications (DIET), Sapienza University of Rome, Via Eudossiana 18, Rome, 00184, Italy
| | - Micaela Liberti
- BioEM Lab, Department of Information Engineering, Electronics and Telecommunications (DIET), Sapienza University of Rome, Via Eudossiana 18, Rome, 00184, Italy
| | - Francesca Apollonio
- BioEM Lab, Department of Information Engineering, Electronics and Telecommunications (DIET), Sapienza University of Rome, Via Eudossiana 18, Rome, 00184, Italy
| | - Daniel Remondini
- Department of Physics and Astronomy (DIFA), Alma Mater Studiorum University of Bologna, Viale Berti Pichat 6/2, Bologna, 40127, Italy
- National Institute for Nuclear Physics (INFN BO), Bologna section, Viale Berti Pichat 6/2, Bologna, 40127, Italy
| | - Gastone Castellani
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Via Massarenti 9, Bologna, 40138, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Massarenti, 9, Bologna, 40138, Italy
| |
Collapse
|
2
|
Kang W, Lu Y, Etaka JC, Salsbury FR, Derreumaux P. Structural Insight into Melatonin's Influence on the Conformation of Aβ42 Dimer Studied by Molecular Dynamics Simulation. J Phys Chem B 2024; 128:9947-9958. [PMID: 39364725 DOI: 10.1021/acs.jpcb.4c03308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The accumulation of amyloid-beta (Aβ) oligomers is recognized as a potential culprit in Alzheimer's disease (AD). Experimental studies show that melatonin, a hormone that mainly regulates circadian rhythm and sleep, can interact with Aβ peptides and disrupt the formation of oligomers. However, how melatonin inhibits the oligomerization of soluble Aβ is unclear. Here, by computational simulations, we investigate the effect of different levels of melatonin on the conformation of the Aβ42 dimer. We find that the conformation of the Aβ42 dimer is dependent on melatonin levels. When melatonin is absent, the dimer mainly forms a parallel β-sheet in the CHC region. When one melatonin molecule is present, the overall conformation of the dimer does not change much, but the N-terminal of the dimer tends to adopt antiparallel β-sheets. When two melatoinin molecules are present, the Aβ42 dimer exhibits significant structural change, especially in its central region, resulting in a more compact conformation, and forms parallel β-sheets in the C-terminal. This conformational difference induced by different levels of melatoinin can shed light on the protective role of melatonin.
Collapse
Affiliation(s)
- Wei Kang
- School of Physics and Optoelectronic Engineering, Hainan University, Haikou 570228, China
- School of Physics, Xidian University, Xi'an 710071, China
| | - Yan Lu
- School of Physics and Optoelectronic Engineering, Hainan University, Haikou 570228, China
- School of Physics, Xidian University, Xi'an 710071, China
| | - Judith C Etaka
- School of Physics, Xidian University, Xi'an 710071, China
| | - Freddie R Salsbury
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27106, United States
| | - Philippe Derreumaux
- UPR 9080 CNRS, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 Rue Pierre et Marie Curie, Paris 75005, France
- Institut Universitaire de France (IUF), Université Paris Cité, Paris 75005, France
| |
Collapse
|
3
|
Guan L, Tan J, Qi B, Chen Y, Cao M, Zhang Q, Zou Y. Effects of an external static EF on the conformational transition of 5-HT1A receptor: A molecular dynamics simulation study. Biophys Chem 2024; 312:107283. [PMID: 38941873 DOI: 10.1016/j.bpc.2024.107283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/13/2024] [Accepted: 06/16/2024] [Indexed: 06/30/2024]
Abstract
The serotonin receptor subtype 1A (5-HT1AR), one of the G-protein-coupled receptor (GPCR) family, has been implicated in several neurological conditions. Understanding the activation and inactivation mechanism of 5-HT1AR at the molecular level is critical for discovering novel therapeutics in many diseases. Recently there has been a growing appreciation for the role of external electric fields (EFs) in influencing the structure and activity of biomolecules. In this study, we used molecular dynamics (MD) simulations to examine conformational features of active states of 5-HT1AR and investigate the effect of an external static EF with 0.02 V/nm applied on the active state of 5-HT1AR. Our results showed that the active state of 5-HT1AR maintained the native structure, while the EF led to structural modifications in 5-HT1AR, particularly inducing the inward movement of transmembrane helix 6 (TM6). Furthermore, it disturbed the conformational switches associated with activation in the CWxP, DRY, PIF, and NPxxY motifs, consequently predisposing an inclination towards the inactive-like conformation. We also found that the EF led to an overall increase in the dipole moment of 5-HT1AR, encompassing TM6 and pivotal amino acids. The analyses of conformational properties of TM6 showed that the changed secondary structure and decreased solvent exposure occurred upon the EF condition. The interaction of 5-HT1AR with the membrane lipid bilayer was also altered under the EF. Our findings reveal the molecular mechanism underlying the transition of 5-HT1AR conformation induced by external EFs, which offer potential novel insights into the prospect of employing structure-based EF applications for GPCRs.
Collapse
Affiliation(s)
- Lulu Guan
- Department of Sport and Exercise Science, College of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Jingwang Tan
- Department of Sport and Exercise Science, College of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Bote Qi
- Department of Sport and Exercise Science, College of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Yukang Chen
- Department of Sport and Exercise Science, College of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Meng Cao
- Department of Physical Education, College of Sport, Shenzhen University, 3688 Nanhai Road, Shenzhen, Guangdong 518061, PR China
| | - Qingwen Zhang
- College of Physical Education, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, PR China
| | - Yu Zou
- Department of Sport and Exercise Science, College of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China.
| |
Collapse
|
4
|
Paul S, Mondal S, Shenogina I, Cui Q. The molecular basis for the increased stability of the FUS-LC fibril at the anionic membrane- and air-water interfaces. Chem Sci 2024; 15:13788-13799. [PMID: 39211498 PMCID: PMC11352777 DOI: 10.1039/d4sc02295e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Self-organization of biomolecules can lead to the formation of liquid droplets, hydrogels, and irreversible aggregates that bear immense significance in biology and diseases. Despite the considerable number of studies conducted on biomolecular condensation in bulk solution, there is still a lack of understanding of how different surfaces regulate the condensation process. In this context, recent studies showed that, in contrast to zwitterionic lipid membranes, anionic membranes promoted the production of liquid droplets of FUsed in Sarcoma Low Complexity domain (FUS-LC) despite exhibiting no specific protein-lipid interactions. Moreover, the air-water interface led to a solid fibril-like aggregate of FUS-LC. The molecular mechanism of condensation/aggregation of proteins in response to surfaces of various charged states or levels of hydrophobicity remains to be better elucidated. Here, we provide initial insights into this question by investigating the stability of a small β fibril state of FUS-LC in bulk solution vs. membrane- and air-water interfaces. We perform multiple independent molecular dynamics simulations with distinct starting conformations for each system to demonstrate the statistical significance of our findings. Our study demonstrates the stability of the FUS-LC fibril in the presence of anionic membranes on the μs timescale while the fibril falls apart in bulk solution. We observe that a zwitterionic membrane does not enhance the stability of the fibril and 1,2-dioleoyl-sn-glycero-3-phospho-l-serine (DOPS) has a higher propensity to stabilize the fibril than dioleoylphosphatidylglycerol (DOPG), in qualitative agreement with experiments. We further show that the fibril becomes more stable at the air-water interface. We pinpoint interfacial solvation at the membrane- and air-water interfaces as a key factor that contributes to the stabilization of the peptide assembly.
Collapse
Affiliation(s)
- Sanjoy Paul
- Department of Chemistry, Boston University 590 Commonwealth Avenue Massachusetts-02215 USA
| | - Sayantan Mondal
- Department of Chemistry, Boston University 590 Commonwealth Avenue Massachusetts-02215 USA
| | - Irina Shenogina
- Department of Physics, University of Illinois Urbana-Champaign USA
| | - Qiang Cui
- Department of Chemistry, Boston University 590 Commonwealth Avenue Massachusetts-02215 USA
- Departments of Physics, and Biomedical Engineering, Boston University Massachusetts-02215 USA
| |
Collapse
|
5
|
Salimi A, Chatterjee S, Lee JY. Exposure to the electric field: A potential way to block the aggregation of histidine tautomeric isomers of β-amyloid. Int J Biol Macromol 2023; 232:123385. [PMID: 36693605 DOI: 10.1016/j.ijbiomac.2023.123385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Controlling protein misfolding and accumulation in neurodegeneration is a challenge in chemical neuroscience. The application of appropriate electric fields (EFs) can be a potential noninvasive therapy to treat neuro disorders. The effect of EFs of varying intensities and directions on the conformational dynamics of β-Amyloid40 (Aβ40) under histidine tautomerism has been investigated for the first time. Our findings suggest that peptides tend to align their dipole moments with the orientation of EF. Irrespective of the EF direction, the dipole moment magnitude is affected by the EF strength. With the conformational changes, the EF strength equal to 0.5 V/nm destroyed the β-sheet content of the δδδ isomer as a potentially toxic agent. The content of the alpha-helical structure which can be transformed into the β-sheet is reduced. The strength of the EF showed a significant influence on the reduction of the number of intra-protein hydrogen bonds especially when EF is equal to 0.5 V/nm which could facilitate destabilization of the structure of the peptides. Current findings provide quantitative insights into the tautomerization-mediated Aβ40 dynamic and conformational changes induced by the external EFs in aqueous solutions, which may provide beneficial information for use as a therapeutic technique.
Collapse
Affiliation(s)
- Abbas Salimi
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Sompriya Chatterjee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
6
|
Razzokov J, Fazliev S, Makhkamov M, Marimuthu P, Baev A, Kurganov E. Effect of Electric Field on α-Synuclein Fibrils: Revealed by Molecular Dynamics Simulations. Int J Mol Sci 2023; 24:ijms24076312. [PMID: 37047286 PMCID: PMC10094641 DOI: 10.3390/ijms24076312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/24/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
The self-association of amylogenic proteins to the fibril form is considered a pivotal factor in the pathogenesis of neurodegenerative diseases, including Parkinson’s disease (PD). PD causes unintended or uncontrollable movements in its common symptoms. α-synuclein is the major cause of PD development and thus has been the main target of numerous studies to suppress and sequester its expression or effectively degrade it. Nonetheless, to date, there are no efficient and proven ways to prevent pathological protein aggregation. Recent investigations proposed applying an external electric field to interrupt the fibrils. This method is a non-invasive approach that has a certain benefit over others. We performed molecular dynamics (MD) simulations by applying an electric field on highly toxic fibrils of α-synuclein to gain a molecular-level insight into fibril disruption mechanisms. The results revealed that the applied external electric field induces substantial changes in the conformation of the α-synuclein fibrils. Furthermore, we show the threshold value for electric field strength required to completely disrupt the α-synuclein fibrils by opening the hydrophobic core of the fibril. Thus, our findings might serve as a valuable foundation to better understand molecular-level mechanisms of the α-synuclein fibrils disaggregation process under an applied external electric field.
Collapse
Affiliation(s)
- Jamoliddin Razzokov
- Institute of Fundamental and Applied Research, National Research University TIIAME, Kori Niyoziy 39, Tashkent 100000, Uzbekistan
- R&D Center, New Uzbekistan University, Mustaqillik Avenue 54, Tashkent 100007, Uzbekistan
- Institute of Material Sciences, Academy of Sciences, Chingiz Aytmatov 2b, Tashkent 100084, Uzbekistan
- Department of Physics, National University of Uzbekistan, Universitet 4, Tashkent 100174, Uzbekistan
- Correspondence: ; Tel.: +998-90-116-23-20
| | - Sunnatullo Fazliev
- Max Planck School Matter to Life, Jahnstrasse 29, 69120 Heidelberg, Germany
- Faculty of Engineering Sciences, Heidelberg University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Mukhriddin Makhkamov
- Laboratory of Experimental Biophysics, Centre for Advanced Technologies, Tashkent 100174, Uzbekistan
| | - Parthiban Marimuthu
- Pharmaceutical Science Laboratory (PSL–Pharmacy) and Structural Bioinformatics Laboratory (SBL–Biochemistry), Faculty of Science and Engineering, Åbo Akademi University, FI-20520 Turku, Finland
| | - Artyom Baev
- Laboratory of Experimental Biophysics, Centre for Advanced Technologies, Tashkent 100174, Uzbekistan
- Department of Biophysics, Biological Faculty, National University of Uzbekistan, Universitet 4, Tashkent 100174, Uzbekistan
| | - Erkin Kurganov
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
7
|
Chakraborty A, Venkatramani R. Capturing the Polarization Response of Solvated Proteins under Constant Electric Fields in Molecular Dynamics Simulations. Chemphyschem 2023; 24:e202200646. [PMID: 36395205 DOI: 10.1002/cphc.202200646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/10/2022] [Indexed: 11/19/2022]
Abstract
We capture and compare the polarization response of a solvated globular protein ubiquitin to static electric (E-fields) using atomistic molecular dynamics simulations. We collectively follow E-field induced changes, electrical and structural, occurring across multiple trajectories using the magnitude of the protein dipole vector (Pp ). E-fields antiparallel to Pp induce faster structural changes and more facile protein unfolding relative to parallel fields of the same strength. While weak E-fields (0.1-0.5 V/nm) do not unfold ubiquitin and produce a reversible polarization, strong E-fields (1-2 V/nm) unfold the protein through a pathway wherein the helix:β-strand interactions rupture before those for the β1-β5 clamp. Independent of E-field direction, high E-field induced structural changes are also reversible if the field is switched off before Pp exceeds 2 times its equilibrium value. We critically examine the dependence of water properties, protein rotational diffusion and E-field induced protein unfolding pathways on the thermostat/barostat parameters used in our simulations.
Collapse
Affiliation(s)
- Anustup Chakraborty
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Colaba, Mumbai 400005, Maharashtra, India
| | - Ravindra Venkatramani
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Colaba, Mumbai 400005, Maharashtra, India
| |
Collapse
|
8
|
Wu R, Ou X, Zhang L, Song X, Wang Z, Dong M, Liu L. Electric Field Effect on Inhibiting the Co-fibrillation of Amyloid Peptides by Modulating the Aggregation Pathway. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12346-12355. [PMID: 36173231 DOI: 10.1021/acs.langmuir.2c02055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
With the revelation of the close link between Alzheimer's disease (AD) and type II diabetes (T2D) and the possible assembly of multiple amyloid peptides therein, it is critical to understand and regulate the co-fibrillation pathway between related amyloid peptides. Here, we show experimentally and theoretically that electric field (EF) inhibited hybrid amyloid fibrillation of β-amyloid peptide (Aβ) and human islet amyloid peptide (hIAPP) by modulating the hetero-aggregation pathway. Experimental results confirm that the β-sheet secondary structure of amyloid peptides would be disrupted under small static EF and accompanied by transforming fibril aggregates into amorphous particles in vitro. Molecular dynamics simulations further demonstrate that even with the transformation of the secondary structure from β-sheet to random coil, the strong interaction between Aβ and hIAPP peptides would remain largely unaffected under the small static EF, leading to the formation of amorphous nanoparticles observed in the experiments. This inhibitory effect of EF on the co-fibrillation of multiple amyloid peptides might contribute to reducing the mutual deterioration of different degenerative diseases and show great potential for the noninvasive treatment of amyloid-related diseases.
Collapse
Affiliation(s)
- Rongrong Wu
- Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China
| | - Xinwen Ou
- Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| | - Liwei Zhang
- Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China
| | - Xiaolu Song
- Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China
| | - Zengkai Wang
- Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C DK-8000, Denmark
| | - Lei Liu
- Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
9
|
Noble BB, Todorova N, Yarovsky I. Electromagnetic bioeffects: a multiscale molecular simulation perspective. Phys Chem Chem Phys 2022; 24:6327-6348. [PMID: 35245928 DOI: 10.1039/d1cp05510k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Electromagnetic bioeffects remain an enigma from both the experimental and theoretical perspectives despite the ubiquitous presence of related technologies in contemporary life. Multiscale computational modelling can provide valuable insights into biochemical systems and predict how they will be perturbed by external stimuli. At a microscopic level, it can be used to determine what (sub)molecular scale reactions various stimuli might induce; at a macroscopic level, it can be used to examine how these changes affect dynamic behaviour of essential molecules within the crowded biomolecular milieu in living tissues. In this review, we summarise and evaluate recent computational studies that examined the impact of externally applied electric and electromagnetic fields on biologically relevant molecular systems. First, we briefly outline the various methodological approaches that have been employed to study static and oscillating field effects across different time and length scales. The practical value of such modelling is then illustrated through representative case-studies that showcase the diverse effects of electric and electromagnetic field on the main physiological solvent - water, and the essential biomolecules - DNA, proteins, lipids, as well as some novel biomedically relevant nanomaterials. The implications and relevance of the theoretical multiscale modelling to practical applications in therapeutic medicine are also discussed. Finally, we summarise ongoing challenges and potential opportunities for theoretical modelling to advance the current understanding of electromagnetic bioeffects for their modulation and/or beneficial exploitation in biomedicine and industry.
Collapse
Affiliation(s)
- Benjamin B Noble
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, Australia. .,Australian Centre for Electromagnetic Bioeffects Research, Australia
| | - Nevena Todorova
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, Australia. .,Australian Centre for Electromagnetic Bioeffects Research, Australia
| | - Irene Yarovsky
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, Australia. .,Australian Centre for Electromagnetic Bioeffects Research, Australia
| |
Collapse
|
10
|
Liu W, Dong X, Liu Y, Sun Y. Photoresponsive materials for intensified modulation of Alzheimer's amyloid-β protein aggregation: A review. Acta Biomater 2021; 123:93-109. [PMID: 33465508 DOI: 10.1016/j.actbio.2021.01.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/29/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022]
Abstract
The abnormal self-assembly of amyloid-β protein (Aβ) into toxic aggregates is a major pathological hallmark of Alzheimer's disease (AD). Modulation of Aβ fibrillization with pharmacological modalities has become an active field of research, which aims to mitigate Aβ-induced neurotoxicity and ameliorate impaired recognition. Among the various strategies for AD treatment, phototherapy, including photothermal therapy (PTT), photodynamic therapy (PDT), and photoresponsive release systems have attracted increased attention because of the spatiotemporal controllability. Under the irradiation of light, the heat or reactive oxygen species generated by photothermal or photodynamic processes significantly enhances the efficacy of the inhibitor or modulator, and the "caged" drug can be accurately released at the intended site, thus avoiding adverse effects. This review, from a viewpoint of materials, focuses on the recent advances in modulating Aβ aggregation by light that irradiates on the materials that function on modulating Aβ aggregation. Representative examples of PTT, PDT, and photoresponsive drug release systems are discussed in terms of inhibitory mechanism, the unique properties of materials, and the design of modulators. The major challenges of phototherapy against AD are addressed and the promising prospects are proposed. It is concluded that the noninvasive light-assisted approaches will become a promising strategy for intensifying the modulation of Aβ aggregation and thus facilitating AD treatment. STATEMENT OF SIGNIFICANCE: Alzheimer's disease (AD) with the hallmark of amyloid-β protein (Aβ) deposition is affecting more than 50 million people globally. It is urgent to explore intelligent materials to modulate Aβ aggregation. This review summarizes the intensified modulation of Aβ aggregation by a variety of photoresponsive materials including photothermal, photosensitizing and photoresponsive release materials, focusing on their characteristics and functionalities. We believe this review would arouse more interest in the research field of stimuli-responsive materials and promote their clinical applications in AD therapy.
Collapse
Affiliation(s)
- Wei Liu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Yang Liu
- Department of Biology & Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, College of Science, Shantou University, Shantou, Guangdong 515063, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
11
|
Kwon J, Choi JS, Lee J, Na J, Sung J, Lee HJ, Lee HS, Lim YB, Choi HJ. Disaggregation of Amyloid-β Plaques by a Local Electric Field Generated by a Vertical Nanowire Electrode Array. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55596-55604. [PMID: 33269924 DOI: 10.1021/acsami.0c16000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The aggregation and accumulation of amyloid-β (Aβ) peptides is a characteristic pathology for Alzheimer's disease (AD). Although noninvasive therapies involving stimulation by electric field (EF) have been reported, the efficiency of Aβ disaggregation needs to be further improved for this strategy to be used in clinical settings. In this study, we show that an electrode based on a vertical nanowire electrode array (VNEA) is far more superior to a typical flat-type electrode in disaggregating Aβ plaques. The enhanced disaggregation efficiency of VNEA is due to the formation of high-strength local EF between the nanowires, as verified by in silico and empirical evidence. Compared with those of the flat electrode, the simulation data revealed that 19.8-fold and 8.8-fold higher EFs are generated above and between the nanowires, respectively. Moreover, empirical cyclic voltammetry data demonstrated that VNEA had a 2.7-fold higher charge capacity than the flat electrode; this is associated with the higher surface area of VNEA. The conformational transition of Aβ peptides between the β-sheet and α-helix could be sensitively monitored in real time by the newly designed in situ circular dichroism instrument. This highly efficient EF-configuration of VNEA will lower the stimulation power for disaggregating the Aβ plaques, compared to that of other existing field-mediated modulation systems. Considering the complementary metal-oxide-semiconductor-compatibility and biocompatible strength of the EF for perturbing the Aβ aggregation, our study could pave the way for the potential use of electric stimulation devices for in vivo therapeutic application as well as scientific studies for AD.
Collapse
Affiliation(s)
- Juyoung Kwon
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jun Shik Choi
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jaejun Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jukwan Na
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jaesuk Sung
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyo-Jung Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Hye-Soo Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Yong-Beom Lim
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Heon-Jin Choi
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
12
|
Singh A, Khatun S, Nath Gupta A. Simultaneous Detection of Tyrosine and Structure‐Specific Intrinsic Fluorescence in the Fibrillation of Alzheimer's Associated Peptides. Chemphyschem 2020; 21:2585-2598. [DOI: 10.1002/cphc.202000587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/17/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Anurag Singh
- Biophysics and Soft Matter Laboratory Department of Physics Indian Institute of Technology Kharagpur 721302 India
| | - Suparna Khatun
- Biophysics and Soft Matter Laboratory Department of Physics Indian Institute of Technology Kharagpur 721302 India
| | - Amar Nath Gupta
- Biophysics and Soft Matter Laboratory Department of Physics Indian Institute of Technology Kharagpur 721302 India
| |
Collapse
|
13
|
Structures of the intrinsically disordered Aβ, tau and α-synuclein proteins in aqueous solution from computer simulations. Biophys Chem 2020; 264:106421. [PMID: 32623047 DOI: 10.1016/j.bpc.2020.106421] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/21/2022]
Abstract
Intrinsically disordered proteins (IDPs) play many biological roles in the human proteome ranging from vesicular transport, signal transduction to neurodegenerative diseases. The Aβ and tau proteins, and the α-synuclein protein, key players in Alzheimer's and Parkinson's diseases, respectively are fully disordered at the monomer level. The structural heterogeneity of the monomeric and oligomeric states and the high self-assembly propensity of these three IDPs have precluded experimental structural determination. Simulations have been used to determine the atomic structures of these IDPs. In this article, we review recent computer models to capture the equilibrium ensemble of Aβ, tau and α-synuclein proteins at different association steps in aqueous solution and present new results of the PEP-FOLD framework on α-synuclein monomer.
Collapse
|
14
|
Amyloid Evolution: Antiparallel Replaced by Parallel. Biophys J 2020; 118:2526-2536. [PMID: 32311316 PMCID: PMC7231890 DOI: 10.1016/j.bpj.2020.03.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 01/08/2023] Open
Abstract
Several atomic structures have now been found for micrometer-scale amyloid fibrils or elongated microcrystals using a range of methods, including NMR, electron microscopy, and X-ray crystallography, with parallel β-sheet appearing as the most common secondary structure. The etiology of amyloid disease, however, indicates nanometer-scale assemblies of only tens of peptides as significant agents of cytotoxicity and contagion. By combining solution X-ray with molecular dynamics, we show that antiparallel structure dominates at the first stages of aggregation for a specific set of peptides, being replaced by parallel at large length scales only. This divergence in structure between small and large amyloid aggregates should inform future design of molecular therapeutics against nucleation or intercellular transmission of amyloid. Calculations and an overview from the literature argue that antiparallel order should be the first appearance of structure in many or most amyloid aggregation processes, regardless of the endpoint. Exceptions to this finding should exist, depending inevitably on the sequence and on solution conditions.
Collapse
|
15
|
Saikia J, Pandey G, Sasidharan S, Antony F, Nemade HB, Kumar S, Chaudhary N, Ramakrishnan V. Electric Field Disruption of Amyloid Aggregation: Potential Noninvasive Therapy for Alzheimer's Disease. ACS Chem Neurosci 2019; 10:2250-2262. [PMID: 30707008 DOI: 10.1021/acschemneuro.8b00490] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The aggregation of β-amyloid peptides is a key event in the formative stages of Alzheimer's disease. Promoting folding and inhibiting aggregation was reported as an effective strategy in reducing Aβ-elicited toxicity. This study experimentally investigates the influence of the external electric field (EF) and magnetic field (MF) of varying strengths on the in vitro fibrillogenesis of hydrophobic core sequence, Aβ16-22, and its parent peptide, Aβ1-42. Biophysical methods such as ThT fluorescence, static light scattering, circular dichroism, and infrared spectroscopy suggest that EF has a stabilizing effect on the secondary structure, initiating a conformational switch of Aβ16-22 and Aβ1-42 from β to non-β conformation. This observation was further corroborated by dynamic light scattering and transmission electron microscopic studies. To mimic in vivo conditions, we repeated ThT fluorescence assay with Aβ1-42 in human cerebrospinal fluid to verify EF-mediated modulation. The self-seeding of Aβ1-42 and cross-seeding with Aβ1-40 to verify that the autocatalytic amplification of self-assembly as a result of secondary nucleation also yields comparable results in EF-exposed and unexposed samples. Aβ-elicited toxicity of EF-treated samples in two neuroblastoma cell lines (SH-SY5Y and IMR-32) and human embryonic kidney cell line (HEK293) were found to be 15-38% less toxic than the EF untreated ones under identical conditions. Experiments with fluorescent labeled Aβ1-42 to correlate reduced cytotoxicity and cell internalization suggest a comparatively smaller uptake of the EF-treated peptides. Our results provide a scientific roadmap for future noninvasive, therapeutic solutions for the treatment of Alzheimer's disease.
Collapse
|
16
|
Lu Y, Shi XF, Nguyen PH, Sterpone F, Salsbury FR, Derreumaux P. Amyloid-β(29-42) Dimeric Conformations in Membranes Rich in Omega-3 and Omega-6 Polyunsaturated Fatty Acids. J Phys Chem B 2019; 123:2687-2696. [PMID: 30813725 DOI: 10.1021/acs.jpcb.9b00431] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The omega-3 and omega-6 polyunsaturated fatty acids are two important components of cell membranes in human brains. When incorporated into phospholipids, omega-3 slows the progression of Alzheimer's disease (AD), whereas omega-6 is linked to increased risk of AD. Little is known on the amyloid-β (Aβ) conformations in membranes rich in omega-3 and omega-6 phospholipids. Herein, the structural properties of the Aβ29-42 dimer embedded in both fatty acid membranes were comparatively studied to a 1-palmitoyl-2-oleoyl- sn-glycero-3-phosphocholine (POPC) bilayer using all-atom molecular dynamics (MD) simulations. Starting from α-helix, both omega-6 and omega-3 membranes promote new orientations and conformations of the dimer, in agreement with the observed dependence of Aβ production upon addition of these two fatty acids. This conformational result is corroborated by atomistic MD simulations of the dimer of the 99 amino acid C-terminal fragment of amyloid precursor protein spanning the residues 15-55. Starting from β-sheet, omega-6 membrane promotes helical and disordered structures of Aβ29-42 dimer, whereas omega-3 membrane preserves the β-sheet structures differing however from those observed in POPC. Remarkably, the mixture of the two fatty acids and POPC depicts another conformational ensemble of the Aβ29-42 dimer. This finding demonstrates that variation in the abundance of the molecular phospholipids, which changes with age, modulates membrane-embedded Aβ oligomerization.
Collapse
Affiliation(s)
- Yan Lu
- School of Physics and Optoelectronic Engineering , Xidian University , Xi'an 710071 , China
| | - Xiao-Feng Shi
- School of Physics and Optoelectronic Engineering , Xidian University , Xi'an 710071 , China
| | - Phuong H Nguyen
- Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS , Université Paris Diderot, Sorbonne Paris Cite , 13 rue Pierre et Marie Curie , 75005 Paris , France
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS , Université Paris Diderot, Sorbonne Paris Cite , 13 rue Pierre et Marie Curie , 75005 Paris , France
| | - Freddie R Salsbury
- Department of Physics , Wake Forest University , Winston-Salem , North Carolina 27106 , United States
| | - Philippe Derreumaux
- Laboratory of Theoretical Chemistry , Ton Duc Thang University , Ho Chi Minh City , Vietnam.,Faculty of Pharmacy , Ton Duc Thang University , Ho Chi Minh City , Vietnam
| |
Collapse
|
17
|
Zheng Y, Wang Q, Yang X, Nie W, Zou L, Liu X, Wang K. Aptamer as a Tool for Investigating the Effects of Electric Field on Aβ40 Monomer and Aggregates Using Single-Molecule Force Spectroscopy. Anal Chem 2018; 91:1954-1961. [DOI: 10.1021/acs.analchem.8b04278] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yan Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Wenyan Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Liyuan Zou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Xiaofeng Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| |
Collapse
|
18
|
|
19
|
Adsorption characteristics of various proteins on a metal surface in the presence of an external electric potential. Colloids Surf B Biointerfaces 2018; 166:262-268. [DOI: 10.1016/j.colsurfb.2018.03.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 11/22/2022]
|
20
|
Lu Y, Shi XF, Salsbury FR, Derreumaux P. Influence of electric field on the amyloid-β(29-42) peptides embedded in a membrane bilayer. J Chem Phys 2018; 148:045105. [DOI: 10.1063/1.5018459] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yan Lu
- School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071, China
| | - Xiao-Feng Shi
- School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071, China
| | - Freddie R. Salsbury
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27106, USA
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|