1
|
Barbosa WG, Santos-Jr CV, Andrade RB, Lucena JR, Moura RT. Bond analysis in meta- and para-substituted thiophenols: overlap descriptors, local mode analysis, and QTAIM. J Mol Model 2024; 30:139. [PMID: 38639900 DOI: 10.1007/s00894-024-05932-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/07/2024] [Indexed: 04/20/2024]
Abstract
CONTEXT This study delves into the chemical nuances of thiophenols and their derivatives through a comprehensive computational analysis, moving beyond traditional energetic perspectives such as bond dissociation enthalpy and S-H dissociation dynamics. By employing the overlap model along with its topological descriptors (OP/TOP), quantum theory of atoms in molecules (QTAIM), and local vibrational mode (LVM) theories, the research provides a deeper understanding of the S-H and C-S bonding scenarios in substituted thiophenols. The investigation follows the electron-donating capacity of S-H substituent variation with the nature and positioning of other ring substituents. Energy profile analyses indicate distinct stability differences in the cis and trans conformations of meta- and para-PhSH systems, influenced by the electron-donating strength of these substituents. The study also uncovers significant variations in S-H bond distances and descriptor values, particularly in para-substituted PhSH, reflecting the influence of electron-donating or withdrawing substituents. In contrast, alterations at the meta-position show minimal effects on C-S bond descriptors, while para-substitutions markedly influence C-S bond characteristics, demonstrating a clear correlation with the electron-donating or withdrawing capabilities of the substituents. This research sheds light on the intricate bond dynamics in aromatic systems with diverse substituents, highlighting the complex interaction between electronic effects and molecular conformation. METHODS The study employs the ω B97X-D/Def2TZVP level of theory for molecular geometries, ensuring accurate characterization of structures as true minima via analytical harmonic frequency determination. The electronic properties of S-H and C-S bonds in variously substituted thiophenols were analyzed using OP/TOP, QTAIM, and LVM methodologies. Computational processes, including conformational scans, geometry optimizations, and vibrational frequency calculations, were conducted using Gaussian 09, with ultra-fine integration grids and tight convergence criteria for the SCF procedure. Bond descriptors were computed utilizing ChemBOS, Multiwfn, and LModeA software, providing a robust and detailed examination of bond properties.
Collapse
Affiliation(s)
- Willis G Barbosa
- Department of Chemistry, State University of Paraiba, Campina Grande, 58429-500, PB, Brazil
| | - Carlos V Santos-Jr
- Department of Chemistry, Federal University of Paraiba, João Pessoa, 58051-970, PB, Brazil
| | - Railton B Andrade
- Department of Chemistry, State University of Paraiba, Campina Grande, 58429-500, PB, Brazil
| | - Juracy R Lucena
- Department of Chemistry, State University of Paraiba, Campina Grande, 58429-500, PB, Brazil
| | - Renaldo T Moura
- Department of Chemistry and Physics, Center of Agrarian Sciences, Federal University of Paraiba, Areia, 58397-000, PB, Brazil.
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, Dallas, TX, 75275, USA.
| |
Collapse
|
2
|
Redox-active ligands for chemical, electrochemical, and photochemical molecular conversions. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Ashfold MNR, Kim SK. Non-Born-Oppenheimer effects in molecular photochemistry: an experimental perspective. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20200376. [PMID: 35341307 DOI: 10.1098/rsta.2020.0376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/28/2021] [Indexed: 06/14/2023]
Abstract
Non-adiabatic couplings between Born-Oppenheimer (BO)-derived potential energy surfaces are now recognized as pivotal in describing the non-radiative decay of electronically excited molecules following photon absorption. This opinion piece illustrates how non-BO effects provide photostability to many biomolecules when exposed to ultraviolet radiation, yet in many other cases are key to facilitating 'reactive' outcomes like isomerization and bond fission. The examples are presented in order of decreasing molecular complexity, spanning studies of organic sunscreen molecules in solution, through two families of heteroatom containing aromatic molecules and culminating with studies of isolated gas phase H2O molecules that afford some of the most detailed insights yet available into the cascade of non-adiabatic couplings that enable the evolution from photoexcited molecule to eventual products. This article is part of the theme issue 'Chemistry without the Born-Oppenheimer approximation'.
Collapse
Affiliation(s)
| | - Sang Kyu Kim
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
4
|
Zhang Z, Li M, Hou GL, Gao H. Substitution-induced Nonplanarity of 3-Fluorothioanisole in the First Electronically Excited State. J Phys Chem A 2022; 126:2541-2550. [PMID: 35436403 DOI: 10.1021/acs.jpca.2c01234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vibronic spectra of 3-fluorothioanisole (3FTA) in the first electronic excited state (S1) and the cationic ground state (D0) have been obtained by one-color resonant two-photon ionization (1C-R2PI) and mass-analyzed threshold ionization (MATI) spectroscopy. Spectroscopic measurements and theoretical calculations indicate that both cis- and trans-rotamers of the 3FTA molecule are stable and coexist in the S0 (the electronic ground state) and D0 states, and the cis-rotamer is shown to be slightly more stable than the trans-rotamer. In the S1 state, theoretical calculations predict a stable gauche-structure of 3FTA, manifested by the observation of strong activation of the vibrational modes involving the motion of the -SCH3 group in the low-frequency regions of the 1C-R2PI and MATI spectra. The electronic excitation energy from the S0 state to the S1 state (E1) and the adiabatic ionization energy (IE) are respectively determined to be 34 820 ± 3 and 65 468 ± 5 cm-1 for cis-3FTA, and those of the trans-rotamer are respectively determined to be 35 047 ± 3 and 65 644 ± 5 cm-1. The structural properties of the stable rotamers of 3FTA and their comparison with other F- and Cl-substituted thioanisole derivatives are discussed as well.
Collapse
Affiliation(s)
- Zhe Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengyang Li
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Gao-Lei Hou
- MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Hong Gao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Zhang Z, Du Y, Hou GL, Gao H. Photoionization Spectroscopic and Theoretical Study on the Molecular Structures of cis- and trans-3-Chlorothioanisole. ACS OMEGA 2022; 7:8456-8465. [PMID: 35309466 PMCID: PMC8928339 DOI: 10.1021/acsomega.1c06003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Resonance-enhanced two-photon ionization (R2PI) and mass-analyzed threshold ionization (MATI) spectra are measured for the cis- and trans-3-chlorothioanisole (3ClTA). The first electronic excitation energy (E 1) and the adiabatic ionization energy (IE) of the cis-rotamer are determined to be 33 959±3 and 65 326±5 cm-1, respectively, and those of the trans-rotamer are determined to be 34102±3 and 65 471±5 cm-1, respectively. Density functional theory (DFT) calculations confirm that both the cis- and trans-rotamers of 3ClTA are stable and coexist in their respective S0, S1, and D0 states. Both rotamers adopt planar structures with cis- being slightly more stable than trans- in the respective S0, S1, and D0 states. The conformation, substitution, and isotope effects on the molecular structure, active vibrations, and electronic transition and ionization energies of 3ClTA are analyzed.
Collapse
Affiliation(s)
- Zhe Zhang
- Beijing
National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Yikui Du
- Beijing
National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Gao-Lei Hou
- MOE
Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed
Matter, School of Physics, Xi’an
Jiaotong University, Xi’an 710049, Shaanxi, China
| | - Hong Gao
- Beijing
National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
HF Formation through Dissociative Electron Attachment-A Combined Experimental and Theoretical Study on Pentafluorothiophenol and 2-Fluorothiophenol. Int J Mol Sci 2022; 23:ijms23052430. [PMID: 35269573 PMCID: PMC8910151 DOI: 10.3390/ijms23052430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 02/05/2023] Open
Abstract
In chemoradiation therapy, dissociative electron attachment (DEA) may play an important role with respect to the efficiency of the radiosensitizers used. The rational tailoring of such radiosensitizers to be more susceptive to DEA may thus offer a path to increase their efficiency. Potentially, this may be achieved by tailoring rearrangement reactions into the DEA process such that these may proceed at low incident electron energies, where DEA is most effective. Favorably altering the orbital structure of the respective molecules through substitution is another path that may be taken to promote dissociation up on electron capture. Here we present a combined experimental and theoretical study on DEA in relation to pentafluorothiophenol (PFTP) and 2-fluorothiophenol (2-FTP). We investigate the thermochemistry and dynamics of neutral HF formation through DEA as means to lower the threshold for dissociation up on electron capture to these compounds, and we explore the influence of perfluorination on their orbital structure. Fragment ion yield curves are presented, and the thermochemical thresholds for the respective DEA processes are computed as well as the minimum energy paths for HF formation up on electron capture and the underlying orbital structure of the respective molecular anions. We show that perfluorination of the aromatic ring in these compounds plays an important role in enabling HF formation by further lowering the threshold for this process and through favorable influence on the orbital structure, such that DEA is promoted. We argue that this approach may offer a path for tailoring new and efficient radiosensitizers.
Collapse
|
7
|
Kim J, Woo KC, Kim KK, Kang M, Kim SK. Tunneling dynamics dictated by the multidimensional conical intersection seam in the πσ*‐mediated photochemistry of heteroaromatic molecules. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Junggil Kim
- Department of Chemistry, KAIST Daejeon Republic of Korea
| | - Kyung Chul Woo
- Department of Chemistry, KAIST Daejeon Republic of Korea
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences Nanyang Technological University Singapore Singapore
| | - Kuk Ki Kim
- Department of Chemistry, KAIST Daejeon Republic of Korea
| | - Minseok Kang
- Department of Chemistry, KAIST Daejeon Republic of Korea
| | - Sang Kyu Kim
- Department of Chemistry, KAIST Daejeon Republic of Korea
| |
Collapse
|
8
|
Woo KC, Kim SK. Real-Time Tunneling Dynamics through Adiabatic Potential Energy Surfaces Shaped by a Conical Intersection. J Phys Chem Lett 2020; 11:6730-6736. [PMID: 32787219 DOI: 10.1021/acs.jpclett.0c01892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dynamic shaping of the adiabatic tunneling barrier in the S-H bond extension coordinate of several ortho-substituted thiophenols has been found to be mediated by low-frequency out-of-plane vibrational modes, which are parallel to the coupling vector of the branching plane comprising the conical intersection. The S-H predissociation tunneling rate (k) measured when exciting to the S1 zero-point level of 2-methoxythiophenol (44 ps)-1 increases abruptly, to k ≈ (22 ps)-1, at the energy corresponding to excitation of the 152 cm-1 out-of-plane vibrational mode and then falls back to k ≈ (40 ps)-1 when the in-plane mode is excited at 282 cm-1. Similar resonance-like peaks in plots of S1 tunneling rate versus internal energy are observed when exciting the corresponding low-frequency out-of-plane modes in the S1 states of 2-fluorothiophenol and 2-chlorothiophenol. This experiment provides clear-cut evidence for dynamical "shaping" of the lower-lying adiabatic potential energy surfaces by the higher-lying conical intersection seam, which dictates the multidimensional tunneling dynamics.
Collapse
Affiliation(s)
- Kyung Chul Woo
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Sang Kyu Kim
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
9
|
Xie C, Zhao B, Malbon CL, Yarkony DR, Xie D, Guo H. Insights into the Mechanism of Nonadiabatic Photodissociation from Product Vibrational Distributions. The Remarkable Case of Phenol. J Phys Chem Lett 2020; 11:191-198. [PMID: 31821757 DOI: 10.1021/acs.jpclett.9b03407] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The fate of a photoexcited molecule is often strongly influenced by electronic degeneracies, such as conical intersections, which break the Born-Oppenheimer separation of electronic and nuclear motion. Detailed information concerning internal energy redistribution in a nonadiabatic process can be extracted from the product state distribution of a photofragment in photodissociation. Here, we focus on the nonadiabatic photodissociation of phenol and discuss the internal excitation of the phenoxyl fragment using both symmetry analysis and wave packet dynamics. It is shown that unique and general selection rules exist, which can be attributed to the geometric phase in the adiabatic representation. Further, our results provide a reinterpretation of the experimental data, shedding light on the impact of conical intersections on the product state distribution.
Collapse
Affiliation(s)
- Changjian Xie
- Institute of Modern Physics, Shaanxi Key Laboratory for Theoretical Physics Frontiers , Northwest University , Xian , Shaanxi 710127 , China
- Department of Chemistry and Chemical Biology , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Bin Zhao
- Department of Chemistry and Chemical Biology , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Christopher L Malbon
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - David R Yarkony
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Hua Guo
- Department of Chemistry and Chemical Biology , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| |
Collapse
|
10
|
Lim JS, You HS, Kim SY, Kim J, Park YC, Kim SK. Vibronic structure and predissociation dynamics of 2-methoxythiophenol (S 1): The effect of intramolecular hydrogen bonding on nonadiabatic dynamics. J Chem Phys 2019; 151:244305. [PMID: 31893886 DOI: 10.1063/1.5134519] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Vibronic spectroscopy and the S-H bond predissociation dynamics of 2-methoxythiophenol (2-MTP) in the S1 (ππ*) state have been investigated for the first time. Resonant two-photon ionization and slow-electron velocity map imaging (SEVI) spectroscopies have revealed that the S1-S0 transition of 2-MTP is accompanied with the planar to the pseudoplanar structural change along the out-of-plane ring distortion and the tilt of the methoxy moiety. The S1 vibronic bands up to their internal energy of ∼1000 cm-1 are assigned from the SEVI spectra taken via various S1 vibronic intermediate states with the aid of ab initio calculations. Intriguingly, Fermi resonances have been identified for some vibronic bands. The S-H bond breakage of 2-MTP occurs via tunneling through an adiabatic barrier under the S1/S2 conical intersection seam, and it is followed by the bifurcation into either the adiabatic or nonadiabatic channel at the S0/S2 conical intersection where the diabatic S2 state (πσ*) is unbound with respect to the S-H bond elongation coordinate, giving the excited (Ã) or ground (X̃) state of the 2-methoxythiophenoxy radical, respectively. Surprisingly, the nonadiabatic transition probability at the S0/S2 conical intersection, estimated from the velocity map ion images of the nascent D fragment from 2-MTP-d1 (2-CH3O-C6H4SD) at the S1 zero-point energy level, is found to be exceptionally high to give the X̃/Ã product branching ratio of 2.03 ± 0.20, which is much higher than the value of ∼0.8 estimated for the bare thiophenol at the S1 origin. It even increases to 2.33 ± 0.17 at the ν45 2 mode (101 cm-1) before it rapidly decays to 0.69 ± 0.05 at the S1 internal energy of about 2200 cm-1. This suggests that the strong intramolecular hydrogen bonding of S⋯D⋯OCH3 in 2-MTP at least in the low S1 internal energy region should play a significant role in localizing the reactive flux onto the conical intersection seam. The minimum energy pathway calculations (second-order coupled-cluster resolution of the identity or time-dependent-density functional theory) of the adiabatic S1 state suggest that the intimate dynamic interplay between the S-H bond cleavage and intramolecular hydrogen bonding could be crucial in the nonadiabatic surface hopping dynamics taking place at the conical intersection.
Collapse
Affiliation(s)
- Jean Sun Lim
- Department of Chemistry, KAIST, Daejeon 34141, South Korea
| | - Hyun Sik You
- Department of Chemistry, KAIST, Daejeon 34141, South Korea
| | - So-Yeon Kim
- Department of Chemistry, KAIST, Daejeon 34141, South Korea
| | - Junggil Kim
- Department of Chemistry, KAIST, Daejeon 34141, South Korea
| | | | - Sang Kyu Kim
- Department of Chemistry, KAIST, Daejeon 34141, South Korea
| |
Collapse
|
11
|
Lim JS, You HS, Han S, Kim SK. Photodissociation Dynamics of Ortho-Substituted Thiophenols at 243 nm. J Phys Chem A 2019; 123:2634-2639. [DOI: 10.1021/acs.jpca.9b00803] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jean Sun Lim
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Hyun Sik You
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Songhee Han
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| | - Sang Kyu Kim
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
12
|
Lim JS, You HS, Kim SY, Kim SK. Experimental observation of nonadiabatic bifurcation dynamics at resonances in the continuum. Chem Sci 2019; 10:2404-2412. [PMID: 30881669 PMCID: PMC6385646 DOI: 10.1039/c8sc04859b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/04/2019] [Indexed: 11/23/2022] Open
Abstract
The surface crossing of bound and unbound electronic states in multidimensional space often gives rise to resonances in the continuum. This situation happens in the πσ*-mediated photodissociation reaction of 2-fluorothioanisole; optically-bright bound S1 (ππ*) vibrational states of 2-fluorothioanisole are strongly coupled to the optically-dark S2 (πσ*) state, which is repulsive along the S-CH3 elongation coordinate. It is revealed here that the reactive flux prepared at such resonances in the continuum bifurcates into two distinct reaction pathways with totally different dynamics in terms of energy disposal and nonadiabatic transition probability. This indicates that the reactive flux in the Franck-Condon region may either undergo nonadiabatic transition funneling through the conical intersection from the upper adiabat, or follow a low-lying adiabatic path, along which multiple dynamic saddle points may be located. Since 2-fluorothioanisole adopts a nonplanar geometry in the S1 minimum energy, the quasi-degenerate S1/S2 crossing seam in the nonplanar geometry, which lies well below the planar S1/S2 conical intersection, is likely responsible for the efficient vibronic coupling, especially in the low S1 internal energy region. As the excitation energy increases, bound-to-continuum coupling is facilitated with the aid of intramolecular vibrational redistribution, along many degrees of freedom spanning the large structural volume. This leads to the rapid domination of the continuum character of the reactive flux. This work reports direct and robust experimental observations of the nonadiabatic bifurcation dynamics of the reactive flux occurring at resonances in the continuum of polyatomic molecules.
Collapse
Affiliation(s)
- Jean Sun Lim
- Department of Chemistry , KAIST , Daejeon 34141 , Republic of Korea .
| | - Hyun Sik You
- Department of Chemistry , KAIST , Daejeon 34141 , Republic of Korea .
| | - So-Yeon Kim
- Department of Chemistry , KAIST , Daejeon 34141 , Republic of Korea .
| | - Sang Kyu Kim
- Department of Chemistry , KAIST , Daejeon 34141 , Republic of Korea .
| |
Collapse
|
13
|
Vansco MF, Marchetti B, Lester MI. Electronic spectroscopy of methyl vinyl ketone oxide: A four-carbon unsaturated Criegee intermediate from isoprene ozonolysis. J Chem Phys 2019; 149:244309. [PMID: 30599734 DOI: 10.1063/1.5064716] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ozonolysis of isoprene, one of the most abundant volatile organic compounds in the atmosphere, proceeds through methyl vinyl ketone oxide (MVK-oxide), methacrolein oxide, and formaldehyde oxide (CH2OO) Criegee intermediates. The present study focuses on MVK-oxide, a four-carbon unsaturated carbonyl oxide intermediate, using vacuum ultraviolet photoionization at 118 nm and UV-visible induced depletion of the m/z = 86 mass channel to characterize its first π* ← π electronic transition. The electronic spectrum is broad and unstructured with its peak at 388 nm (3.2 eV). The MVK-oxide spectrum is shifted to a significantly longer wavelength than CH2OO and alkyl-substituted Criegee intermediates studied previously due to extended conjugation across the vinyl and carbonyl oxide groups. Electronic excitation results in rapid dissociation at λ ≤ 430 nm to methyl vinyl ketone and O 1D products, the latter detected by 2 + 1 resonance enhanced multiphoton ionization using velocity map imaging. Complementary electronic structure calculations (CASPT2(12,10)/AVDZ) predict two π* ← π transitions with significant oscillator strength for each of the four conformers of MVK-oxide with vertical excitation energies (and corresponding wavelengths) in the 3.1-3.6 eV (350-400 nm) and 4.5-5.5 eV (220-280 nm) regions. The computed electronic absorption profile of MVK-oxide, based on a Wigner distribution of ground state configurations and summed over the four conformers, is predicted to peak at 397 nm. UV-visible spectroscopy on the first π* ← π transition is shown by a combination of experiment and theory to provide a sensitive method for detection of the MVK-oxide Criegee intermediate that will enable further studies of its photochemistry and unimolecular and bimolecular reaction dynamics.
Collapse
Affiliation(s)
- Michael F Vansco
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | - Barbara Marchetti
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | - Marsha I Lester
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| |
Collapse
|
14
|
Zhang L, Truhlar DG, Sun S. Electronic spectrum and characterization of diabatic potential energy surfaces for thiophenol. Phys Chem Chem Phys 2018; 20:28144-28154. [DOI: 10.1039/c8cp05215h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present an accurate simulation of the UV spectrum and a diabatization of three singlet potential surfaces along four coordinates.
Collapse
Affiliation(s)
- Linyao Zhang
- School of Energy Science and Engineering
- Harbin Institute of Technology
- Harbin 150001
- P. R. China
- Department of Chemistry
| | - Donald G. Truhlar
- Department of Chemistry
- Chemical Theory Center, and Supercomputing Institute
- University of Minnesota
- Minneapolis
- USA
| | - Shaozeng Sun
- School of Energy Science and Engineering
- Harbin Institute of Technology
- Harbin 150001
- P. R. China
| |
Collapse
|