1
|
Naim C, Zaleśny R, Jacquemin D. Two-Photon Absorption Strengths of Small Molecules: Reference CC3 Values and Benchmarks. J Chem Theory Comput 2024; 20:9093-9106. [PMID: 39374489 DOI: 10.1021/acs.jctc.4c01090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
We present a large dataset of highly accurate two-photon transition strengths (δTPA) determined for standard small molecules. Our reference values have been calculated using the quadratic response implementation of the third-order coupled cluster method including iterative triples (Q-CC3). The aug-cc-pVTZ atomic basis set is used for molecules with up to five non-hydrogen atoms, while larger molecules are assessed with aug-cc-pVDZ; the differences due to the basis sets are discussed. This dataset, encompassing 82 singlet transitions of various characters (Rydberg, valence, and double excitations), enables a comprehensive benchmark of smaller basis sets and alternative wavefunction methods when Q-CC3 calculations become beyond reach as well as time-dependent density functional theory (TD-DFT) approaches. The evaluated wavefunction methods include quadratic response and equation-of-motion CCSD approximations, Q-CC2, and second-order algebraic diagrammatic construction in its intermediate state representation (I-ADC2). In the TD-DFT framework, a set of five commonly used exchange-correlation functionals are evaluted. This extensive analysis provides a quantitative assessment of these methods, revealing how different system sizes, response intensities, and types of transitions affect their performances.
Collapse
Affiliation(s)
- Carmelo Naim
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| | - Robert Zaleśny
- Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, PL-50370 Wrocław, Poland
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
- Institut Universitaire de France (IUF), F-75005 Paris, France
| |
Collapse
|
2
|
Srivastava P, Elles CG. A Single-Shot Technique for Measuring Broadband Two-Photon Absorption Spectra in Solution. Anal Chem 2024; 96:11121-11125. [PMID: 38949250 DOI: 10.1021/acs.analchem.4c01656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Applications involving two-photon activation, including two-photon fluorescence imaging, photodynamic therapy, and 3D data storage, require precise knowledge of the two-photon absorption (2PA) spectra of target chromophores. Broadband pump-probe spectroscopy using femtosecond laser pulses provides wavelength-dependent 2PA spectra with absolute cross sections, but the measurements are sometimes complicated by cross-phase modulation effects and dispersion of the broadband probe. Here, we introduce a single-shot approach that eliminates artifacts from cross-phase modulation and enables more rapid measurements by avoiding the need to scan the time delay between the pump and the probe pulses. The approach uses counterpropagating beams to automatically integrate over the full interaction between the two pulses as they cross. We demonstrate this single-shot approach for a common 2PA reference, coumarin 153 (C153), in three different solvents using the output from a Yb:KGW laser. This approach provides accurate 2PA cross sections that are more reliable and easier to obtain compared with scanning pump-probe methods using copropagating laser beams. The single-shot method for broadband two-photon absorption (BB-2PA) spectroscopy also has significant advantages compared with single-wavelength measurements, such as z-scan and two-photon fluorescence.
Collapse
Affiliation(s)
- Prasenjit Srivastava
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Christopher G Elles
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
3
|
Sarangi R, Nanda KD, Krylov AI. Two- and one-photon absorption spectra of aqueous thiocyanate anion highlight the role of symmetry in the condensed phase. J Comput Chem 2024; 45:878-885. [PMID: 38156823 DOI: 10.1002/jcc.27282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 01/03/2024]
Abstract
We present the two-photon absorption (2PA) spectrum of aqueous thiocyanate calculated using high-level quantum-chemistry methods. The 2PA spectrum is compared to the one-photon absorption (1PA) spectrum computed using the same computational protocol. Although the two spectra probe the same set of electronic states, the intensity patterns are different, leading to an apparent red-shift of the 2PA spectrum relative to the 1PA spectrum. The presented analysis explains the intensity patterns and attributes the differences between the 1PA and 2PA spectra to the native symmetry of isolated SCN - , which influences the spectra in the low-symmetry solvated environment. The native symmetry also manifests itself in variations of the polarization ratio (e.g., parallel vs. perpendicular cross sections) across the spectrum. The presented results highlight the potential of 2PA spectroscopy and high-level quantum-chemistry methods in studies of condensed-phase phenomena.
Collapse
Affiliation(s)
- Ronit Sarangi
- Department of Chemistry, University of Southern California, Los Angeles, California, USA
| | - Kaushik D Nanda
- Department of Chemistry, University of Southern California, Los Angeles, California, USA
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
4
|
de Wergifosse M, Beaujean P, Grimme S. Ultrafast Evaluation of Two-Photon Absorption with Simplified Time-Dependent Density Functional Theory. J Phys Chem A 2022; 126:7534-7547. [PMID: 36201255 DOI: 10.1021/acs.jpca.2c02395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This work presents the theoretical background to evaluate two-photon absorption (2PA) cross-sections in the framework of simplified time-dependent density functional theory (sTD-DFT). Our new implementation allows the ultrafast evaluation of 2PA cross-sections for large molecules based on a regular DFT ground-state determinant as well as a variant employing our tight-binding sTD-DFT-xTX flavor for very large systems. The method is benchmarked against higher-level calculations for trans-stilbene and typical fluorescent protein chromophores. For eGFP, a quadrupolar chromophore and its branched version, the flavine mono-nucleotide, and the iLOV protein, we compare sTD-DFT 2PA spectra to experimental ones. This includes extension and testing of our all-atom quantum chemistry methodology for the evaluation of 2PA for a system of ∼2000 atoms, providing striking agreement with the experimental spectrum.
Collapse
Affiliation(s)
- Marc de Wergifosse
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn, Beringstr. 4, D-53115Bonn, Germany
| | - Pierre Beaujean
- Laboratory of Theoretical Chemistry, Unit of Theoretical and Structural Physical Chemistry, Namur Institute of Structured Matter, University of Namur, Rue de Bruxelles 61, B-5000Namur, Belgium
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn, Beringstr. 4, D-53115Bonn, Germany
| |
Collapse
|
5
|
Knysh I, Jassar MB, Osmialowsk B, Zalesny R, Jacquemin D. IN SILICO SCREENING OF TWO‐PHOTON ABSORPTION PROPERTIES OF A LARGE SET OF BIS‐DIFLUOROBORATE‐DYES. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Iryna Knysh
- Nantes University: Universite de Nantes CEISAM Lab FRANCE
| | | | | | - Robert Zalesny
- Wroclaw University of Technology: Politechnika Wroclawska Department of Chemistr FRANCE
| | - Denis Jacquemin
- Université de Nantes CEISAM 2, rue de la Houssinière 44322 Nantes FRANCE
| |
Collapse
|
6
|
Benassi E, Vaganova T, Malykhin E, Fan H. Impact of fluorination and chlorination on the electronic structure, topology and in-plane ring normal modes of pyridines. Phys Chem Chem Phys 2021; 23:18958-18974. [PMID: 34612435 DOI: 10.1039/d1cp02342j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Seven partially and fully fluorinated/chlorinated pyridines were investigated by means of FT-IR and Raman spectroscopy combined with quantum chemical calculations, mainly aiming to detect how the nature and position of F and Cl substituents affect the in-plane ring normal modes (RNMs) of pyridines in terms of vibrational wavenumbers, force constants, IR intensities and Raman activities. Taking pyridine as the reference, the RNMs and some derived RNMs through coupling with related C-X (X = F, Cl) stretching vibrations were identified on the basis of their composition in terms of internal coordinates. The impact of fluorination and chlorination on these RNMs was also discussed from the perspective of frontier molecular orbitals (MOs), maps of the molecular electrostatic potential (MEP) and the molecular topology. Natural bond orbital (NBO) analysis revealed the consequences of substitutions on the intramolecular charge delocalisation and consequently the ring bond strength. Moreover, the effects of anharmonicity of the potential on vibrational frequencies were presented and discussed.
Collapse
Affiliation(s)
- Enrico Benassi
- Novosibirsk State University, Novosibirsk, 630090, Russia.
| | | | | | | |
Collapse
|
7
|
Nanda KD, Krylov AI. The orbital picture of the first dipole hyperpolarizability from many-body response theory. J Chem Phys 2021; 154:184109. [PMID: 34241029 DOI: 10.1063/5.0049184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We present an approach for obtaining a molecular orbital picture of the first dipole hyperpolarizability (β) from correlated many-body electronic structure methods. Ab initio calculations of β rely on quadratic response theory, which recasts the sum-over-all-states expression of β into a closed-form expression by calculating a handful of first- and second-order response states; for resonantly enhanced β, damped response theory is used. These response states are then used to construct second-order response reduced one-particle density matrices (1PDMs), which, upon visualization in terms of natural orbitals (NOs), facilitate a rigorous and black-box mapping of the underlying electronic structure with β. We explain the interpretation of different components of the response 1PDMs and the corresponding NOs within both the undamped and damped response theory framework. We illustrate the utility of this new tool by deconstructing β for cis-difluoroethene, para-nitroaniline, and hemibonded OH· + H2O complex, computed within the framework of coupled-cluster singles and doubles response theory, in terms of the underlying response 1PDMs and NOs for a range of frequencies.
Collapse
Affiliation(s)
- Kaushik D Nanda
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| |
Collapse
|
8
|
Nanda KD, Vidal ML, Faber R, Coriani S, Krylov AI. How to stay out of trouble in RIXS calculations within equation-of-motion coupled-cluster damped response theory? Safe hitchhiking in the excitation manifold by means of core–valence separation. Phys Chem Chem Phys 2020; 22:2629-2641. [DOI: 10.1039/c9cp03688a] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We present a novel approach with robust convergence of the response equations for computing resonant inelastic X-ray scattering (RIXS) cross sections within the equation-of-motion coupled-cluster (EOM-CC) framework.
Collapse
Affiliation(s)
- Kaushik D. Nanda
- Department of Chemistry
- University of Southern California
- Los Angeles
- USA
| | - Marta L. Vidal
- DTU Chemistry – Department of Chemistry
- Technical University of Denmark
- DK-2800
- Denmark
| | - Rasmus Faber
- DTU Chemistry – Department of Chemistry
- Technical University of Denmark
- DK-2800
- Denmark
| | - Sonia Coriani
- DTU Chemistry – Department of Chemistry
- Technical University of Denmark
- DK-2800
- Denmark
| | - Anna I. Krylov
- Department of Chemistry
- University of Southern California
- Los Angeles
- USA
- The Hamburg Centre for Ultrafast Imaging
| |
Collapse
|
9
|
Bhattacharyya D, Zhang Y, Elles CG, Bradforth SE. Electronic Structure of Liquid Methanol and Ethanol from Polarization-Dependent Two-Photon Absorption Spectroscopy. J Phys Chem A 2019; 123:5789-5804. [DOI: 10.1021/acs.jpca.9b04040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dhritiman Bhattacharyya
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States
| | - Yuyuan Zhang
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States
| | - Christopher G. Elles
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States
| | - Stephen E. Bradforth
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States
| |
Collapse
|
10
|
Blacker TS, Nicolaou N, Duchen MR, Bain AJ. Polarized Two-Photon Absorption and Heterogeneous Fluorescence Dynamics in NAD(P)H. J Phys Chem B 2019; 123:4705-4717. [PMID: 31021092 DOI: 10.1021/acs.jpcb.9b01236] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Two-photon absorption (2PA) finds widespread application in biological systems, which frequently exhibit heterogeneous fluorescence decay dynamics corresponding to multiple species or environments. By combining polarized 2PA with time-resolved fluorescence intensity and anisotropy decay measurements, we show how the two-photon transition tensors for the components of a heterogeneous population can be separately determined, allowing structural differences between the two fluorescent states of the redox cofactor NAD(P)H to be identified. The results support the view that the two states correspond to alternate configurations of the nicotinamide ring, rather than folded and extended conformations of the entire molecule.
Collapse
Affiliation(s)
- Thomas S Blacker
- Department of Physics & Astronomy , University College London , Gower Street , London WC1E 6BT , United Kingdom.,Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX) , University College London , Gower Street , London WC1E 6BT , United Kingdom.,Research Department of Cell & Developmental Biology , University College London , Gower Street , London WC1E 6BT , United Kingdom
| | - Nick Nicolaou
- Department of Physics & Astronomy , University College London , Gower Street , London WC1E 6BT , United Kingdom
| | - Michael R Duchen
- Research Department of Cell & Developmental Biology , University College London , Gower Street , London WC1E 6BT , United Kingdom
| | - Angus J Bain
- Department of Physics & Astronomy , University College London , Gower Street , London WC1E 6BT , United Kingdom.,Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX) , University College London , Gower Street , London WC1E 6BT , United Kingdom
| |
Collapse
|
11
|
Abstract
Ab initio based study of organic molecular based quantum cutting with predicted efficiency of 1.2, and proposition of design criteria.
Collapse
Affiliation(s)
| | - Mark T. Lusk
- Department of Physics
- Colorado School of Mines
- Golden
- USA
| |
Collapse
|
12
|
Nanda KD, Krylov AI. The effect of polarizable environment on two-photon absorption cross sections characterized by the equation-of-motion coupled-cluster singles and doubles method combined with the effective fragment potential approach. J Chem Phys 2018; 149:164109. [DOI: 10.1063/1.5048627] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Kaushik D. Nanda
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| | - Anna I. Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| |
Collapse
|
13
|
Bonvicini A, Guilhaudis L, Tognetti V, Desmaële D, Sauvonnet N, Oulyadi H, Joubert L. Revisiting absorption and electronic circular dichroism spectra of cholesterol in solution: a joint experimental and theoretical study. Phys Chem Chem Phys 2018; 20:5274-5284. [PMID: 29405212 DOI: 10.1039/c7cp07713k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cholesterol is doubtless one of the most studied bio-molecules, which unfortunately features low emitting properties, precluding its in vivo study by fluorescence experiments. The design of fluorescent analogues of cholesterol is thus an appealing challenge in biochemistry, which simultaneously requires minor changes in its chemical structure (to retain main biological properties) and considerable enhancement of light emission. To this aim, the photochemical behaviour of the native molecule has to be deeply understood. In this work, we focused our attention on the electronic absorption of cholesterol in several common organic solutions, combining experimental (through ultraviolet-visible and electronic circular dichroism spectroscopy) and theoretical approaches (at the time-dependent density functional theory level) in order to solve the important discrepancies previously reported in the literature on the maximum absorption wavelengths and on the nature (Rydberg and/or π → π*) of the associated electronic transition.
Collapse
Affiliation(s)
- Andrea Bonvicini
- Normandy Univ., COBRA UMR 6014 & FR 3038, Université de Rouen, INSA Rouen, CNRS, 1 rue Tesniére 76821 Mont St Aignan, Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
14
|
Mewes SA, Plasser F, Krylov A, Dreuw A. Benchmarking Excited-State Calculations Using Exciton Properties. J Chem Theory Comput 2018; 14:710-725. [DOI: 10.1021/acs.jctc.7b01145] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Stefanie A. Mewes
- Interdisciplinary
Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205A, D-69120 Heidelberg, Germany
- Centre
for Theoretical Chemistry and Physics, The New Zealand Institute for
Advanced Study (NZIAS), Massey University Albany, Private Bag 102904, Auckland 0745, New Zealand
| | - Felix Plasser
- Institute
for Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währingstrasse 17, A-1090 Wien, Austria
| | - Anna Krylov
- University of Southern California Los Angeles, Los Angeles, California 90089-0482, United States
| | - Andreas Dreuw
- Interdisciplinary
Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205A, D-69120 Heidelberg, Germany
| |
Collapse
|
15
|
Lyle J, Wedig O, Gulania S, Krylov AI, Mabbs R. Channel branching ratios in CH 2CN - photodetachment: Rotational structure and vibrational energy redistribution in autodetachment. J Chem Phys 2017; 147:234309. [PMID: 29272948 DOI: 10.1063/1.5001475] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report photoelectron spectra of CH2CN-, recorded at photon energies between 13 460 and 15 384 cm-1, which show rapid intensity variations in particular detachment channels. The branching ratios for various spectral features reveal rotational structure associated with autodetachment from an intermediate anion state. Calculations using equation-of-motion coupled-cluster method with single and double excitations reveal the presence of two dipole-bound excited anion states (a singlet and a triplet). The computed oscillator strength for the transition to the singlet dipole-bound state provides an estimate of the autodetachment channel contribution to the total photoelectron yield. Analysis of the different spectral features allows identification of the dipole-bound and neutral vibrational levels involved in the autodetachment processes. For the most part, the autodetachment channels are consistent with the vibrational propensity rule and normal mode expectation. However, examination of the rotational structure shows that autodetachment from the ν3 (v = 1 and v = 2) levels of the dipole-bound state displays behavior counter to the normal mode expectation with the final state vibrational level belonging to a different mode.
Collapse
Affiliation(s)
- Justin Lyle
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Olivia Wedig
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Sahil Gulania
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Richard Mabbs
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| |
Collapse
|
16
|
Plasser F, Mewes SA, Dreuw A, González L. Detailed Wave Function Analysis for Multireference Methods: Implementation in the Molcas Program Package and Applications to Tetracene. J Chem Theory Comput 2017; 13:5343-5353. [DOI: 10.1021/acs.jctc.7b00718] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Felix Plasser
- Institute
for Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstrasse 17, 1090 Vienna, Austria
| | - Stefanie A. Mewes
- Interdisciplinary
Center for Scientific Computing, Ruprecht-Karls-University, Im Neuenheimer Feld 205 A, 69120 Heidelberg, Germany
- Centre
for Theoretical Chemistry and Physics, The New Zealand Institute for
Advanced Study (NZIAS), Massey University Albany, Private Bag 102904, Auckland 0745, New Zealand
| | - Andreas Dreuw
- Interdisciplinary
Center for Scientific Computing, Ruprecht-Karls-University, Im Neuenheimer Feld 205 A, 69120 Heidelberg, Germany
| | - Leticia González
- Institute
for Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstrasse 17, 1090 Vienna, Austria
| |
Collapse
|
17
|
Nanda KD, Krylov AI. Effect of the diradical character on static polarizabilities and two-photon absorption cross sections: A closer look with spin-flip equation-of-motion coupled-cluster singles and doubles method. J Chem Phys 2017; 146:224103. [DOI: 10.1063/1.4984822] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Kaushik D. Nanda
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| | - Anna I. Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| |
Collapse
|