1
|
Savastano M, Osman HH, Vegas Á, Manjón FJ. Rethinking polyiodides: the role of electron-deficient multicenter bonds. Chem Commun (Camb) 2024; 60:12677-12689. [PMID: 39365340 DOI: 10.1039/d4cc02832e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Despite a bicentennial history, the interest in polyiodides and related systems still flourishes. The chemical puzzle provided by the intricate nature of chemical bonding in these polyanions remains challenging these days. The advent of the halogen bond and the spreading interest in supramolecular interactions of halogen-based systems promoted further recent interest. Research in the area of materials, where local bonding details eventually result in desired macroscopic properties, provided a further boost. Herein, we illustrate the consequences of contemplating a different bonding scheme for polyiodides, one making explicit use of electron-deficient multicenter bonds (EDMBs), an emerging concept in this area. We present a reinterpretation of polyiodide bonding using a revised approach to the Lewis dot formulas, leading to a clearer pen-and-paper understanding of their bonding. The model is general and can be applied to other related problems (here polyiodonium cations, and other homo- and hetero-polyhalides). Our alternative narrative has a few interesting consequences on several traditional and currently hot topics, including the nature of basic building blocks for polyiodides, hypervalency vs. hypercoordination, the distinction between covalent bonds and supramolecular interactions, and the nature of secondary and halogen bonds.
Collapse
Affiliation(s)
- Matteo Savastano
- Department of Human Sciences for the Promotion of Quality of Life, University San Raffaele Roma, via di Val Cannuta 247, 00166 Rome, Italy.
| | - Hussien H Osman
- Instituto de Diseño para la Fabricación y Producción Automatizada, MALTA Consolider Team, Universitat Politècnica de València, 46022 València, Spain.
- Departamento de Física Aplicada-ICMUV, MALTA Consolider Team, Universitat de València, 46100 Burjassot, Spain
- Chemistry Department, Helwan University, Ain-Helwan 11795, Cairo, Egypt
| | - Ángel Vegas
- Universidad de Burgos, Hospital del Rey, 09001 Burgos, Spain
| | - Francisco Javier Manjón
- Instituto de Diseño para la Fabricación y Producción Automatizada, MALTA Consolider Team, Universitat Politècnica de València, 46022 València, Spain.
| |
Collapse
|
2
|
Manjón FJ, Osman HH, Savastano M, Vegas Á. Electron-Deficient Multicenter Bonding in Phase Change Materials: A Chance for Reconciliation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2840. [PMID: 38930210 PMCID: PMC11204841 DOI: 10.3390/ma17122840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
In the last few years, a controversy has been raised regarding the nature of the chemical bonding present in phase change materials (PCMs), many of which are minerals such as galena (PbS), clausthalite (PbSe), and altaite (PbTe). Two opposite bonding models have claimed to be able to explain the extraordinary properties of PCMs in the last decade: the hypervalent (electron-rich multicenter) bonding model and the metavalent (electron-deficient) bonding model. In this context, a third bonding model, the electron-deficient multicenter bonding model, has been recently added. In this work, we comment on the pros and cons of the hypervalent and metavalent bonding models and briefly review the three approaches. We suggest that both hypervalent and metavalent bonding models can be reconciled with the third way, which considers that PCMs are governed by electron-deficient multicenter bonds. To help supporters of the metavalent and hypervalent bonding model to change their minds, we have commented on the chemical bonding in GeSe and SnSe under pressure and in several polyiodides with different sizes and geometries.
Collapse
Affiliation(s)
- Francisco Javier Manjón
- Instituto de Diseño para la Fabricación y Producción Automatizada, MALTA Consolider Team, Universitat Politècnica de València, 46022 Valencia, Spain;
| | - Hussien H. Osman
- Instituto de Diseño para la Fabricación y Producción Automatizada, MALTA Consolider Team, Universitat Politècnica de València, 46022 Valencia, Spain;
- Instituto de Ciencia de los Materiales de la Universitat de València, MALTA Consolider Team, Universitat de València, 46100 Valencia, Spain
- Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
| | - Matteo Savastano
- Department of Human Sciences for the Promotion of Quality of Life, University San Raffaele Roma, via di Val Cannuta 247, 00166 Rome, Italy;
| | - Ángel Vegas
- Universidad de Burgos, Hospital del Rey, 09001 Burgos, Spain;
| |
Collapse
|
3
|
Rajaji V, Manjón FJ, Narayana C. Pressure induced topological and topological crystalline insulators. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:423001. [PMID: 35952626 DOI: 10.1088/1361-648x/ac8906] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Research on topological and topological crystalline insulators (TCIs) is one of the most intense and exciting topics due to its fascinating fundamental science and potential technological applications. Pressure (strain) is one potential pathway to induce the non-trivial topological phases in some topologically trivial (normal) insulating or semiconducting materials. In the last ten years, there have been substantial theoretical and experimental efforts from condensed-matter scientists to characterize and understand pressure-induced topological quantum phase transitions (TQPTs). In particular, a promising enhancement of the thermoelectric performance through pressure-induced TQPT has been recently realized; thus evidencing the importance of this subject in society. Since the pressure effect can be mimicked by chemical doping or substitution in many cases, these results have opened a new route to develop more efficient materials for harvesting green energy at ambient conditions. Therefore, a detailed understanding of the mechanism of pressure-induced TQPTs in various classes of materials with spin-orbit interaction is crucial to improve their properties for technological implementations. Hence, this review focuses on the emerging area of pressure-induced TQPTs to provide a comprehensive understanding of this subject from both theoretical and experimental points of view. In particular, it covers the Raman signatures of detecting the topological transitions (under pressure), some of the important pressure-induced topological and TCIs of the various classes of spin-orbit coupling materials, and provide future research directions in this interesting field.
Collapse
Affiliation(s)
- V Rajaji
- University Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur PO, Bangalore 560 064, India
- School of Advance Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur PO, Bangalore 560 064, India
| | - F J Manjón
- Instituto de Diseño para la Fabricación y Producción Automatizada, MALTA Consolider Team, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Chandrabhas Narayana
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur PO, Bangalore 560 064, India
- School of Advance Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur PO, Bangalore 560 064, India
| |
Collapse
|
4
|
Lubchenko V, Kurnosov A. Temperature-driven narrowing of the insulating gap as a precursor of the insulator-to-metal transition: Implications for the electronic structure of solids. J Chem Phys 2019; 150:244502. [PMID: 31255083 DOI: 10.1063/1.5063587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a microscopic picture rationalizing the surprisingly steep decrease in the bandgap with temperature in insulators, crystalline or otherwise. The gap narrowing largely results from fluctuations of long-wavelength optical phonons-when the latter are present-or their disordered analogs if the material is amorphous. We elaborate on this notion to show that possibly with the exception of weakly bound solids made of closed-shell electronic configurations, the existence of an insulating gap or pseudogap in a periodic solid implies that optical phonons must be present, too. This means that in an insulating solid, the primitive cell must have at least two atoms and/or that a charge density wave is present, with the possible exception of weakly bonded solids such as rare-gas or ferromagnetic Wigner crystals. As a corollary, a (periodic) elemental solid held together by nonclosed shell interactions and whose primitive unit contains only one atom will ordinarily be a metal, consistent with observation. Consequences of the present picture for Wigner solids are discussed. A simple field theory of the metal-insulator transition is constructed that directly ties long-wavelength optical vibrations with fluctuations of an order parameter for the metal-insulator transition. The order parameter is shown to have at least two components, yet no Goldstone mode arises as a result of the transition.
Collapse
Affiliation(s)
- Vassiliy Lubchenko
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, USA
| | - Arkady Kurnosov
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, USA
| |
Collapse
|
5
|
Carvalho LC, Bueno MA, de Oliveira BG. The interplay and strength of the π⋯HF, C⋯HF, F⋯HF and F⋯HC hydrogen bonds upon the formation of multimolecular complexes based on C 2H 2⋯HF and C 2H 4⋯HF small dimers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 213:438-455. [PMID: 30738351 DOI: 10.1016/j.saa.2019.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/20/2018] [Accepted: 01/01/2019] [Indexed: 06/09/2023]
Abstract
The conception of this theoretical research was idealized aiming to unveil the intermolecular structures of complexes formed by acetylene or ethylene and hydrofluoric acid. At light of computational calculations by using the B3LYP/6-311++G(d,p) method, the geometries of the C2H2⋯(HF), C2H2⋯2(HF), C2H2⋯4(HF), C2H4⋯(HF), C2H4⋯2(HF) and C2H4⋯4(HF) hydrogen-bonded complexes were fully optimized. Moreover, the Post-Hartree-Fock calculations MP2/6-311++G(d,p), MP2/aug-cc-pVTZ, MP4(SDQ)/6-311++G(d,p) and CCSD/6-311++G(d,p) also were also used. The infrared spectra were analyzed in order to identify the new vibrational modes and frequencies of the proton donors shifted to red region. Through the modeling of charge-fluxes on the basis of the Quantum Theory of Atoms In Molecules (QTAIM) and, by contradicting the expectation of the hydrofluorination mechanisms of acetylene or ethylene, C⋯HF was recognized as a new type of hydrogen bond instead of the already well known π⋯H. The calculations of the Natural Bonding Orbital (NBO) and Charges derived from the Electrostatic Potential Grid-based (ChElPG) were also applied to interpret the shifting frequencies as well as measuring of the punctual charge-transfer after the formation of the complexes. Finally, the determination of the stabilization energy was carried out through the arguments of the Fock matrix in NBO basis and through the supermolecule approach. Also it is worthwhile to notice that some algebraic formulations were used for determining the electronic cooperative effect (CE).
Collapse
|
6
|
Lukyanov A, Lubchenko V. Amorphous chalcogenides as random octahedrally bonded solids: I. Implications for the first sharp diffraction peak, photodarkening, and Boson peak. J Chem Phys 2017; 147:114505. [PMID: 28938820 DOI: 10.1063/1.4990759] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We develop a computationally efficient algorithm for generating high-quality structures for amorphous materials exhibiting distorted octahedral coordination. The computationally costly step of equilibrating the simulated melt is relegated to a much more efficient procedure, viz., generation of a random close-packed structure, which is subsequently used to generate parent structures for octahedrally bonded amorphous solids. The sites of the so-obtained lattice are populated by atoms and vacancies according to the desired stoichiometry while allowing one to control the number of homo-nuclear and hetero-nuclear bonds and, hence, effects of the mixing entropy. The resulting parent structure is geometrically optimized using quantum-chemical force fields; by varying the extent of geometric optimization of the parent structure, one can partially control the degree of octahedrality in local coordination and the strength of secondary bonding. The present methodology is applied to the archetypal chalcogenide alloys AsxSe1-x. We find that local coordination in these alloys interpolates between octahedral and tetrahedral bonding but in a non-obvious way; it exhibits bonding motifs that are not characteristic of either extreme. We consistently recover the first sharp diffraction peak (FSDP) in our structures and argue that the corresponding mid-range order stems from the charge density wave formed by regions housing covalent and weak, secondary interactions. The number of secondary interactions is determined by a delicate interplay between octahedrality and tetrahedrality in the covalent bonding; many of these interactions are homonuclear. The present results are consistent with the experimentally observed dependence of the FSDP on arsenic content, pressure, and temperature and its correlation with photodarkening and the Boson peak. They also suggest that the position of the FSDP can be used to infer the effective particle size relevant for the configurational equilibration in covalently bonded glassy liquids, where the identification of the effective rigid molecular unit is ambiguous.
Collapse
Affiliation(s)
- Alexey Lukyanov
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, USA
| | - Vassiliy Lubchenko
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, USA
| |
Collapse
|