1
|
Gordon R, Peters M, Ying C. Optical scattering methods for the label-free analysis of single biomolecules. Q Rev Biophys 2024; 57:e12. [PMID: 39443300 DOI: 10.1017/s0033583524000088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Single-molecule techniques to analyze proteins and other biomolecules involving labels and tethers have allowed for new understanding of the underlying biophysics; however, the impact of perturbation from the labels and tethers has recently been shown to be significant in several cases. New approaches are emerging to measure single proteins through light scattering without the need for labels and ideally without tethers. Here, the approaches of interference scattering, plasmonic scattering, microcavity sensing, nanoaperture optical tweezing, and variants are described and compared. The application of these approaches to sizing, oligomerization, interactions, conformational dynamics, diffusion, and vibrational mode analysis is described. With early commercial successes, these approaches are poised to have an impact in the field of single-molecule biophysics.
Collapse
Affiliation(s)
- Reuven Gordon
- Department of Electrical Engineering, University of Victoria, Victoria, BC, Canada
| | - Matthew Peters
- Department of Electrical Engineering, University of Victoria, Victoria, BC, Canada
| | - Cuifeng Ying
- Advanced Optics and Photonics Laboratory, Department of Engineering, School of Science & Technology, Nottingham Trent University, Nottingham, UK
| |
Collapse
|
2
|
Label-free nanofluidic scattering microscopy of size and mass of single diffusing molecules and nanoparticles. Nat Methods 2022; 19:751-758. [PMID: 35637303 PMCID: PMC9184284 DOI: 10.1038/s41592-022-01491-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 04/12/2022] [Indexed: 12/18/2022]
Abstract
Label-free characterization of single biomolecules aims to complement fluorescence microscopy in situations where labeling compromises data interpretation, is technically challenging or even impossible. However, existing methods require the investigated species to bind to a surface to be visible, thereby leaving a large fraction of analytes undetected. Here, we present nanofluidic scattering microscopy (NSM), which overcomes these limitations by enabling label-free, real-time imaging of single biomolecules diffusing inside a nanofluidic channel. NSM facilitates accurate determination of molecular weight from the measured optical contrast and of the hydrodynamic radius from the measured diffusivity, from which information about the conformational state can be inferred. Furthermore, we demonstrate its applicability to the analysis of a complex biofluid, using conditioned cell culture medium containing extracellular vesicles as an example. We foresee the application of NSM to monitor conformational changes, aggregation and interactions of single biomolecules, and to analyze single-cell secretomes. Nanofluidic scattering microscopy enables label-free, quantitative measurements of the molecular weight and hydrodynamic radius of biological molecules and nanoparticles freely diffusing inside a nanofluidic channel.
Collapse
|
3
|
Smith AK, Soltani M, Wilkerson JW, Timmerman BD, Zhao EL, Bundy BC, Knotts TA. Coarse-grained simulation of PEGylated and tethered protein devices at all experimentally accessible surface residues on β-lactamase for stability analysis and comparison. J Chem Phys 2021; 154:075102. [PMID: 33607875 DOI: 10.1063/5.0032019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
PEGylated and surface-tethered proteins are used in a variety of biotechnological applications, but traditional methods offer little control over the placement of the functionalization sites on the protein. Fortunately, recent experimental methods functionalize the protein at any location on the amino acid sequence, so the question becomes one of selecting the site that will result in the best protein function. This work shows how molecular simulation can be used to screen potential attachment sites for surface tethering or PEGylation. Previous simulation work has shown promise in this regard for a model protein, but these studies are limited to screening only a few of the surface-accessible sites or only considered surface tethering or PEGylation separately rather than their combined effects. This work is done to overcome these limitations by screening all surface-accessible functionalization sites on a protein of industrial and therapeutic importance (TEM-1) and to evaluate the effects of tethering and PEGylation simultaneously in an effort to create a more accurate screen. The results show that functionalization site effectiveness appears to be a function of super-secondary and tertiary structures rather than the primary structure, as is often currently assumed. Moreover, sites in the middle of secondary structure elements, and not only those in loops regions, are shown to be good options for functionalization-a fact not appreciated in current practice. Taken as a whole, the results show how rigorous molecular simulation can be done to identify candidate amino acids for functionalization on a protein to facilitate the rational design of protein devices.
Collapse
Affiliation(s)
- Addison K Smith
- Department of Chemical Engineering at Brigham Young University, Provo, Utah 84602, USA
| | - Mehran Soltani
- Department of Chemical Engineering at Brigham Young University, Provo, Utah 84602, USA
| | - Joshua W Wilkerson
- Department of Chemical Engineering at Brigham Young University, Provo, Utah 84602, USA
| | - Brandon D Timmerman
- Department of Chemical Engineering at Brigham Young University, Provo, Utah 84602, USA
| | - Emily Long Zhao
- Department of Chemical Engineering at Brigham Young University, Provo, Utah 84602, USA
| | - Bradley C Bundy
- Department of Chemical Engineering at Brigham Young University, Provo, Utah 84602, USA
| | - Thomas A Knotts
- Department of Chemical Engineering at Brigham Young University, Provo, Utah 84602, USA
| |
Collapse
|
4
|
Martí D, Ainsley J, Ahumada O, Alemán C, Torras J. Tethering of the IgG1 Antibody to Amorphous Silica for Immunosensor Development: A Molecular Dynamics Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12658-12667. [PMID: 33058684 DOI: 10.1021/acs.langmuir.0c02203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A key factor for improving the sensitivity and performance of immunosensors based on mechanical-plasmonic methods is the orientation of the antibody proteins immobilized on the inorganic surface. Although experimental techniques fail to determine surface phenomena at the molecular level, modern simulations open the possibility for improving our understanding of protein-surface interactions. In this work, replica exchange molecular dynamics (REMD) simulations have been used to model the IgG1 protein tethered onto the amorphous silica surface by considering a united-atom model and a relatively large system (2500 nm2 surface). Additional molecular dynamics (MD) simulations have been conducted to derive an atomistic model for the amorphous silica surface using the cristobalite crystal structure as a starting point and to examine the structure of the free IgG1 antibody in the solution for comparison when immobilized. Analyses of the trajectories obtained for the tethered IgG1, which was sampled considering 32 different temperatures, have been used to define the geometry of the protein with respect to the inorganic surface. The tilt angle of the protein with respect to the surface plane increases with temperature, the most populated values being 24, 66, and 87° at the lowest (250 K), room (298 K), and the highest (380 K) temperatures. This variation indicates that the importance of protein-surface interactions decreases with increasing temperature. The influence of the surface on the structure of the antibody is very significant in the constant region, which is directly involved in the tethering process, while it is relatively unimportant for the antigen-binding fragments, which are farthest from the surface. These results are expected to contribute to the development of improved mechanical-plasmonic sensor microarrays in the near future.
Collapse
Affiliation(s)
- Didac Martí
- Department of Chemical Engineering (EEBE), Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, Ed I2, 08019 Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Jon Ainsley
- Department of Chemical Engineering (EEBE), Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, Ed I2, 08019 Barcelona, Spain
- Cancer Therapeutics Unit, The Institute of Cancer Research, 15 Cotswold Road, Sutton, London SM2 5NG U.K
| | - Oscar Ahumada
- Mecwins S.A., Ronda de Poniente 15, Tres Cantos, Madrid, 28760, Spain
| | - Carlos Alemán
- Department of Chemical Engineering (EEBE), Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, Ed I2, 08019 Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Juan Torras
- Department of Chemical Engineering (EEBE), Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, Ed I2, 08019 Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, 08019 Barcelona, Spain
| |
Collapse
|
5
|
Wilkerson JW, Smith AK, Wilding KM, Bundy BC, Knotts TA. The Effects of p-Azidophenylalanine Incorporation on Protein Structure and Stability. J Chem Inf Model 2020; 60:5117-5125. [PMID: 32966074 DOI: 10.1021/acs.jcim.0c00725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Functionalization is often needed to harness the power of proteins for beneficial use but can cause losses to stability and/or activity. State of the art methods to limit these deleterious effects accomplish this by substituting an amino acid in the wild-type molecule into an unnatural amino acid, such as p-azidophenylalanine (pAz), but selecting the residue for substitution a priori remains an elusive goal of protein engineering. The results of this work indicate that all-atom molecular dynamics simulation can be used to determine whether substituting pAz for a natural amino acid will be detrimental to experimentally determined protein stability. These results offer significant hope that local deviations from wild-type structure caused by pAz incorporation observed in simulations can be a predictive metric used to reduce the number of costly experiments that must be done to find active proteins upon substitution with pAz and subsequent functionalization.
Collapse
Affiliation(s)
- Joshua W Wilkerson
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Addison K Smith
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Kristen M Wilding
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Bradley C Bundy
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Thomas A Knotts
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
6
|
Walder B, Berk C, Liao WC, Rossini AJ, Schwarzwälder M, Pradere U, Hall J, Lesage A, Copéret C, Emsley L. One- and Two-Dimensional High-Resolution NMR from Flat Surfaces. ACS CENTRAL SCIENCE 2019; 5:515-523. [PMID: 30937379 PMCID: PMC6439530 DOI: 10.1021/acscentsci.8b00916] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Indexed: 05/02/2023]
Abstract
Determining atomic-level characteristics of molecules on two-dimensional surfaces is one of the fundamental challenges in chemistry. High-resolution nuclear magnetic resonance (NMR) could deliver rich structural information, but its application to two-dimensional materials has been prevented by intrinsically low sensitivity. Here we obtain high-resolution one- and two-dimensional 31P NMR spectra from as little as 160 picomoles of oligonucleotide functionalities deposited onto silicate glass and sapphire wafers. This is enabled by a factor >105 improvement in sensitivity compared to typical NMR approaches from combining dynamic nuclear polarization methods, multiple-echo acquisition, and optimized sample formulation. We demonstrate that, with this ultrahigh NMR sensitivity, 31P NMR can be used to observe DNA bound to miRNA, to sense conformational changes due to ion binding, and to follow photochemical degradation reactions.
Collapse
Affiliation(s)
- Brennan
J. Walder
- Institut
des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Christian Berk
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, CH−8093 Zürich, Switzerland
| | - Wei-Chih Liao
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, CH−8093 Zürich, Switzerland
| | - Aaron J. Rossini
- Institut
des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011-3020, United States
| | - Martin Schwarzwälder
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, CH−8093 Zürich, Switzerland
| | - Ugo Pradere
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, CH−8093 Zürich, Switzerland
| | - Jonathan Hall
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, CH−8093 Zürich, Switzerland
| | - Anne Lesage
- Institut
de Sciences Analytiques, Centre de RMN à Très Hauts
Champs, Université de Lyon (CNRS/ENS
Lyon/UCB Lyon 1), 69100 Villeurbanne, France
| | - Christophe Copéret
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, CH−8093 Zürich, Switzerland
| | - Lyndon Emsley
- Institut
des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- E-mail:
| |
Collapse
|
7
|
Croop B, Zhang C, Lim Y, Gelfand RM, Han KY. Recent advancement of light-based single-molecule approaches for studying biomolecules. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2019; 11:e1445. [PMID: 30724484 DOI: 10.1002/wsbm.1445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/01/2018] [Accepted: 01/08/2019] [Indexed: 12/27/2022]
Abstract
Recent advances in single-molecule techniques have led to new discoveries in analytical chemistry, biophysics, and medicine. Understanding the structure and behavior of single biomolecules provides a wealth of information compared to studying large ensembles. However, developing single-molecule techniques is challenging and requires advances in optics, engineering, biology, and chemistry. In this paper, we will review the state of the art in single-molecule applications with a focus over the last few years of development. The advancements covered will mainly include light-based in vitro methods, and we will discuss the fundamentals of each with a focus on the platforms themselves. We will also summarize their limitations and current and future applications to the wider biological and chemical fields. This article is categorized under: Laboratory Methods and Technologies > Imaging Laboratory Methods and Technologies > Macromolecular Interactions, Methods Analytical and Computational Methods > Analytical Methods.
Collapse
Affiliation(s)
- Benjamin Croop
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida
| | - Chenyi Zhang
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida
| | - Youngbin Lim
- Department of Bioengineering, Stanford University, Stanford, California
| | - Ryan M Gelfand
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida
| | - Kyu Young Han
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida
| |
Collapse
|
8
|
Carvalho AM, Montes CV, Schneider RJ, Madder A. An Anticaffeine Antibody-Oligonucleotide Conjugate for DNA-Directed Immobilization in Environmental Immunoarrays. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14834-14841. [PMID: 30089211 DOI: 10.1021/acs.langmuir.8b01347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The development of fast and cheap high-throughput platforms for the detection of environmental contaminants is of particular importance to understand the human-related impact on the environment. The application of DNA-directed immobilization (DDI) of IgG molecules is currently limited to the clinical diagnostics scenario, possibly because of the high costs of production of such addressable platforms. We here describe the efficient and specific hybridization of an antibody-oligonucleotide conjugate to a short 12-mer capture probe. The specific antibody used is a monoclonal antibody against caffeine, a stimulant and important anthropogenic marker. With this work, we hope to contribute to broadening the application potential of DDI to environmental markers in order to develop cheaper and more stable high-throughput screening platforms for standard routine analysis of pollutants in a variety of complex matrices.
Collapse
Affiliation(s)
- Ana Margarida Carvalho
- Ghent University , Faculty of Sciences, Department of Organic and Macromolecular Chemistry, Organic and Biomimetic Chemistry Research Group , Krijgslaan 281 (S4) , 9000 Ghent , Belgium
- BAM Federal Institute for Materials Research and Testing , Department of Analytical Chemistry; Reference Materials , Richard-Willstätter-Str. 11 , D-12489 Berlin , Germany
| | - Cinthya Véliz Montes
- BAM Federal Institute for Materials Research and Testing , Department of Analytical Chemistry; Reference Materials , Richard-Willstätter-Str. 11 , D-12489 Berlin , Germany
| | - Rudolf J Schneider
- BAM Federal Institute for Materials Research and Testing , Department of Analytical Chemistry; Reference Materials , Richard-Willstätter-Str. 11 , D-12489 Berlin , Germany
| | - Annemieke Madder
- Ghent University , Faculty of Sciences, Department of Organic and Macromolecular Chemistry, Organic and Biomimetic Chemistry Research Group , Krijgslaan 281 (S4) , 9000 Ghent , Belgium
| |
Collapse
|
9
|
Zou X, Wei S, Badieyan S, Schroeder M, Jasensky J, Brooks CL, Marsh ENG, Chen Z. Investigating the Effect of Two-Point Surface Attachment on Enzyme Stability and Activity. J Am Chem Soc 2018; 140:16560-16569. [DOI: 10.1021/jacs.8b08138] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
10
|
Bush DB, Knotts TA. The effects of antigen size, binding site valency, and flexibility on fab-antigen binding near solid surfaces. J Chem Phys 2018; 149:165102. [PMID: 30384722 DOI: 10.1063/1.5045356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Next generation antibody microarray devices have the potential to outperform current molecular detection methods and realize new applications in medicine, scientific research, and national defense. However, antibody microarrays, or arrays of antibody fragments ("fabs"), continue to evade mainstream use in part due to persistent reliability problems despite improvements to substrate design and protein immobilization strategies. Other factors could be disrupting microarray performance, including effects resulting from antigen characteristics. Target molecules embody a wide range of sizes, shapes, number of epitopes, epitope accessibility, and other physical and chemical properties. As a result, it may not be ideal for microarray designs to utilize the same substrate or immobilization strategy for all of the capture molecules. This study investigates how three antigen properties, such as size, binding site valency, and molecular flexibility, affect fab binding. The work uses an advanced, experimentally validated, coarse-grain model and umbrella sampling to calculate the free energy of ligand binding and how this energy landscape is different on the surface compared to in the bulk. The results confirm that large antigens interact differently with immobilized fabs compared to smaller antigens. Analysis of the results shows that despite these differences, tethering fabs in an upright orientation on hydrophilic surfaces is the best configuration for antibody microarrays.
Collapse
Affiliation(s)
- Derek B Bush
- Department of Chemical Engineering, Brigham Young University Provo, Provo, Utah 84602, USA
| | - Thomas A Knotts
- Department of Chemical Engineering, Brigham Young University Provo, Provo, Utah 84602, USA
| |
Collapse
|