1
|
Wei C, Lv W, Ding Y, Wang C, Sun C, Feng X, Zhang T, Li J, Li Q, Li S. Investigation of co-flow step emulsification (CFSE) microfluidic device and its applications in digital polymerase chain reaction (ddPCR). J Colloid Interface Sci 2025; 678:1132-1142. [PMID: 39255752 DOI: 10.1016/j.jcis.2024.08.251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024]
Abstract
HYPOTHESIS The co-flow step emulsification (CFSE) is very sensitive to the two-phase fluid interfaces, we conjecture that the CFSE hydrodynamic model depends on several key factors and the droplet generation process can be precisely controlled, thus to obtain droplet emulsions with the "ultra-high volume fraction of inner-phase" and "flexible droplet size" characteristics. The resulting droplets are expected to be applied to droplet digital PCR (ddPCR) with "high information density" and "wide dynamic range" advances. EXPERIMENTS By combining numerical simulation and fluid dynamics experiments, we have investigated the crucial parameters affecting the CFSE two-phase interface and finally achieved the prediction and guidance for CFSE droplet production. FINDINGS With the help of the CFSE device, multivolume droplet populations were produced on demand. Then, ddPCR tests were performed with DNA concentrations from 10 copies/μL to 20,000 copies/μL. The CFSE device owns an ultra-wide dynamic range (up to 5 orders of magnitude), showing excellent quantification ability of nucleic acid targets.
Collapse
Affiliation(s)
- Chunyang Wei
- College of Medical Information and Artificial Intelligence, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Wei Lv
- Department of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250399, China
| | - Yanjing Ding
- College of Medical Information and Artificial Intelligence, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Chen Wang
- College of Medical Information and Artificial Intelligence, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Chengduo Sun
- College of Medical Information and Artificial Intelligence, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Xinhang Feng
- College of Medical Information and Artificial Intelligence, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Tianqi Zhang
- College of Medical Information and Artificial Intelligence, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Junwei Li
- Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Qinghua Li
- College of Medical Information and Artificial Intelligence, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China; College of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China.
| | - Shanshan Li
- Hebei Key Laboratory of Robotic Sensing and Human-robot Interactions, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300132, China.
| |
Collapse
|
2
|
Nalin F, Tirelli MC, Garstecki P, Postek W, Costantini M. Tuna-step: tunable parallelized step emulsification for the generation of droplets with dynamic volume control to 3D print functionally graded porous materials. LAB ON A CHIP 2023; 24:113-126. [PMID: 38047296 DOI: 10.1039/d3lc00658a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
We present tuna-step, a novel microfluidic module based on step emulsification that allows for reliable generation of droplets of different sizes. Until now, sizes of droplets generated with step emulsification were hard-wired into the geometry of the step emulsification nozzle. To overcome this, we incorporate a thin membrane underneath the step nozzle that can be actuated by pressure, enabling the tuning of the nozzle size on-demand. By controllably reducing the height of the nozzle, we successfully achieved a three-order-of-magnitude variation in droplet volume without adjusting the flow rates of the two phases. We developed and applied a new hydrophilic surface modification, that ensured long-term stability and prevented swelling of the device when generating oil-in-water droplets. Our system produced functionally graded soft materials with adjustable porosity and material content. By combining our microfluidic device with a custom 3D printer, we generated and extruded oil-in-water emulsions in an agarose gel bath, creating unique self-standing 3D hydrogel structures with porosity decoupled from flow rate and with composition gradients of external phases. We upscaled tuna-step by setting 14 actuatable nozzles in parallel, offering a step-emulsification-based single chip solution that can accommodate various requirements in terms of throughput, droplet volumes, flow rates, and surface chemistry.
Collapse
Affiliation(s)
- Francesco Nalin
- Institute of Physical Chemistry, Polish Academy of Sciences, 44/52 ul. Kasprzaka, 01-224 Warsaw, Poland.
| | - Maria Celeste Tirelli
- Institute of Physical Chemistry, Polish Academy of Sciences, 44/52 ul. Kasprzaka, 01-224 Warsaw, Poland.
| | - Piotr Garstecki
- Institute of Physical Chemistry, Polish Academy of Sciences, 44/52 ul. Kasprzaka, 01-224 Warsaw, Poland.
| | - Witold Postek
- Institute of Physical Chemistry, Polish Academy of Sciences, 44/52 ul. Kasprzaka, 01-224 Warsaw, Poland.
- Broad Institute of MIT and Harvard, Merkin Building, 415 Main St, Cambridge, MA 02142, USA
| | - Marco Costantini
- Institute of Physical Chemistry, Polish Academy of Sciences, 44/52 ul. Kasprzaka, 01-224 Warsaw, Poland.
| |
Collapse
|
3
|
Torino S, Dhurandhar M, Stroobants A, Claessens R, Efremov RG. Time-resolved cryo-EM using a combination of droplet microfluidics with on-demand jetting. Nat Methods 2023; 20:1400-1408. [PMID: 37592181 DOI: 10.1038/s41592-023-01967-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 06/27/2023] [Indexed: 08/19/2023]
Abstract
Single-particle cryogenic electron microscopy (cryo-EM) allows reconstruction of high-resolution structures of proteins in different conformations. Protein function often involves transient functional conformations, which can be resolved using time-resolved cryo-EM (trEM). In trEM, reactions are arrested after a defined delay time by rapid vitrification of protein solution on the EM grid. Despite the increasing interest in trEM among the cryo-EM community, making trEM samples with a time resolution below 100 ms remains challenging. Here we report the design and the realization of a time-resolved cryo-plunger that combines a droplet-based microfluidic mixer with a laser-induced generator of microjets that allows rapid reaction initiation and plunge-freezing of cryo-EM grids. Using this approach, a time resolution of 5 ms was achieved and the protein density map was reconstructed to a resolution of 2.1 Å. trEM experiments on GroEL:GroES chaperonin complex resolved the kinetics of the complex formation and visualized putative short-lived conformations of GroEL-ATP complex.
Collapse
Affiliation(s)
- Stefania Torino
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mugdha Dhurandhar
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Annelore Stroobants
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Raf Claessens
- Research Group Electrochemical and Surface Engineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - Rouslan G Efremov
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium.
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
4
|
Wei C, Yu C, Li S, Li T, Meng J, Li J. Easy-to-Operate Co-Flow Step Emulsification Device for High-Throughput Three-Dimensional Cell Culture. BIOSENSORS 2022; 12:bios12050350. [PMID: 35624651 PMCID: PMC9138713 DOI: 10.3390/bios12050350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022]
Abstract
Cell culture plays an essential role in tissue engineering and high-throughput drug screening. Compared with two-dimensional (2D) in vitro culture, three-dimensional (3D) in vitro culture can mimic cells in vivo more accurately, including complex cellular organizations, heterogeneity, and cell–extracellular matrix (ECM) interactions. This article presents a droplet-based microfluidic chip that integrates cell distribution, 3D in vitro cell culture, and in situ cell monitoring in a single device. Using the microfluidic “co-flow step emulsification” approach, we have successfully prepared close-packed droplet arrays with an ultra-high-volume fraction (72%) which can prevent cells from adhering to the chip surface so as to achieve a 3D cell culture and make scalable and high-throughput cell culture possible. The proposed device could produce droplets from 55.29 ± 1.52 to 95.64 ± 3.35 μm, enabling the diverse encapsulation of cells of different sizes and quantities. Furthermore, the cost for each microfluidic CFSE chip is approximately USD 3, making it a low-cost approach for 3D cell culture. The proposed device is successfully applied in the 3D culture of saccharomyces cerevisiae cells with an occurrence rate for proliferation of 80.34 ± 3.77%. With low-cost, easy-to-operate, high-throughput, and miniaturization characteristics, the proposed device meets the requirements for 3D in vitro cell culture and is expected to be applied in biological fields such as drug toxicology and pharmacokinetics.
Collapse
Affiliation(s)
- Chunyang Wei
- Hebei Key Laboratory of Robotic Sensing and Human-Robot Interactions, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300132, China; (C.W.); (S.L.)
| | - Chengzhuang Yu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; (C.Y.); (J.M.)
| | - Shanshan Li
- Hebei Key Laboratory of Robotic Sensing and Human-Robot Interactions, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300132, China; (C.W.); (S.L.)
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; (C.Y.); (J.M.)
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi 214122, China
| | - Tiejun Li
- Hebei Key Laboratory of Robotic Sensing and Human-Robot Interactions, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300132, China; (C.W.); (S.L.)
- Correspondence: (T.L.); (J.L.); Tel.: +86-22-60202605 (T.L.); +86-22-60201070 (J.L.)
| | - Jiyu Meng
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; (C.Y.); (J.M.)
| | - Junwei Li
- Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China
- Department of Computer Science and Electrical Engineering, Hebei University of Technology, Langfang 065000, China
- Correspondence: (T.L.); (J.L.); Tel.: +86-22-60202605 (T.L.); +86-22-60201070 (J.L.)
| |
Collapse
|
5
|
Wei C, Yu C, Li S, Meng J, Li T, Cheng J, Pan F, Li J. Easy-to-Operate Co-flow Step Emulsification Device for Droplet Digital Polymerase Chain Reaction. Anal Chem 2022; 94:3939-3947. [PMID: 35200004 DOI: 10.1021/acs.analchem.1c04983] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Digital polymerase chain reaction (PCR) plays important roles in the detection and quantification of nucleic acid targets, while there still remain challenges including high cost, complex operation, and low integration of the instrumental system. Here, in this work, a novel microfluidic chip based on co-flow step emulsification is proposed for droplet digital PCR (ddPCR), which can achieve droplet generation, droplet array self-assembly, PCR amplification, and fluorescence detection on a single device. With the combination of single-layer lithography and punching operation, a step microstructure was constructed and it served as the key element to develop a Laplace pressure gradient at the Rayleigh-Plateau instability interface so as to achieve droplet generation. It is demonstrated that the fabrication of step microstructure is low cost, easy-to-operate, and reliable. In addition, the single droplet volume can be adjusted flexibly due to the co-flow design; thus, the ddPCR chip can get an ultrahigh upper limit of quantification to deal with DNA templates with high concentrations. Furthermore, the volume fraction of the resulting droplets in this ddPCR chip can be up to 72% and it results in closely spaced droplet arrays, makes the best of CCD camera for fluorescence detections, and is beneficial for the minimization of a ddPCR system. The quantitative capability of the ddPCR chip was evaluated by measuring template DNA at concentrations from 20 to 50 000 copies/μL. Owing to the characteristics of low cost, easy operation, excellent quantitative capability, and minimization, the proposed ddPCR chip meets the requirements of DNA molecule quantification and is expected to be applied in the point-of-care testing field.
Collapse
Affiliation(s)
- Chunyang Wei
- Hebei Key Laboratory of Robotic Sensing and Human-robot Interactions, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300132, China.,State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
| | - Chengzhuang Yu
- Hebei Key Laboratory of Robotic Sensing and Human-robot Interactions, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300132, China
| | - Shanshan Li
- Hebei Key Laboratory of Robotic Sensing and Human-robot Interactions, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300132, China.,State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China
| | - Jiyu Meng
- Hebei Key Laboratory of Robotic Sensing and Human-robot Interactions, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300132, China
| | - Tiejun Li
- Hebei Key Laboratory of Robotic Sensing and Human-robot Interactions, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300132, China
| | - Jingmeng Cheng
- Hebei Key Laboratory of Robotic Sensing and Human-robot Interactions, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300132, China
| | - Feng Pan
- Hebei Key Laboratory of Robotic Sensing and Human-robot Interactions, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300132, China
| | - Junwei Li
- Institute of Biophysics, School of Health Science and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China.,Department of Electronics and Information Engineering, Hebei University of Technology, Langfang 065000, China
| |
Collapse
|
6
|
Sun M, Maryu G, Wang S, Yang Q, Bailey RC. Plug-in tubes allow tunable oil removal, droplet packing, and reaction incubation for time-controlled droplet-based assays. BIOMICROFLUIDICS 2021; 15:024108. [PMID: 33841602 PMCID: PMC8024030 DOI: 10.1063/5.0047924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Here, we report a unique microfluidic technique that utilizes a membrane filter and plug-in tubes to remove oil and pack water-in-oil droplets for controlled incubation of droplet-based assays. This technique could be modularly incorporated into most droplet-generation devices without a need to alter the original designs. Our results show that removing excess oil to form tightly packed droplets allows for extended and controllable incubation for droplets traveling in microchannels. The efficiency of this technique was evaluated and confirmed using a time-dependent enzyme assay with a fluorometric readout. The system is also readily generalizable to control inter-droplet distance, crucial for studying droplet communication and pattern formation.
Collapse
Affiliation(s)
| | - Gembu Maryu
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Shiyuan Wang
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Qiong Yang
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Ryan C. Bailey
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
7
|
Azzopardi CL, Chollet F, Manceau JF, Boireau W. Analyte capture in an array of functionalized droplets for a regenerable biosensor. BIOMICROFLUIDICS 2019; 13:054105. [PMID: 31592056 PMCID: PMC6768797 DOI: 10.1063/1.5115494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
We describe in this work an advanced microfluidic chip for the capture of bioanalyte on the surface of droplets arranged in a dense array. We show the procedure for generating, functionalizing, and arranging the droplets inside the device for capturing a specific bioanalyte. Then, we demonstrate the capacity of the array to capture analyte from a cross-flowing liquid, using a biotin/streptavidin model. The paper also proposes to use the droplets array, after integration with acoustic detection, as a regenerable detection interface for bioanalyte sensing. We model the arrangement of droplet in dense array and show that they present a larger effective capture surface and shorter capture distance than standard flat surface biosensor of the same footprint. As the droplets can be easily evacuated and replaced inside the device analysis chamber, the proposed biosensor would allow biointerface regeneration and chain measurement without dismounting the device.
Collapse
Affiliation(s)
- C-L Azzopardi
- FEMTO-ST Institute, Univ. Bourgogne Franche-Comté CNRS, 15B av. des Montboucons, 25030 Besançon cedex, France
| | - F Chollet
- FEMTO-ST Institute, Univ. Bourgogne Franche-Comté CNRS, 15B av. des Montboucons, 25030 Besançon cedex, France
| | - J-F Manceau
- FEMTO-ST Institute, Univ. Bourgogne Franche-Comté CNRS, 15B av. des Montboucons, 25030 Besançon cedex, France
| | - W Boireau
- FEMTO-ST Institute, Univ. Bourgogne Franche-Comté CNRS, 15B av. des Montboucons, 25030 Besançon cedex, France
| |
Collapse
|
8
|
Zheng Y, Wu Z, Khan M, Mao S, Manibalan K, Li N, Lin JM, Lin L. Multifunctional Regulation of 3D Cell-Laden Microsphere Culture on an Integrated Microfluidic Device. Anal Chem 2019; 91:12283-12289. [DOI: 10.1021/acs.analchem.9b02434] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yajing Zheng
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Zengnan Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Mashooq Khan
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Sifeng Mao
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Kesavan Manibalan
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Nan Li
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jin-Ming Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Ling Lin
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| |
Collapse
|
9
|
Suea-Ngam A, Howes PD, Srisa-Art M, deMello AJ. Droplet microfluidics: from proof-of-concept to real-world utility? Chem Commun (Camb) 2019; 55:9895-9903. [PMID: 31334541 DOI: 10.1039/c9cc04750f] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Droplet microfluidics constitutes a diverse and practical tool set that enables chemical and biological experiments to be performed at high speed and with enhanced efficiency when compared to conventional instrumentation. Indeed, in recent years, droplet-based microfluidic tools have been used to excellent effect in a range of applications, including materials synthesis, single cell analysis, RNA sequencing, small molecule screening, in vitro diagnostics and tissue engineering. Our 2011 Chemical Communications Highlight Article [Chem. Commun., 2011, 47, 1936-1942] reviewed some of the most important technological developments and applications of droplet microfluidics, and identified key challenges that needed to be addressed in the short term. In the current contribution, we consider the intervening eight years, and assess the contributions that droplet-based microfluidics has made to experimental science in its broadest sense.
Collapse
Affiliation(s)
- Akkapol Suea-Ngam
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland.
| | - Philip D Howes
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland.
| | - Monpichar Srisa-Art
- Electrochemistry and Optical Spectroscopy Center of Excellence, Department of Chemistry, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok, 10330, Thailand
| | - Andrew J deMello
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland.
| |
Collapse
|
10
|
Postek W, Gargulinski P, Scheler O, Kaminski TS, Garstecki P. Microfluidic screening of antibiotic susceptibility at a single-cell level shows the inoculum effect of cefotaxime on E. coli. LAB ON A CHIP 2018; 18:3668-3677. [PMID: 30375609 DOI: 10.1039/c8lc00916c] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Measurement of antibiotic susceptibility at the level of single cells is important as it reveals the concentration of an antibiotic that leads to drug resistance in bacterial strains. To date, no solution for large-scale studies of antibiotic susceptibility at the single-cell level has been shown. Here, we present a method for production and separation of emulsions consisting of subnanoliter droplets that allows us to identify each emulsion by their spatial position in the train of emulsions without chemical barcoding. The emulsions of droplets are separated by a third immiscible phase, thus forming large compartments-tankers-each filled with an emulsion of droplet reactors. Each tanker in a train can be set under different reaction conditions for hundreds or thousands of replications of the same reaction. The tankers allow for long term incubation - needed to check for growth of bacteria under a screen of conditions. We use microfluidic tankers to analyze susceptibility to cefotaxime in ca. 1900 replications for each concentration of the antibiotic in one experiment. We test cefotaxime susceptibility for different initial concentrations of bacteria, showing the inoculum effect down to the level of single cells for more than a hundred single-cell events per tanker. Lastly, we use tankers to observe the formation of aggregates of bacteria in the presence of cefotaxime in the increasing concentration of the antibiotic. The microfluidic tankers allow for facile studies of the inoculum effect and antibiotic susceptibility, and constitute an attractive, label-free screening method for a variety of other experiments in chemistry and biology.
Collapse
Affiliation(s)
- Witold Postek
- Institute of Physical Chemistry of the Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa, Poland.
| | - Pawel Gargulinski
- Institute of Physical Chemistry of the Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa, Poland.
| | - Ott Scheler
- Institute of Physical Chemistry of the Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa, Poland. and Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia and Department of Chemistry and Biotechnology, TalTech, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Tomasz S Kaminski
- Institute of Physical Chemistry of the Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa, Poland.
| | - Piotr Garstecki
- Institute of Physical Chemistry of the Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa, Poland.
| |
Collapse
|
11
|
Kim SC, Clark IC, Shahi P, Abate AR. Single-Cell RT-PCR in Microfluidic Droplets with Integrated Chemical Lysis. Anal Chem 2018; 90:1273-1279. [PMID: 29256243 PMCID: PMC5991602 DOI: 10.1021/acs.analchem.7b04050] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Droplet microfluidics can identify and sort cells using digital reverse transcription polymerase chain reaction (RT-PCR) signals from individual cells. However, current methods require multiple microfabricated devices for enzymatic cell lysis and PCR reagent addition, making the process complex and prone to failure. Here, we describe a new approach that integrates all components into a single device. The method enables controlled exposure of isolated single cells to a high pH buffer, which lyses cells and inactivates reaction inhibitors but can be instantly neutralized with RT-PCR buffer. Using our chemical lysis approach, we distinguish individual cells' gene expression with data quality equivalent to more complex two-step workflows. Our system accepts cells and produces droplets ready for amplification, making single-cell droplet RT-PCR faster and more reliable.
Collapse
Affiliation(s)
- Samuel C. Kim
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Iain C. Clark
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Payam Shahi
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Adam R. Abate
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
- California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California, USA
- Chan Zuckerberg Biohub, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
12
|
Cochrane WG, Hackler AL, Cavett VJ, Price AK, Paegel BM. Integrated, Continuous Emulsion Creamer. Anal Chem 2017; 89:13227-13234. [PMID: 29124927 DOI: 10.1021/acs.analchem.7b03070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Automated and reproducible sample handling is a key requirement for high-throughput compound screening and currently demands heavy reliance on expensive robotics in screening centers. Integrated droplet microfluidic screening processors are poised to replace robotic automation by miniaturizing biochemical reactions to the droplet scale. These processors must generate, incubate, and sort droplets for continuous droplet screening, passively handling millions of droplets with complete uniformity, especially during the key step of sample incubation. Here, we disclose an integrated microfluidic emulsion creamer that packs ("creams") assay droplets by draining away excess oil through microfabricated drain channels. The drained oil coflows with creamed emulsion and then reintroduces the oil to disperse the droplets at the circuit terminus for analysis. Creamed emulsion assay incubation time dispersion was 1.7%, 3-fold less than other reported incubators. The integrated, continuous emulsion creamer (ICEcreamer) was used to miniaturize and optimize measurements of various enzymatic activities (phosphodiesterase, kinase, bacterial translation) under multiple- and single-turnover conditions. Combining the ICEcreamer with current integrated microfluidic DNA-encoded library bead processors eliminates potentially cumbersome instrumentation engineering challenges and is compatible with assays of diverse target class activities commonly investigated in drug discovery.
Collapse
Affiliation(s)
- Wesley G Cochrane
- Doctoral Program in the Chemical and Biological Sciences and ‡Department of Chemistry, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Amber L Hackler
- Doctoral Program in the Chemical and Biological Sciences and ‡Department of Chemistry, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Valerie J Cavett
- Doctoral Program in the Chemical and Biological Sciences and ‡Department of Chemistry, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Alexander K Price
- Doctoral Program in the Chemical and Biological Sciences and ‡Department of Chemistry, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Brian M Paegel
- Doctoral Program in the Chemical and Biological Sciences and ‡Department of Chemistry, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|