1
|
Liu Y, Ončák M, Meyer J, Ard SG, Shuman NS, Viggiano AA, Guo H. Intersystem Crossing Control of the Nb + + CO 2 → NbO + + CO Reaction. J Phys Chem A 2024; 128:6943-6953. [PMID: 39117562 DOI: 10.1021/acs.jpca.4c04067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The transfer of an oxygen atom from carbon dioxide (CO2) to a transition metal cation in the gas phase offers atomic level insights into single-atom catalysis for CO2 activation. Given that these reactions often involve open-shell transition metals, they may proceed through intersystem crossing between different spin manifolds. However, a definitive understanding of such spin-forbidden reaction requires dynamical calculations on multiple global potential energy surfaces (PESs) coupled by spin-orbit couplings. In this work, we report global PESs and spin-orbit couplings for three low-lying spin (quintet, triplet, and singlet) states for the reaction between the niobium cation (Nb+) and CO2, which are used to investigate the nonadiabatic reaction dynamics and kinetics. Comparison with experimental data of kinetics and collision dynamics shows satisfactory agreement. This reaction is found to be very similar to that between Ta+ + CO2. Specifically, our theoretical findings suggest that the rate-limiting step in this reaction is intersystem crossing, rather than potential barriers.
Collapse
Affiliation(s)
- Yang Liu
- Department of Chemistry and Chemical Biology, Center for Computational Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Milan Ončák
- Universität Innsbruck, Institut für Ionenenphysik und Angewandte Physik, Technikerstraße 25, Innsbruck 6020, Austria
| | - Jennifer Meyer
- RPTU Kaiserslautern-Landau, Fachbereich Chemie und Forschungszentrum OPTIMAS, Erwin-Schrödinger Str. 52, Kaiserslautern 67663, Germany
| | - Shaun G Ard
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Albuquerque, New Mexico 87117, United States
| | - Nicholas S Shuman
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Albuquerque, New Mexico 87117, United States
| | - Albert A Viggiano
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Albuquerque, New Mexico 87117, United States
| | - Hua Guo
- Department of Chemistry and Chemical Biology, Center for Computational Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
2
|
Maniar R, Withanage KPK, Shahi C, Kaplan AD, Perdew JP, Pederson MR. Symmetry breaking and self-interaction correction in the chromium atom and dimer. J Chem Phys 2024; 160:144301. [PMID: 38587222 DOI: 10.1063/5.0180863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/21/2024] [Indexed: 04/09/2024] Open
Abstract
Density functional approximations to the exchange-correlation energy can often identify strongly correlated systems and estimate their energetics through energy-minimizing symmetry-breaking. In particular, the binding energy curve of the strongly correlated chromium dimer is described qualitatively by the local spin density approximation (LSDA) and almost quantitatively by the Perdew-Burke-Ernzerhof generalized gradient approximation (PBE-GGA), where the symmetry breaking is antiferromagnetic for both. Here, we show that a full Perdew-Zunger self-interaction-correction (SIC) to LSDA seems to go too far by creating an unphysical symmetry-broken state, with effectively zero magnetic moment but non-zero spin density on each atom, which lies ∼4 eV below the antiferromagnetic solution. A similar symmetry-breaking, observed in the atom, better corresponds to the 3d↑↑4s↑3d↓↓4s↓ configuration than to the standard 3d↑↑↑↑↑4s↑. For this new solution, the total energy of the dimer at its observed bond length is higher than that of the separated atoms. These results can be regarded as qualitative evidence that the SIC needs to be scaled down in many-electron regions.
Collapse
Affiliation(s)
- Rohan Maniar
- Department of Physics and Engineering Physics, Tulane University, 6400 Freret St., New Orleans, Louisiana 70118, USA
| | - Kushantha P K Withanage
- Department of Physics, The University of Texas at El Paso, 500 West University Ave., El Paso, Texas 79968, USA
| | - Chandra Shahi
- Department of Physics and Engineering Physics, Tulane University, 6400 Freret St., New Orleans, Louisiana 70118, USA
| | - Aaron D Kaplan
- Materials Project, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., B33-141B, Berkeley, California 94720, USA
| | - John P Perdew
- Department of Physics and Engineering Physics, Tulane University, 6400 Freret St., New Orleans, Louisiana 70118, USA
| | - Mark R Pederson
- Department of Physics, The University of Texas at El Paso, 500 West University Ave., El Paso, Texas 79968, USA
| |
Collapse
|
3
|
Sweeny BC, Long BA, Maffucci D, Zuo J, Guo H, Viggiano AA, Ard SG, Shuman NS. Activation of Methane by Zr +: A Deep-Dive into the Potential Surface via Pressure- and Temperature-Dependent Kinetics with Statistical Modeling. J Phys Chem A 2023; 127:1818-1830. [PMID: 36802591 DOI: 10.1021/acs.jpca.2c07584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The kinetics of Zr+ + CH4 are measured using a selected-ion flow tube apparatus over the temperature range 300-600 K and the pressure range 0.25-0.60 Torr. Measured rate constants are small, never exceeding 5% of the Langevin capture value. Both collisionally stabilized ZrCH4+ and bimolecular ZrCH2+ products are observed. A stochastic statistical modeling of the calculated reaction coordinate is used to fit the experimental results. The modeling indicates that an intersystem crossing from the entrance well, necessary for the bimolecular product to be formed, occurs faster than competing isomerization and dissociation processes. That sets an upper limit on the lifetime of the entrance complex to crossing of 10-11 s. The endothermicity of the bimolecular reaction is derived to be 0.09 ± 0.05 eV, in agreement with a literature value. The observed ZrCH4+ association product is determined to be primarily HZrCH3+ not Zr+(CH4), indicating that bond activation has occurred at thermal energies. The energy of HZrCH3+ relative to separated reactants is determined to be -0.80 ± 0.25 eV. Inspection of the statistical modeling results under best-fit conditions reveals reaction dependences on impact parameter, translation energy, internal energy, and angular momentum. Reaction outcomes are heavily affected by angular momentum conservation. Additionally, product energy distributions are predicted.
Collapse
Affiliation(s)
- Brendan C Sweeny
- Boston College Institute for Scientific Research, Boston, Massachusetts 02549, United States
| | - Bryan A Long
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117, United States
| | - Dominique Maffucci
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117, United States
| | - Junxiang Zuo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Albert A Viggiano
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117, United States
| | - Shaun G Ard
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117, United States
| | - Nicholas S Shuman
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117, United States
| |
Collapse
|
4
|
Cheng L, Sun J, Deustua JE, Bhethanabotla VC, Miller TF. Molecular-orbital-based machine learning for open-shell and multi-reference systems with kernel addition Gaussian process regression. J Chem Phys 2022; 157:154105. [PMID: 36272799 DOI: 10.1063/5.0110886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We introduce a novel machine learning strategy, kernel addition Gaussian process regression (KA-GPR), in molecular-orbital-based machine learning (MOB-ML) to learn the total correlation energies of general electronic structure theories for closed- and open-shell systems by introducing a machine learning strategy. The learning efficiency of MOB-ML(KA-GPR) is the same as the original MOB-ML method for the smallest criegee molecule, which is a closed-shell molecule with multi-reference characters. In addition, the prediction accuracies of different small free radicals could reach the chemical accuracy of 1 kcal/mol by training on one example structure. Accurate potential energy surfaces for the H10 chain (closed-shell) and water OH bond dissociation (open-shell) could also be generated by MOB-ML(KA-GPR). To explore the breadth of chemical systems that KA-GPR can describe, we further apply MOB-ML to accurately predict the large benchmark datasets for closed- (QM9, QM7b-T, and GDB-13-T) and open-shell (QMSpin) molecules.
Collapse
Affiliation(s)
- Lixue Cheng
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Jiace Sun
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - J Emiliano Deustua
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Vignesh C Bhethanabotla
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Thomas F Miller
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
5
|
Lew-Yee JFH, M. del Campo J. Charge delocalization error in Piris Natural Orbital Functionals. J Chem Phys 2022; 157:104113. [DOI: 10.1063/5.0102310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Piris Natural Orbital Functionals (PNOF) have been recognized as a low-scaling alternative to study strong correlated systems. In this work, we address the performance of the fifth functional (PNOF5) and the seventh functional (PNOF7) to deal with another common problem, the charge delocalization error. The effects of this problem can be observed in charged systems of repeated well-separated fragments, where the energy should be the sum of the charged and neutral fragments, regardless of how the charge is distributed. In practice, an energetic overstabilization of fractional charged fragments leads to a preference for having the charge delocalized throughout the system. To establish the performance of PNOF functionals regarding charge delocalization error, charged chains of helium atoms and the W4-17-MR set molecules were used as base fragments and their energy, charge distribution and correlation regime were studied. It was found that PNOF5 prefers localized charge distributions, while PNOF7 improves the treatment of interpair static correlation and tends to the correct energetic limit for several cases, although a preference for delocalized charge distributions may arise in highly strong correlation regimes. Overall, it is concluded that PNOF functionals can simultaneously deal with static correlation and charge delocalization errors, resulting in a promising choice to study charge-related problems.
Collapse
Affiliation(s)
- Juan Felipe Huan Lew-Yee
- Departamento de Física y Química Teórica, Universidad Nacional Autónoma de México Facultad de Química, Mexico
| | - Jorge M. del Campo
- Departamento de Física y Química Teórica, Universidad Nacional Autónoma de México, Mexico
| |
Collapse
|
6
|
Sweeny BC, Long BA, Viggiano AA, Ard SG, Shuman NS. Effect of Intersystem Crossings on the Kinetics of Thermal Ion-Molecule Reactions: Ti + + O 2, CO 2, and N 2O. J Phys Chem A 2022; 126:859-869. [PMID: 35107288 DOI: 10.1021/acs.jpca.1c10196] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A selected-ion flow tube apparatus has been used to measure rate constants and product branching fractions of 2Ti+ reacting with O2, CO2, and N2O over the range of 200-600 K. Ti+ + O2 proceeds at near the Langevin capture rate constant of 6-7 × 10-10 cm3 s-1 at all temperatures to yield 4TiO+ + O. Reactions initiated on doublet or quartet surfaces are formally spin-allowed; however, the 50% of reactions initiated on sextet surfaces must undergo an intersystem crossing (ISC). Statistical theory is used to calculate the energy and angular momentum dependences of the specific rate constants for the competing isomerization and dissociation channels. This acts as an internal clock on the lifetime to ISC, setting an upper limit on the order of τISC < 1e-11 s. 2Ti+ + CO2 produces 4TiO+ + CO less efficiently, with a rate constant fit as 5.5 ± 1.3 × 10-11 (T/300)-1.1 ± 0.2 cm3 s-1. The reaction is formally spin-prohibited, and statistical modeling shows that ISC, not a submerged transition state, is rate-limiting, occurring with a lifetime on the order of 10-7 s. Ti+ + N2O proceeds at near the capture rate constant. In this case, both Ti+ON2 and Ti+N2O entrance channel complexes are formed and can interconvert over a barrier. The main product is >90% TiO+ + N2, and the remainder is TiN+ + NO. Both channels need to undergo ISC to form ground-state products but TiO+ can be formed in an excited state exothermically. Therefore, kinetic information is obtained only for the TiN+ channel, where ISC occurs with a lifetime on the order of 10-9 s. Statistical modeling indicates that the dipole-preferred Ti+ON2 complex is formed in ∼80% of collisions, and this value is reproduced using a capture model based on the generic ion-dipole + quadrupole long-range potential.
Collapse
Affiliation(s)
- Brendan C Sweeny
- Institute for Scientific Research, Boston College, Boston, Massachusetts 02467, United States
| | - Bryan A Long
- NRC Postdoc at Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117, United States
| | - Albert A Viggiano
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117, United States
| | - Shaun G Ard
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117, United States
| | - Nicholas S Shuman
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117, United States
| |
Collapse
|
7
|
Fateminasab F, de la Lande A, Omidyan R. Insights into the effect of distal histidine and water hydrogen bonding on NO ligation to ferrous and ferric heme: a DFT study. RSC Adv 2022; 12:4703-4713. [PMID: 35425484 PMCID: PMC8981399 DOI: 10.1039/d1ra08398h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/30/2022] [Indexed: 11/29/2022] Open
Abstract
The effect of distal histidine on ligation of NO to ferrous and ferric-heme, has been investigated with the high-level density functional theoretical (DFT) method. It has been predicted that the distal histidine significantly stabilizes the interaction of NO ferrous-heme (by −2.70 kcal mol−1). Also, water hydrogen bonding is quite effective in strengthening the Fe–NO bond in ferrous heme. In contrast in ferric heme, due to the large distance between the H2O and O(NO) and lack of hydrogen bonding, the distal histidine exhibits only a slight effect on the binding of NO to the ferric analogue. Concerning the bond nature of FeII–NO and FeIII–NO in heme, a QTAIM analysis predicts a partially covalent and ionic bond nature in both systems. The effect of distal histidine on ligation of NO to ferrous and ferric-heme, has been investigated with the high-level density functional theoretical (DFT) method.![]()
Collapse
Affiliation(s)
- Fatemeh Fateminasab
- Department of Chemistry, University of Isfahan 81746-73441 Isfahan Iran +98 31 3668 9732
| | - Aurelien de la Lande
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000 91405 Orsay France
| | - Reza Omidyan
- Department of Chemistry, University of Isfahan 81746-73441 Isfahan Iran +98 31 3668 9732
| |
Collapse
|
8
|
Fateminasab F, Aarabi M, de la Lande A, Omidyan R. Theoretical insights on the effect of environments on binding of CO to the Heme :Ferrous and Ferric systems. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
McDonald DC, Sweeny BC, Viggiano AA, Ard SG, Shuman NS. Cyclotrimerization of Acetylene under Thermal Conditions: Gas-Phase Kinetics of V + and Fe + + C 2H 2. J Phys Chem A 2021; 125:9327-9337. [PMID: 34665622 DOI: 10.1021/acs.jpca.1c06439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The kinetics of successive reactions of acetylene (C2H2) initiated on either vanadium or iron atomic cations have been investigated under thermal conditions using the variable-ion source and temperature-adjustable selected-ion flow tube apparatus. Consistent with the literature results, the reaction of Fe+ + C2H2 primarily yields Fe+(m/z = (C2H2)3); however, analysis via quantum chemical calculations and statistical modeling shows that the mechanism does not form benzene upon the third acetylene addition. The kinetics are more consistent with successive addition of three acetylene molecules, yielding Fe+(C2H2)3, followed by an addition of a fourth acetylene molecule, initiating cyclotrimerization, yielding either Fe+(C2H2) + neutral benzene or Fe+(Bz) + acetylene, where Bz is a benzene ligand. In contrast, the reaction of V+ + C2H2 yields products via successive associations V+(m/z = (C2H2)n) either with or without a bimolecular step involving loss of one H2 and V+C2(m/z = (C2H2)m), where n and m extend at least up to 11 under conditions of 0.32 Torr at 300 K. Stabilized V+(Bz) is not a significant intermediate in the association mechanism. We propose a plausible mechanism for the generation of neutral benzene in this reaction and compare with the Fe+ results. The reaction steps that produce benzene result in turnover of the single-atom catalyst, and the large hydrocarbons produced that remain associated to the catalyst are proposed to be polycyclic aromatic hydrocarbons.
Collapse
Affiliation(s)
- David C McDonald
- NRC Postdoc at Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Albuquerque, New Mexico 87117, United States
| | - Brendan C Sweeny
- Institute for Scientific Research, Boston College, Boston, Massachusetts 02467, United States
| | - Albert A Viggiano
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Albuquerque, New Mexico 87117, United States
| | - Shaun G Ard
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Albuquerque, New Mexico 87117, United States
| | - Nicholas S Shuman
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Albuquerque, New Mexico 87117, United States
| |
Collapse
|
10
|
Wodyński A, Arbuznikov AV, Kaupp M. Local hybrid functionals augmented by a strong-correlation model. J Chem Phys 2021; 155:144101. [PMID: 34654308 DOI: 10.1063/5.0058917] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The strong-correlation factor of the recent KP16/B13 exchange-correlation functional has been adapted and applied to the framework of local hybrid (LH) functionals. The expression identifiable as nondynamical (NDC) and dynamical (DC) correlations in LHs is modified by inserting a position-dependent KP16/B13-style strong-correlation factor qAC(r) based on a local version of the adiabatic connection. Different ways of deriving this factor are evaluated for a simple one-parameter LH based on the local density approximation. While the direct derivation from the LH NDC term fails due to known deficiencies, hybrid approaches, where the factor is determined from the B13 NDC term as in KP16/B13 itself, provide remarkable improvements. In particular, a modified B13 NDC expression using Patra's exchange-hole curvature showed promising results. When applied to the simple LH as a first attempt, it reduces atomic fractional-spin errors and deficiencies of spin-restricted bond dissociation curves to a similar extent as the KP16/B13 functional itself while maintaining the good accuracy of the underlying LH for atomization energies and reaction barriers in weakly correlated situations. The performance of different NDC expressions in deriving strong-correlation corrections is analyzed, and areas for further improvements of strong-correlation corrected LHs and related approaches are identified. All the approaches evaluated in this work have been implemented self-consistently into a developers' version of the Turbomole program.
Collapse
Affiliation(s)
- Artur Wodyński
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Alexei V Arbuznikov
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Martin Kaupp
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Straße des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
11
|
Janesko BG. Replacing hybrid density functional theory: motivation and recent advances. Chem Soc Rev 2021; 50:8470-8495. [PMID: 34060549 DOI: 10.1039/d0cs01074j] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Density functional theory (DFT) is the most widely-used electronic structure approximation across chemistry, physics, and materials science. Every year, thousands of papers report hybrid DFT simulations of chemical structures, mechanisms, and spectra. Unfortunately, hybrid DFT's accuracy is ultimately limited by tradeoffs between over-delocalization and under-binding. This review summarizes these tradeoffs, and introduces six modern attempts to go beyond them while maintaining hybrid DFT's relatively low computational cost: DFT+U, self-interaction corrections, localized orbital scaling corrections, local hybrid functionals, real-space nondynamical correlation, and our rung-3.5 approach. The review concludes with practical suggestions for DFT users to identify and mitigate these tradeoffs' impact on their simulations.
Collapse
Affiliation(s)
- Benjamin G Janesko
- Department of Chemistry & Biochemistry, Texas Christian University, 2800 S. University Dr, Fort Worth, TX 76129, USA.
| |
Collapse
|
12
|
Shee J, Loipersberger M, Hait D, Lee J, Head-Gordon M. Revealing the nature of electron correlation in transition metal complexes with symmetry breaking and chemical intuition. J Chem Phys 2021; 154:194109. [PMID: 34240907 DOI: 10.1063/5.0047386] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, we provide a nuanced view of electron correlation in the context of transition metal complexes, reconciling computational characterization via spin and spatial symmetry breaking in single-reference methods with qualitative concepts from ligand-field and molecular orbital theories. These insights provide the tools to reliably diagnose the multi-reference character, and our analysis reveals that while strong (i.e., static) correlation can be found in linear molecules (e.g., diatomics) and weakly bound and antiferromagnetically coupled (monometal-noninnocent ligand or multi-metal) complexes, it is rarely found in the ground-states of mono-transition-metal complexes. This leads to a picture of static correlation that is no more complex for transition metals than it is, e.g., for organic biradicaloids. In contrast, the ability of organometallic species to form more complex interactions, involving both ligand-to-metal σ-donation and metal-to-ligand π-backdonation, places a larger burden on a theory's treatment of dynamic correlation. We hypothesize that chemical bonds in which inter-electron pair correlation is non-negligible cannot be adequately described by theories using MP2 correlation energies and indeed find large errors vs experiment for carbonyl-dissociation energies from double-hybrid density functionals. A theory's description of dynamic correlation (and to a less important extent, delocalization error), which affects relative spin-state energetics and thus spin symmetry breaking, is found to govern the efficacy of its use to diagnose static correlation.
Collapse
Affiliation(s)
- James Shee
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Matthias Loipersberger
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Diptarka Hait
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Joonho Lee
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| |
Collapse
|
13
|
Ard SG, Viggiano AA, Shuman NS. Old School Techniques with Modern Capabilities: Kinetics Determination of Dynamical Information Such as Barriers, Multiple Entrance Channel Complexes, Product States, Spin Crossings, and Size Effects in Metallic Ion–Molecule Reactions. J Phys Chem A 2021; 125:3503-3527. [DOI: 10.1021/acs.jpca.0c11395] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Shaun G. Ard
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Albuquerque, New Mexico 87117, United States
| | - Albert A. Viggiano
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Albuquerque, New Mexico 87117, United States
| | - Nicholas S. Shuman
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Albuquerque, New Mexico 87117, United States
| |
Collapse
|
14
|
Moltved KA, Kepp KP. Dioxygen Binding to all 3d, 4d, and 5d Transition Metals from Coupled-Cluster Theory. Chemphyschem 2020; 21:2173-2186. [PMID: 32757346 DOI: 10.1002/cphc.202000529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/04/2020] [Indexed: 11/11/2022]
Abstract
Understanding how transition metals bind and activate dioxygen (O2 ) is limited by experimental and theoretical uncertainties, making accurate quantum mechanical descriptors of interest. Here we report coupled-cluster CCSD(T) energies with large basis sets and vibrational and relativistic corrections for 160 3d, 4d, and 5d metal-O2 systems. We define four reaction energies (120 in total for the 30 metals) that quantify O-O activation and reveal linear relationships between metal-oxygen and O-O binding energies. The CCSD(T) data can be combined with thermochemical cycles to estimate chemisorption and physisorption energies for each metal from metal oxide embedding energies, in good correlation with atomization enthalpies (R2 =0.75). Spin-geometry variations can break the linearities, of interest to circumventing the Sabatier principle. Pt, Pd, Co, and Fe form a distinct group with the weakest O2 binding. R2 up to 0.84 between surface adsorption energies and our energies for MO2 systems indicate relevance also to real catalytic systems.
Collapse
Affiliation(s)
- Klaus A Moltved
- Technical University of Denmark DTU Chemistry, Building 206, 2800, Kgs. Lyngby, Denmark
| | - Kasper P Kepp
- Technical University of Denmark DTU Chemistry, Building 206, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
15
|
McDonald II DC, Sweeny BC, Viggiano AA, Shuman NS, Ard SG. Role of Spin in the Catalytic Oxidation of CO by N2O Enabled by Co+: New Insights from Temperature-Dependent Kinetics and Statistical Modeling. J Phys Chem A 2020; 124:7966-7972. [DOI: 10.1021/acs.jpca.0c06960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Brendan C. Sweeny
- Institute for Scientific Research, Boston College, Boston, Massachusetts 02467, United States
| | - Albert A. Viggiano
- Space Vehicles Directorate, Air Force Research Laboratory, Kirtland Air Force Base, New Mexico 87117, United States
| | - Nicholas S. Shuman
- Space Vehicles Directorate, Air Force Research Laboratory, Kirtland Air Force Base, New Mexico 87117, United States
| | - Shaun G. Ard
- Space Vehicles Directorate, Air Force Research Laboratory, Kirtland Air Force Base, New Mexico 87117, United States
| |
Collapse
|
16
|
Tang Z, Chang XY, Wan Q, Wang J, Ma C, Law KC, Liu Y, Che CM. Bis(tridentate) Iron(II) Complexes with a Cyclometalating Unit: Photophysical Property Enhancement with Combinatorial Strong Ligand Field Effect. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00149] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Zhou Tang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People’s Republic of China
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| | - Xiao-Yong Chang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People’s Republic of China
| | - Qingyun Wan
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| | - Jian Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People’s Republic of China
| | - Chensheng Ma
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, People’s Republic of China
| | - Kwok-Chung Law
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| | - Yungen Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People’s Republic of China
| | - Chi-Ming Che
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People’s Republic of China
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| |
Collapse
|
17
|
Kahlaoui S, Belhorma B, Labrim H, Boujnah M, Regragui M. Strain effects on the electronic, optical and electrical properties of Cu 2ZnSnS 4: DFT study. Heliyon 2020; 6:e03713. [PMID: 32346627 PMCID: PMC7182731 DOI: 10.1016/j.heliyon.2020.e03713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 09/07/2019] [Accepted: 03/27/2020] [Indexed: 11/04/2022] Open
Abstract
Based on the density functional theory and Boltzmann transport theory, we investigated electronic, electrical and optical properties of Kesterite CZTS under different strain conditions. Our results indicate that both biaxial compressive and tensile strain effects lead to change in the band gap of this structure with different strain values. Furthermore, the edge of absorption, under the influence of an increasing compression, moves towards the short wavelengths. Electrical conductivity for pure CZTS and under dilatation and compression shows that with the increase of dilatation the conductivity of the material also increases, this physical property could be exploited to improve the performance of CZTS a suitable absorbent material in solar cells.
Collapse
Affiliation(s)
- S Kahlaoui
- MANAPSE, Faculty of Sciences, Mohammed V University, B. P. 1014, Rabat, Morocco.,Materials Science Unit/DERS/National Centre for Energy, Sciences and Nuclear Techniques (CNESTEN), Rabat, Morocco
| | - B Belhorma
- Materials Science Unit/DERS/National Centre for Energy, Sciences and Nuclear Techniques (CNESTEN), Rabat, Morocco
| | - H Labrim
- Materials Science Unit/DERS/National Centre for Energy, Sciences and Nuclear Techniques (CNESTEN), Rabat, Morocco
| | - M Boujnah
- LAMCSCI, Faculty of Sciences, Mohammed V University, B. P. 1014, Rabat, Morocco
| | - M Regragui
- MANAPSE, Faculty of Sciences, Mohammed V University, B. P. 1014, Rabat, Morocco
| |
Collapse
|
18
|
Shuman NS, Ard SG, Sweeny BC, Viggiano AA, Owen CJ, Armentrout PB. Methane Adducts of Gold Dimer Cations: Thermochemistry and Structure from Collision-Induced Dissociation and Association Kinetics. J Phys Chem A 2020; 124:3335-3346. [PMID: 32176490 DOI: 10.1021/acs.jpca.0c01217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The bond dissociation energies at 0 K (BDE) of Au2+-CH4 and Au2CH4+-CH4 have been determined using two separate experimental methods. Analyses of collision-induced dissociation cross sections for Au2CH4+ + Xe and Au2(CH4)2+ + Xe measured using a guided ion beam tandem mass spectrometer (GIBMS) yield BDEs of 0.71 ± 0.05 and 0.57 ± 0.07 eV, respectively. Statistical modeling of association kinetics of Au2(CH4)0-2+ + CH4 + He measured from 200 to 400 K and at 0.3-0.9 Torr using a selected-ion flow tube (SIFT) apparatus yields slightly higher values of 0.81 ± 0.21 and 0.75 ± 0.25 eV. The SIFT data also place a lower limit on the BDE of Au2C2H8+-CH4 of 0.35 eV, likely an activated isomer, not Au2(CH4)2+-CH4. Particular emphasis is placed on determining the uncertainty in the derivation from association kinetics measurements, including uncertainties in collisional energy transfer, calculated harmonic frequencies, and possible contribution of isomerization of the association complexes. This evaluation indicates that an uncertainty of ±0.2 eV should be expected and that an uncertainty of better than ±0.1 eV is unlikely to be reasonable.
Collapse
Affiliation(s)
- Nicholas S Shuman
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland AFB, Albuquerque, New Mexico 87117, United States
| | - Shaun G Ard
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland AFB, Albuquerque, New Mexico 87117, United States
| | - Brendan C Sweeny
- NRC Postdoc at Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Albuquerque, New Mexico 87117, United States
| | - Albert A Viggiano
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland AFB, Albuquerque, New Mexico 87117, United States
| | - Cameron J Owen
- Department of Chemistry, University of Utah, 315 S. 1400 E., Rm 2020, Salt Lake City, Utah 84112, United States
| | - P B Armentrout
- Department of Chemistry, University of Utah, 315 S. 1400 E., Rm 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
19
|
Bones DL, Daly SM, Mangan TP, Plane JMC. A study of the reactions of Ni + and NiO + ions relevant to planetary upper atmospheres. Phys Chem Chem Phys 2020; 22:8940-8951. [PMID: 32292965 DOI: 10.1039/d0cp01124j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactions between Ni+(2D) and O3, O2, N2, CO2 and H2O were studied at 294 K using the pulsed laser ablation at 532 nm of a nickel metal target in a fast flow tube, with mass spectrometric detection of Ni+ and NiO+. The rate coefficient for the reaction of Ni+ with O3 is k(294 K) = (9.7 ± 2.1) × 10-10 cm3 molecule-1 s-1; the reaction proceeds at the ion-permanent dipole enhanced Langevin capture rate with a predicted T-0.16 dependence. Electronic structure theory calculations were combined with Rice-Ramsperger-Kassel-Markus theory to extrapolate the measured recombination rate coefficients to the temperature and pressure conditions of planetary upper atmospheres. The following low-pressure limiting rate coefficients were obtained for T = 120-400 K and He bath gas (in cm6 molecule-2 s-1, uncertainty ±σ at 180 K): log10(k, Ni+ + N2) = -27.5009 + 1.0667log10(T) - 0.74741(log10(T))2, σ = 29%; log10(k, Ni+ + O2) = -27.8098 + 1.3065log10(T) - 0.81136(log10(T))2, σ = 32%; log10(k, Ni+ + CO2) = -29.805 + 4.2282log10(T) - 1.4303(log10(T))2, σ = 28%; log10(k, Ni+ + H2O) = -24.318 + 0.20448log10(T) - 0.66676(log10(T))2, σ = 28%). Other rate coefficients measured (at 294 K, in cm3 molecule-1 s-1) were: k(NiO+ + O) = (1.7 ± 1.2) × 10-10; k(NiO+ + CO) = (7.4 ± 1.3) × 10-11; k(NiO+ + O3) = (2.7 ± 1.0) × 10-10 with (29 ± 21)% forming Ni+ as opposed to NiO2+; k(NiO2+ + O3) = (2.9 ± 1.4) × 10-10, with (16 ± 9)% forming NiO+ as opposed to ONiO2+; and k(Ni+·N2 + O) = (7 ± 4) × 10-12. The chemistry of Ni+ and NiO+ in the upper atmospheres of Earth and Mars is then discussed.
Collapse
Affiliation(s)
- David L Bones
- School of Chemistry, University of Leeds, Leeds, UK.
| | - Shane M Daly
- School of Chemistry, University of Leeds, Leeds, UK.
| | | | | |
Collapse
|
20
|
Mitxelena I, Piris M. An efficient method for strongly correlated electrons in two-dimensions. J Chem Phys 2020; 152:064108. [PMID: 32061239 DOI: 10.1063/1.5140985] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This work deals with the problem of strongly correlated electrons in two-dimensions. We give a reduced density matrix (RDM) based tool through which the ground-state energy is given as a functional of the natural orbitals and their occupation numbers. Specifically, the Piris Natural Orbital Functional 7 (PNOF7) is used for studying the 2D Hubbard model and hydrogen square lattices. The singlet ground-state is studied, as well as the doublet mixed quantum state obtained by extracting an electron from the system. Our method satisfies two-index necessary N-representability conditions of the two-particle RDM (2RDM) and guarantees the conservation of the total spin. We show the ability of PNOF7 to describe strong correlation effects in two-dimensional (2D) systems by comparing our results with the exact diagonalization, density matrix renormalization group (DMRG), and auxiliary-field quantum Monte Carlo calculations. PNOF7 overcomes variational 2RDM methods with two- and three-index positivity N-representability conditions, reducing computational cost to mean-field scaling. Consistent results are obtained for small and large systems up to 144 electrons, weak and strong correlation regimes, and many filling situations. Unlike other methods, there is no dependence on dimensionality in the results obtained with PNOF7 and no particular difficulties have been observed to converge PNOF7 away from half-filling. Smooth double occupancy of sites is obtained, regardless of the filling. Symmetric dissociation of 2D hydrogen lattices shows that long-range nondynamic correlation dramatically affects electron detachment energies. PNOF7 compares well with DMRG along the dissociation curve.
Collapse
Affiliation(s)
- Ion Mitxelena
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain
| | - Mario Piris
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain
| |
Collapse
|
21
|
Ard SG, Sweeny BC, McDonald DC, Viggiano AA, Shuman NS. Quantifying the Competition between Intersystem Crossing and Spin-Conserved Pathways in the Thermal Reaction of V+ + N2O. J Phys Chem A 2019; 124:30-38. [DOI: 10.1021/acs.jpca.9b09235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shaun G. Ard
- Institute for Scientific Research, Boston College, Boston, Massachusetts 02467, United States
| | - Brendan C. Sweeny
- NRC Postdoc at Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Albuquerque, New Mexico 87117, United States
| | - David C. McDonald
- NRC Postdoc at Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Albuquerque, New Mexico 87117, United States
| | - Albert A. Viggiano
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland AFB, Albuquerque, New Mexico 87117, United States
| | - Nicholas S. Shuman
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland AFB, Albuquerque, New Mexico 87117, United States
| |
Collapse
|
22
|
Wang R, Zhou Y, Ernzerhof M. Construction of self-interaction-corrected exchange-correlation functionals within the correlation factor approach. J Chem Phys 2019; 151:194102. [DOI: 10.1063/1.5126005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Rodrigo Wang
- Département de Chimie, Université de Montréal, C.P. 6128 Succursale A, Montréal, Québec H3C 3J7, Canada
| | - Yongxi Zhou
- Département de Chimie, Université de Montréal, C.P. 6128 Succursale A, Montréal, Québec H3C 3J7, Canada
| | - Matthias Ernzerhof
- Département de Chimie, Université de Montréal, C.P. 6128 Succursale A, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
23
|
Wang M, John D, Yu J, Proynov E, Liu F, Janesko BG, Kong J. Performance of new density functionals of nondynamic correlation on chemical properties. J Chem Phys 2019; 150:204101. [DOI: 10.1063/1.5082745] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Matthew Wang
- Department of Chemistry and Center for Computational Sciences, Middle Tennessee State University, Murfreesboro, Tennessee 37132, USA
| | - Dwayne John
- Department of Chemistry and Center for Computational Sciences, Middle Tennessee State University, Murfreesboro, Tennessee 37132, USA
| | - Jianguo Yu
- Department of Chemistry and Center for Computational Sciences, Middle Tennessee State University, Murfreesboro, Tennessee 37132, USA
| | - Emil Proynov
- Department of Chemistry and Center for Computational Sciences, Middle Tennessee State University, Murfreesboro, Tennessee 37132, USA
| | - Fenglai Liu
- Department of Chemistry and Center for Computational Sciences, Middle Tennessee State University, Murfreesboro, Tennessee 37132, USA
| | - Benjamin G. Janesko
- Department of Chemistry, Texas Christian University, Fort Worth, Texas 76129, USA
| | - Jing Kong
- Department of Chemistry and Center for Computational Sciences, Middle Tennessee State University, Murfreesboro, Tennessee 37132, USA
| |
Collapse
|
24
|
Sweeny BC, Ard SG, Viggiano AA, Shuman NS. Reaction of Mass-Selected, Thermalized VnOm+ Clusters with CCl4. J Phys Chem A 2019; 123:4817-4824. [DOI: 10.1021/acs.jpca.9b00479] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Brendan C. Sweeny
- NRC Postdoc at Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Albuquerque, New Mexico 87117, United States
| | - Shaun G. Ard
- Institute for Scientific Research, Boston College, Boston, Massachusetts 02467, United States
| | - Albert A. Viggiano
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Albuquerque, New Mexico 87117, United States
| | - Nicholas S. Shuman
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, Albuquerque, New Mexico 87117, United States
| |
Collapse
|
25
|
Wang R, Zhou Y, Ernzerhof M. The correlation factor model for the exchange-correlation energy and its application to transition metal compounds. J Chem Phys 2019; 150:084107. [DOI: 10.1063/1.5083840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Rodrigo Wang
- Département de Chimie, Université de Montréal, C.P. 6128 Succursale A, Montréal, Québec H3C 3J7, Canada
| | - Yongxi Zhou
- Département de Chimie, Université de Montréal, C.P. 6128 Succursale A, Montréal, Québec H3C 3J7, Canada
| | - Matthias Ernzerhof
- Département de Chimie, Université de Montréal, C.P. 6128 Succursale A, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
26
|
Li CG, Shen ZG, Zhang J, Gao JH, Li JJ, Sun T, Zhang RJ, Ren BZ, Hu YF. A comparative study of Cu nX (X = Sc, Y; n = 1–10) clusters based on the structures, and electronic and aromatic properties. NEW J CHEM 2019. [DOI: 10.1039/c9nj00236g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The MO diagrams and orbital contributions of the HOMO and LUMO for the Cu7Sc and Cu7Y clusters.
Collapse
Affiliation(s)
- Cheng-Gang Li
- College of Physics and Electronic Engineering
- Quantum Materials Research Center
- Zhengzhou Normal University
- Zhengzhou 450044
- China
| | - Zi-Gang Shen
- College of Physics and Electronic Engineering
- Quantum Materials Research Center
- Zhengzhou Normal University
- Zhengzhou 450044
- China
| | - Jie Zhang
- College of Physics and Electronic Engineering
- Quantum Materials Research Center
- Zhengzhou Normal University
- Zhengzhou 450044
- China
| | - Jin-Hai Gao
- College of Physics and Electronic Engineering
- Quantum Materials Research Center
- Zhengzhou Normal University
- Zhengzhou 450044
- China
| | - Jing-Jie Li
- College of Physics and Electronic Engineering
- Quantum Materials Research Center
- Zhengzhou Normal University
- Zhengzhou 450044
- China
| | - Tong Sun
- College of Physics and Electronic Engineering
- Quantum Materials Research Center
- Zhengzhou Normal University
- Zhengzhou 450044
- China
| | - Ru-Jie Zhang
- College of Physics and Electronic Engineering
- Quantum Materials Research Center
- Zhengzhou Normal University
- Zhengzhou 450044
- China
| | - Bao-Zeng Ren
- School of Chemical Engineering and Energy
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Yan-Fei Hu
- School of Physics and Electronic Engineering
- Sichuan University of Science & Engineering
- Zigong 643000
- China
- National Key Laboratory for Shock Wave and Detonation Physics Research
| |
Collapse
|
27
|
Shuman NS, Ard SG, Sweeny BC, Pan H, Viggiano AA, Keyes NR, Guo H, Owen CJ, Armentrout PB. Au2+ cannot catalyze conversion of methane to ethene at low temperature. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00523d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The previously reported conversion of methane to ethene catalyzed by Au2+ at thermal energies is investigated through a combination of experiment and theory. The conversion is found not to occur, in-line with well-established thermodynamics.
Collapse
Affiliation(s)
- Nicholas S. Shuman
- Air Force Research Laboratory, Space Vehicles Directorate
- Kirtland AFB
- 87117 USA
| | - Shaun G. Ard
- Institute for Scientific Research
- Boston College
- Boston
- 02467 USA
| | - Brendan C. Sweeny
- National Research Council Research Associateship Program at Air Force Research Laboratory, Space Vehicles Directorate
- Kirtland AFB
- 87117 USA
| | - Hanqing Pan
- USRA Space Scholar at Air Force Research Laboratory, Space Vehicles Directorate
- Kirtland Air Force Base
- USA
| | - Albert A. Viggiano
- Air Force Research Laboratory, Space Vehicles Directorate
- Kirtland AFB
- 87117 USA
| | - Nicholas R. Keyes
- Department of Chemistry and Chemical Biology
- University of New Mexico
- Albuquerque
- 87131 USA
| | - Hua Guo
- Department of Chemistry and Chemical Biology
- University of New Mexico
- Albuquerque
- 87131 USA
| | | | | |
Collapse
|
28
|
McDonald DC, Sweeny BC, Ard SG, Melko JJ, Ruliffson JE, White MC, Viggiano AA, Shuman NS. Temperature and Isotope Dependent Kinetics of Nickel-Catalyzed Oxidation of Methane by Ozone. J Phys Chem A 2018; 122:6655-6662. [PMID: 29914263 DOI: 10.1021/acs.jpca.8b02513] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The temperature dependent kinetics of Ni+ + O3 and of NiO+ + CH4/CD4 are measured from 300 to 600 K using a selected-ion flow tube apparatus. Together, these reactions comprise a catalytic cycle converting CH4 to CH3OH. The reaction of Ni+ + O3 proceeds at the collisional limit, faster than previously reported at 300 K. The NiO+ product reacts further with O3, also at the collisional limit, yielding both higher oxides (up to NiO5+ is observed) as well as undergoing an apparent reduction back to Ni+. This apparent reduction channel is due to the oxidation channel yielding NiO2+* with sufficient energy to dissociate. 4NiO+ + CH4 (CD4) (whereas 4NiO+ refers to the quartet state of NiO+) proceeds with a rate constant of (2.6 ± 0.4) × 10-10 cm3 s-1 [(1.8 ± 0.5) × 10-10 cm3 s-1] at 300 K and a temperature dependence of ∼ T-0.7±0.3 (∼ T-1.1±0.4), producing only the 2Ni+ + 1CH3OH channel up to 600 K. Statistical modeling of the reaction based on calculated stationary points along the reaction coordinate reproduces the experimental rate constant as a function of temperature but underpredicts the kinetic isotope shift. The modeling was found to better represent the data when the crossing from quartet to doublet surface was incomplete, suggesting a possible kinetic effect in crossing from quartet to doublet surfaces. Additionally, the modeling predicts a competing 3NiOH+ + 2CH3 channel to become increasingly important at higher temperatures.
Collapse
Affiliation(s)
- David C McDonald
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base , New Mexico 87117 , United States
| | - Brendan C Sweeny
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base , New Mexico 87117 , United States
| | - Shaun G Ard
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base , New Mexico 87117 , United States
| | - Joshua J Melko
- Department of Chemistry , University of North Florida , Jacksonville , Florida 32224 , United States
| | - Jennifer E Ruliffson
- Department of Chemistry , University of North Florida , Jacksonville , Florida 32224 , United States
| | - Melanie C White
- Department of Chemistry , University of North Florida , Jacksonville , Florida 32224 , United States
| | - Albert A Viggiano
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base , New Mexico 87117 , United States
| | - Nicholas S Shuman
- Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base , New Mexico 87117 , United States
| |
Collapse
|
29
|
Maier TM, Arbuznikov AV, Kaupp M. Local hybrid functionals: Theory, implementation, and performance of an emerging new tool in quantum chemistry and beyond. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018. [DOI: 10.1002/wcms.1378] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Toni M. Maier
- Institut für Chemie Theoretische Chemie/Quantenchemie Technische Universität Berlin Berlin Germany
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering Waseda University Tokyo Japan
| | - Alexei V. Arbuznikov
- Institut für Chemie Theoretische Chemie/Quantenchemie Technische Universität Berlin Berlin Germany
| | - Martin Kaupp
- Institut für Chemie Theoretische Chemie/Quantenchemie Technische Universität Berlin Berlin Germany
| |
Collapse
|
30
|
Sun Y, Sun X, Huang X. Reaction of CO2 with Atomic Transition Metal M+/0/– Ions: A Theoretical Study. J Phys Chem A 2018; 122:5848-5860. [DOI: 10.1021/acs.jpca.8b01917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yunhai Sun
- Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People’s Republic of China
| | - Xiaoli Sun
- Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People’s Republic of China
| | - Xuri Huang
- Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People’s Republic of China
| |
Collapse
|
31
|
Sweeny BC, Ard SG, Shuman NS, Viggiano AA. Kinetics of First-Row Transition Metal Cations (V+, Fe+, Co+) with OCS at Thermal Energies. J Phys Chem A 2018; 122:4246-4251. [DOI: 10.1021/acs.jpca.8b01841] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Brendan C. Sweeny
- Space Vehicles Directorate, Air Force Research Laboratory, Kirtland Air Force Base, New Mexico 87117, United States
| | - Shaun G. Ard
- Space Vehicles Directorate, Air Force Research Laboratory, Kirtland Air Force Base, New Mexico 87117, United States
| | - Nicholas S. Shuman
- Space Vehicles Directorate, Air Force Research Laboratory, Kirtland Air Force Base, New Mexico 87117, United States
| | - Albert A. Viggiano
- Space Vehicles Directorate, Air Force Research Laboratory, Kirtland Air Force Base, New Mexico 87117, United States
| |
Collapse
|
32
|
Determan JJ, Poole K, Scalmani G, Frisch MJ, Janesko BG, Wilson AK. Comparative Study of Nonhybrid Density Functional Approximations for the Prediction of 3d Transition Metal Thermochemistry. J Chem Theory Comput 2017; 13:4907-4913. [PMID: 28877436 DOI: 10.1021/acs.jctc.7b00809] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The utility of several nonhybrid density functional approximations (DFAs) is considered for the prediction of gas phase enthalpies of formation for a large set of 3d transition metal-containing molecules. Nonhybrid DFAs can model thermochemical values for 3d transition metal-containing molecules with accuracy comparable to that of hybrid functionals. The GAM-generalized gradient approximation (GGA); the TPSS, M06-L, and MN15-L meta-GGAs; and the Rung 3.5 PBE+ΠLDA(s) DFAs all give root-mean-square deviations below that of the widely used B3LYP hybrid. Modern nonhybrid DFAs continue to show utility for transition metal thermochemistry.
Collapse
Affiliation(s)
- John J Determan
- Department of Chemistry, Texas Christian University , Fort Worth, Texas 76129, United States
| | - Katelyn Poole
- Department of Chemistry, Texas Christian University , Fort Worth, Texas 76129, United States.,Department of Chemistry and Center for Advanced Scientific Computing and Modeling (CASCaM), University of North Texas , Denton, Texas 76203-5017, United States
| | - Giovanni Scalmani
- Gaussian, Inc. , 340 Quinnipiac Street, Building 40, Wallingford, Connecticut 06492, United States
| | - Michael J Frisch
- Gaussian, Inc. , 340 Quinnipiac Street, Building 40, Wallingford, Connecticut 06492, United States
| | - Benjamin G Janesko
- Department of Chemistry, Texas Christian University , Fort Worth, Texas 76129, United States
| | - Angela K Wilson
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824 United States
| |
Collapse
|
33
|
Sweeny BC, Ard SG, McDonald DC, Martinez O, Viggiano AA, Shuman NS. Discrepancy Between Experimental and Theoretical Predictions of the Adiabaticity of Ti
+
+CH
3
OH. Chemistry 2017; 23:11780-11783. [DOI: 10.1002/chem.201703002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Indexed: 01/12/2023]
Affiliation(s)
- Brendan C. Sweeny
- Air Force Research Laboratory Space Vehicles Directorate Kirtland Air Force Base NM 87117 USA
| | - Shaun G. Ard
- Air Force Research Laboratory Space Vehicles Directorate Kirtland Air Force Base NM 87117 USA
| | - David C. McDonald
- Air Force Research Laboratory Space Vehicles Directorate Kirtland Air Force Base NM 87117 USA
| | - Oscar Martinez
- Air Force Research Laboratory Space Vehicles Directorate Kirtland Air Force Base NM 87117 USA
| | - Albert A. Viggiano
- Air Force Research Laboratory Space Vehicles Directorate Kirtland Air Force Base NM 87117 USA
| | - Nicholas S. Shuman
- Air Force Research Laboratory Space Vehicles Directorate Kirtland Air Force Base NM 87117 USA
| |
Collapse
|