1
|
Hemmasi E, Tohidian M, Makki H. Morphology and Transport Study of Acid-Base Blend Proton Exchange Membranes by Molecular Simulations: Case of Chitosan/Nafion. J Phys Chem B 2023; 127:10624-10635. [PMID: 38037344 PMCID: PMC10726362 DOI: 10.1021/acs.jpcb.3c05332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/28/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
Blending a basic polymer (e.g., chitosan) with Nafion can modify some membrane properties in direct methanol fuel cell applications, e.g., controlling methanol crossover, by regulating the morphology of hydrophilic channels. Unraveling the mechanisms by which the channel morphology is modified is essential to formulate design strategies for acid-base blend membrane development. Thus, we use molecular simulations to analyze the morphological features of a blend membrane (at 75/25 chitosan/Nafion wt %), i.e., (i) water/polymer phase organizations, (ii) number and size of water clusters, and (iii) quantitative morphological measures of hydrophilic channels, and compare them to the pure Nafion in a wide range of water contents. It is found that the affinity of water to different hydrophilic groups in the blend membrane can result in more distorted and dispersed hydrophilic phase and fewer bulk water-like features compared to pure Nafion. Also, the width of the hydrophilic network bottleneck, i.e., pore limiting diameter (PLD), is found to be almost five times smaller for the blend membrane compared to Nafion at their maximum water contents. Moreover, by changing the chitosan/Nafion weight ratio from 75/25 to 0/100, we show that as Nafion content increases, all channel morphological characteristics alter monotonically except PLD. This is mainly due to the strong acid-base interactions between Nafion and chitosan, which hinder the monotonic growth of PLD. Interestingly, water and methanol diffusion coefficients are strongly correlated with PLD, suggesting that PLD can be used as a single parameter for tailoring the blending ratio for achieving the desired diffusion properties of acid-base membranes.
Collapse
Affiliation(s)
- Ehsan Hemmasi
- Department
of Polymer and Color Engineering, Amirkabir
University of Technology, 424 Hafez Avenue, Tehran 59163-4311, Iran
| | - Mahdi Tohidian
- Department
of Polymer and Color Engineering, Amirkabir
University of Technology, 424 Hafez Avenue, Tehran 59163-4311, Iran
| | - Hesam Makki
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K.
| |
Collapse
|
2
|
Ricci E, Vergadou N. Integrating Machine Learning in the Coarse-Grained Molecular Simulation of Polymers. J Phys Chem B 2023; 127:2302-2322. [PMID: 36888553 DOI: 10.1021/acs.jpcb.2c06354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Machine learning (ML) is having an increasing impact on the physical sciences, engineering, and technology and its integration into molecular simulation frameworks holds great potential to expand their scope of applicability to complex materials and facilitate fundamental knowledge and reliable property predictions, contributing to the development of efficient materials design routes. The application of ML in materials informatics in general, and polymer informatics in particular, has led to interesting results, however great untapped potential lies in the integration of ML techniques into the multiscale molecular simulation methods for the study of macromolecular systems, specifically in the context of Coarse Grained (CG) simulations. In this Perspective, we aim at presenting the pioneering recent research efforts in this direction and discussing how these new ML-based techniques can contribute to critical aspects of the development of multiscale molecular simulation methods for bulk complex chemical systems, especially polymers. Prerequisites for the implementation of such ML-integrated methods and open challenges that need to be met toward the development of general systematic ML-based coarse graining schemes for polymers are discussed.
Collapse
Affiliation(s)
- Eleonora Ricci
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", GR-15341 Agia Paraskevi, Athens, Greece
- Institute of Informatics and Telecommunications, National Center for Scientific Research "Demokritos", GR-15341 Agia Paraskevi, Athens, Greece
| | - Niki Vergadou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", GR-15341 Agia Paraskevi, Athens, Greece
| |
Collapse
|
3
|
Cui R, Li S, Yu C, Zhou Y. The Evolution of Hydrogen Bond Network in Nafion via Molecular Dynamics Simulation. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Affiliation(s)
- Rui Cui
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shanlong Li
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chunyang Yu
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yongfeng Zhou
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
4
|
Rychagov AY, Volfkovich YM, Sosenkin VE, Seliverstov AF, Izmailova MY. Combined Separator Based on a Porous Ion-Exchange Membrane for Zinc-Halide Batteries. MEMBRANES 2023; 13:67. [PMID: 36676874 PMCID: PMC9861928 DOI: 10.3390/membranes13010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
In this work, we report on a comparative analysis of the bromine permeability for three separator groups under the operating conditions of a non-flow zinc-bromine battery. A new method for the synthesis of porous heterogeneous membranes based on a cation-exchange resin followed by treatment with tetrabutylammonium bromide is proposed. It was shown that the modified membrane significantly reduced the bromine permeability (crossover) with an acceptable increase in the ionic conductivity of the separator group. Leakage currents not exceeding 10-20 µA/cm2 were achieved, and the Coulomb efficiency was over 90%. The ionic conductivity (at AC) of a membrane soaked with water was compared for different pretreatment conditions. The frequency dependence of the membrane resistance is shown. The features of the conduction mechanism of the modified membrane are discussed.
Collapse
|
5
|
Ricci E, Minelli M, De Angelis MG. Modelling Sorption and Transport of Gases in Polymeric Membranes across Different Scales: A Review. MEMBRANES 2022; 12:857. [PMID: 36135877 PMCID: PMC9502097 DOI: 10.3390/membranes12090857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/24/2022] [Accepted: 08/27/2022] [Indexed: 06/02/2023]
Abstract
Professor Giulio C. Sarti has provided outstanding contributions to the modelling of fluid sorption and transport in polymeric materials, with a special eye on industrial applications such as membrane separation, due to his Chemical Engineering background. He was the co-creator of innovative theories such as the Non-Equilibrium Theory for Glassy Polymers (NET-GP), a flexible tool to estimate the solubility of pure and mixed fluids in a wide range of polymers, and of the Standard Transport Model (STM) for estimating membrane permeability and selectivity. In this review, inspired by his rigorous and original approach to representing membrane fundamentals, we provide an overview of the most significant and up-to-date modeling tools available to estimate the main properties governing polymeric membranes in fluid separation, namely solubility and diffusivity. The paper is not meant to be comprehensive, but it focuses on those contributions that are most relevant or that show the potential to be relevant in the future. We do not restrict our view to the field of macroscopic modelling, which was the main playground of professor Sarti, but also devote our attention to Molecular and Multiscale Hierarchical Modeling. This work proposes a critical evaluation of the different approaches considered, along with their limitations and potentiality.
Collapse
Affiliation(s)
- Eleonora Ricci
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy
| | - Matteo Minelli
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy
| | - Maria Grazia De Angelis
- Institute for Materials and Processes, School of Engineering, University of Edinburgh, Edinburgh EH9 3FB, UK
| |
Collapse
|
6
|
Abstract
Ion-containing polymers have continued to be an important research focus for several decades due to their use as an electrolyte in energy storage and conversion devices. Elucidation of connections between the mesoscopic structure and multiscale dynamics of the ions and solvent remains incompletely understood. Coarse-grained modeling provides an efficient approach for exploring the structural and dynamical properties of these soft materials. The unique physicochemical properties of such polymers are of broad interest. In this review, we summarize the current development and understanding of the structure-property relationship of ion-containing polymers and provide insights into the design of such materials determined from coarse-grained modeling and simulations accompanying significant advances in experimental strategies. We specifically concentrate on three types of ion-containing polymers: proton exchange membranes (PEMs), anion exchange membranes (AEMs), and polymerized ionic liquids (polyILs). We posit that insight into the similarities and differences in these materials will lead to guidance in the rational design of high-performance novel materials with improved properties for various power source technologies.
Collapse
Affiliation(s)
- Zhenghao Zhu
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Xubo Luo
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Stephen J Paddison
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
7
|
Huang W, Ou X, Luo J. Inverse Boltzmann Iterative Multi-Scale Molecular Dynamics Study between Carbon Nanotubes and Amino Acids. Molecules 2022; 27:2785. [PMID: 35566140 PMCID: PMC9104776 DOI: 10.3390/molecules27092785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
Our work uses Iterative Boltzmann Inversion (IBI) to study the coarse-grained interaction between 20 amino acids and the representative carbon nanotube CNT55L3. IBI is a multi-scale simulation method that has attracted the attention of many researchers in recent years. It can effectively modify the coarse-grained model derived from the Potential of Mean Force (PMF). IBI is based on the distribution result obtained by All-Atom molecular dynamics simulation; that is, the target distribution function and the PMF potential energy are extracted, and then, the initial potential energy extracted by the PMF is used to perform simulation iterations using IBI. Our research results have been through more than 100 iterations, and finally, the distribution obtained by coarse-grained molecular simulation (CGMD) can effectively overlap with the results of all-atom molecular dynamics simulation (AAMD). In addition, our work lays the foundation for the study of force fields for the simulation of the coarse-graining of super-large proteins and other important nanoparticles.
Collapse
Affiliation(s)
- Wanying Huang
- T-Life Research Center, State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai 200433, China;
| | - Xinwen Ou
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China;
| | - Junyan Luo
- Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310023, China
| |
Collapse
|
8
|
Cui R, Li S, Yu C, Wang Y, Zhou Y. Understanding the mechanism of nitrogen transport in the perfluorinated sulfonic-acid hydrated membranes via molecular dynamics simulations. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Michelarakis N, Franz F, Gkagkas K, Gräter F. Longitudinal strand ordering leads to shear thinning in Nafion. Phys Chem Chem Phys 2021; 23:25901-25910. [PMID: 34779459 DOI: 10.1039/d1cp02024b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Proton-exchange membrane fuel cells (PEMFC) offer a promising energy generation alternative for a wide range of technologies thanks to their ecological friendliness and unparalleled efficiency. At the heart of these electrochemical cells lies the membrane electrode assembly with its most important energy conversion components, the Proton Exchange Membrane. This component is created through the use of printing techniques and Nafion inks. The physicochemical properties of the ink, such as its viscosity under shear, are critical for the finished product. In this work we present non-equilibrium Molecular Dynamics simulations using a MARTINI based coarse-grained model for Nafion to understand the mechanism governing the shear viscosity of Nafion solutions. By simulating a Couette flow and calculating density maps of the Nafion chains in these simulations we shed light on the process that leads to the experimentally observed shear thinning effects of Nafion solutions under flow. We observe rod-shaped Nafion microstructures, 3 nm in size on average, when shear flow is absent or low. Higher shear rates instead break these structures and align Nafion strands along the direction of the flow, resulting in lower shear viscosities. Our work paves the way for a deeper understanding of the dynamic and mechanical properties of Nafion including studies of more complex CL and PEM inks.
Collapse
Affiliation(s)
- Nicholas Michelarakis
- Molecular Biomechanics Group, Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
| | - Florian Franz
- Molecular Biomechanics Group, Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
| | - Konstantinos Gkagkas
- Toyota Motor Europe, Technical Center, Toyota Motor Europe NVSA, Zavente, Belgium
| | - Frauke Gräter
- Molecular Biomechanics Group, Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany.,Interdisciplinary Center for Scientific Computing, Heidelberg University, INF 205, 69120 Heidelberg, Germany
| |
Collapse
|
10
|
Yadav HOS, Harada S, Kuo AT, Urata S, Shinoda W. Hemimicelle formation of semi-fluorocarbon chains at air–water interface: coarse-grained molecular dynamics study with an extension of the SPICA force field. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1910355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Hari O. S. Yadav
- Department of Materials Chemistry, Nagoya University, Nagoya, Japan
| | - Shogo Harada
- Department of Materials Chemistry, Nagoya University, Nagoya, Japan
| | - An-Tsung Kuo
- Innovative Technology Laboratories, AGC Inc., Yokohama, Japan
| | - Shingo Urata
- Innovative Technology Laboratories, AGC Inc., Yokohama, Japan
| | - Wataru Shinoda
- Department of Materials Chemistry, Nagoya University, Nagoya, Japan
| |
Collapse
|
11
|
Choi YK, Park SJ, Park S, Kim S, Kern NR, Lee J, Im W. CHARMM-GUI Polymer Builder for Modeling and Simulation of Synthetic Polymers. J Chem Theory Comput 2021; 17:2431-2443. [PMID: 33797913 PMCID: PMC8078172 DOI: 10.1021/acs.jctc.1c00169] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Molecular modeling and simulations are invaluable tools for polymer science and engineering, which predict physicochemical properties of polymers and provide molecular-level insight into the underlying mechanisms. However, building realistic polymer systems is challenging and requires considerable experience because of great variations in structures as well as length and time scales. This work describes Polymer Builder in CHARMM-GUI (http://www.charmm-gui.org/input/polymer), a web-based infrastructure that provides a generalized and automated process to build a relaxed polymer system. Polymer Builder not only provides versatile modeling methods to build complex polymer structures, but also generates realistic polymer melt and solution systems through the built-in coarse-grained model and all-atom replacement. The coarse-grained model parametrization is generalized and extensively validated with various experimental data and all-atom simulations. In addition, the capability of Polymer Builder for generating relaxed polymer systems is demonstrated by density calculations of 34 homopolymer melt systems, characteristic ratio calculations of 170 homopolymer melt systems, a morphology diagram of poly(styrene-b-methyl methacrylate) block copolymers, and self-assembly behavior of amphiphilic poly(ethylene oxide-b-ethylethane) block copolymers in water. We hope that Polymer Builder is useful to carry out innovative and novel polymer modeling and simulation research to acquire insight into structures, dynamics, and underlying mechanisms of complex polymer-containing systems.
Collapse
Affiliation(s)
- Yeol Kyo Choi
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Sang-Jun Park
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Soohyung Park
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Seonghoon Kim
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
| | - Nathan R. Kern
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Jumin Lee
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Wonpil Im
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| |
Collapse
|
12
|
Kuo AT, Urata S, Nakabayashi K, Watabe H, Honmura S. Coarse-Grained Molecular Dynamics Simulation of Perfluorosulfonic Acid Polymer in Water–Ethanol Mixtures. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- An-Tsung Kuo
- Innovative Technology Laboratories, AGC Inc., Yokohama 230-0045, Japan
| | - Shingo Urata
- Innovative Technology Laboratories, AGC Inc., Yokohama 230-0045, Japan
| | | | - Hiroyuki Watabe
- Materials Integration Laboratories, AGC Inc., Yokohama 230-0045, Japan
| | - Satoru Honmura
- Materials Integration Laboratories, AGC Inc., Yokohama 230-0045, Japan
| |
Collapse
|
13
|
Wang H, Stillinger FH, Torquato S. Sensitivity of pair statistics on pair potentials in many-body systems. J Chem Phys 2020; 153:124106. [PMID: 33003740 DOI: 10.1063/5.0021475] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We study the sensitivity and practicality of Henderson's theorem in classical statistical mechanics, which states that the pair potential v(r) that gives rise to a given pair correlation function g2(r) [or equivalently, the structure factor S(k)] in a classical many-body system at number density ρ and temperature T is unique up to an additive constant. While widely invoked in inverse-problem studies, the utility of the theorem has not been quantitatively scrutinized to any large degree. We show that Henderson's theorem has practical shortcomings for disordered and ordered phases for certain densities and temperatures. Using proposed sensitivity metrics, we identify illustrative cases in which distinctly different potential functions give very similar pair correlation functions and/or structure factors up to their corresponding correlation lengths. Our results reveal that due to a limited range and precision of pair information in either direct or reciprocal space, there is effective ambiguity of solutions to inverse problems that utilize pair information only, and more caution must be exercised when one claims the uniqueness of any resulting effective pair potential found in practice. We have also identified systems that possess virtually identical pair statistics but have distinctly different higher-order correlations. Such differences should be reflected in their individually distinct dynamics (e.g., glassy behaviors). Finally, we prove a more general version of Henderson's theorem that extends the uniqueness statement to include potentials that involve two- and higher-body interactions.
Collapse
Affiliation(s)
- Haina Wang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Frank H Stillinger
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Salvatore Torquato
- Department of Chemistry, Department of Physics, Princeton Center for Theoretical Science, Princeton Institute for the Science and Technology of Materials, and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
14
|
Kumar R, Lee YK, Jho YS. Martini Coarse-Grained Model of Hyaluronic Acid for the Structural Change of Its Gel in the Presence of Monovalent and Divalent Salts. Int J Mol Sci 2020; 21:ijms21134602. [PMID: 32610441 PMCID: PMC7370153 DOI: 10.3390/ijms21134602] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/18/2020] [Accepted: 06/25/2020] [Indexed: 01/06/2023] Open
Abstract
Hyaluronic acid (HA) has a wide range of biomedical applications including the formation of hydrogels, microspheres, sponges, and films. The modeling of HA to understand its behavior and interaction with other biomolecules at the atomic level is of considerable interest. The atomistic representation of long HA polymers for the study of the macroscopic structural formation and its interactions with other polyelectrolytes is computationally demanding. To overcome this limitation, we developed a coarse grained (CG) model for HA adapting the Martini scheme. A very good agreement was observed between the CG model and all-atom simulations for both local (bonded interactions) and global properties (end-to-end distance, a radius of gyration, RMSD). Our CG model successfully demonstrated the formation of HA gel and its structural changes at high salt concentrations. We found that the main role of CaCl2 is screening the electrostatic repulsion between chains. HA gel did not collapse even at high CaCl2 concentrations, and the osmotic pressure decreased, which agrees well with the experimental results. This is a distinct property of HA from other proteins or polynucleic acids which ensures the validity of our CG model. Our HA CG model is compatible with other CG biomolecular models developed under the Martini scheme, which allows for large-scale simulations of various HA-based complex systems.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Physics and Research Institute of Natural Science, Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea; (R.K.); (Y.K.L.)
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology (JUIT), Waknaghat, Solan 173234, India
| | - Young Kyu Lee
- Department of Physics and Research Institute of Natural Science, Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea; (R.K.); (Y.K.L.)
| | - Yong Seok Jho
- Department of Physics and Research Institute of Natural Science, Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea; (R.K.); (Y.K.L.)
- Correspondence:
| |
Collapse
|
15
|
Kuo AT, Miyazaki Y, Jang C, Miyajima T, Urata S, Nielsen SO, Okazaki S, Shinoda W. Large-scale molecular dynamics simulation of perfluorosulfonic acid membranes: Remapping coarse-grained to all-atomistic simulations. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121766] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Griffiths MZ, Shinoda W. tSPICA: Temperature- and Pressure-Dependent Coarse-Grained Force Field for Organic Molecules. J Chem Inf Model 2019; 59:3829-3838. [DOI: 10.1021/acs.jcim.9b00480] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Mark Z. Griffiths
- Department of Materials Chemistry, Nagoya University, Furo-cho Chikusa-ku, Nagoya 464-8603, Japan
| | - Wataru Shinoda
- Department of Materials Chemistry, Nagoya University, Furo-cho Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
17
|
Vergadou N, Theodorou DN. Molecular Modeling Investigations of Sorption and Diffusion of Small Molecules in Glassy Polymers. MEMBRANES 2019; 9:E98. [PMID: 31398889 PMCID: PMC6723301 DOI: 10.3390/membranes9080098] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 11/16/2022]
Abstract
With a wide range of applications, from energy and environmental engineering, such as in gas separations and water purification, to biomedical engineering and packaging, glassy polymeric materials remain in the core of novel membrane and state-of the art barrier technologies. This review focuses on molecular simulation methodologies implemented for the study of sorption and diffusion of small molecules in dense glassy polymeric systems. Basic concepts are introduced and systematic methods for the generation of realistic polymer configurations are briefly presented. Challenges related to the long length and time scale phenomena that govern the permeation process in the glassy polymer matrix are described and molecular simulation approaches developed to address the multiscale problem at hand are discussed.
Collapse
Affiliation(s)
- Niki Vergadou
- Molecular Thermodynamics and Modelling of Materials Laboratory, Institute of Nanoscience and Nanotechnology, National Center for Scientific Research Demokritos, Aghia Paraskevi Attikis, GR-15310 Athens, Greece.
| | - Doros N Theodorou
- School of Chemical Engineering, National Technical University of Athens, GR 15780 Athens, Greece
| |
Collapse
|
18
|
Hu C, Lu T, Guo H. Developing a Transferable Coarse-Grained Model for the Prediction of Thermodynamic, Structural, and Mechanical Properties of Polyimides at Different Thermodynamic State Points. J Chem Inf Model 2019; 59:2009-2025. [DOI: 10.1021/acs.jcim.8b00887] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chenchen Hu
- Beijing National Laboratory for Molecular Sciences, Joint Laboratory of Polymer Sciences and Materials, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Teng Lu
- Beijing National Laboratory for Molecular Sciences, Joint Laboratory of Polymer Sciences and Materials, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hongxia Guo
- Beijing National Laboratory for Molecular Sciences, Joint Laboratory of Polymer Sciences and Materials, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Huang H, Wu L, Xiong H, Sun H. A Transferrable Coarse-Grained Force Field for Simulations of Polyethers and Polyether Blends. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01802] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hao Huang
- School of Chemistry and Chemical Engineering, Materials Genome Initiative Center, and Key Laboratory of Scientific and Engineering Computing of Ministry of Education, Shanghai Jiao Tong University, Shanghai, China 200240
| | - Liang Wu
- School of Chemistry and Chemical Engineering, Materials Genome Initiative Center, and Key Laboratory of Scientific and Engineering Computing of Ministry of Education, Shanghai Jiao Tong University, Shanghai, China 200240
| | - Huiming Xiong
- School of Chemistry and Chemical Engineering, Materials Genome Initiative Center, and Key Laboratory of Scientific and Engineering Computing of Ministry of Education, Shanghai Jiao Tong University, Shanghai, China 200240
| | - Huai Sun
- School of Chemistry and Chemical Engineering, Materials Genome Initiative Center, and Key Laboratory of Scientific and Engineering Computing of Ministry of Education, Shanghai Jiao Tong University, Shanghai, China 200240
| |
Collapse
|
20
|
Exploring the effect of pendent side chain length on the structural and mechanical properties of hydrated perfluorosulfonic acid polymer membranes by molecular dynamics simulation. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.05.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|