1
|
Abdelkarim M, Perez-Davalos L, Abdelkader Y, Abostait A, Labouta HI. Critical design parameters to develop biomimetic organ-on-a-chip models for the evaluation of the safety and efficacy of nanoparticles. Expert Opin Drug Deliv 2023; 20:13-30. [PMID: 36440475 DOI: 10.1080/17425247.2023.2152000] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Organ-on-a-chip (OOC) models are based on microfluidics and can recapitulate the healthy and diseased microstructure of organs1 and tissues and the dynamic microenvironment inside the human body. However, the use of OOC models to evaluate the safety and efficacy of nanoparticles (NPs) is still in the early stages. AREAS COVERED The different design parameters of the microfluidic chip and the mechanical forces generated by fluid flow play a pivotal role in simulating the human environment. This review discusses the role of different key parameters on the performance of OOC models. These include the flow pattern, flow rate, shear stress (magnitude, rate, and distribution), viscosity of the media, and the microchannel dimensions and shape. We also discuss how the shear stress and other mechanical forces affect the transport of NPs across biological barriers, cell uptake, and their biocompatibility. EXPERT OPINION We describe several good practices and design parameters to consider for future OOC research. We submit that following these recommendations will help realize the full potential of the OOC models in the preclinical evaluation of novel therapies, including NPs.
Collapse
Affiliation(s)
- Mahmoud Abdelkarim
- Biomedical Engineering, University of Manitoba, R3T 5V6, Winnipeg, Manitoba, Canada.,College of Pharmacy, University of Manitoba, R3E 0T5, Winnipeg, Manitoba, Canada
| | - Luis Perez-Davalos
- College of Pharmacy, University of Manitoba, R3E 0T5, Winnipeg, Manitoba, Canada
| | - Yasmin Abdelkader
- College of Pharmacy, University of Manitoba, R3E 0T5, Winnipeg, Manitoba, Canada.,Department of Cell Biology, Biotechnology Research Institute, National Research Centre, 12622, Cairo, Egypt
| | - Amr Abostait
- College of Pharmacy, University of Manitoba, R3E 0T5, Winnipeg, Manitoba, Canada
| | - Hagar I Labouta
- Biomedical Engineering, University of Manitoba, R3T 5V6, Winnipeg, Manitoba, Canada.,College of Pharmacy, University of Manitoba, R3E 0T5, Winnipeg, Manitoba, Canada.,Children's Hospital Research Institute of Manitoba, R3E 3P4, Winnipeg, Manitoba, Canada.,Faculty of Pharmacy, Alexandria University, 21521, Alexandria, Egypt
| |
Collapse
|
2
|
Wang S, Liu Q, Cheng L, Wang L, Xu F, Yao C. Targeting biophysical cues to address platelet storage lesions. Acta Biomater 2022; 151:118-133. [PMID: 36028196 DOI: 10.1016/j.actbio.2022.08.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/06/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022]
Abstract
Platelets play vital roles in vascular repair, especially in primary hemostasis, and have been widely used in transfusion to prevent bleeding or manage active bleeding. Recently, platelets have been used in tissue repair (e.g., bone, skin, and dental alveolar tissue) and cell engineering as drug delivery carriers. However, the biomedical applications of platelets have been associated with platelet storage lesions (PSLs), resulting in poor clinical outcomes with reduced recovery, survival, and hemostatic function after transfusion. Accumulating evidence has shown that biophysical cues play important roles in platelet lesions, such as granule secretion caused by shear stress, adhesion affected by substrate stiffness, and apoptosis caused by low temperature. This review summarizes four major biophysical cues (i.e., shear stress, substrate stiffness, hydrostatic pressure, and thermal microenvironment) involved in the platelet preparation and storage processes, and discusses how they may synergistically induce PSLs such as platelet shape change, activation, apoptosis and clearance. We also review emerging methods for studying these biophysical cues in vitro and existing strategies targeting biophysical cues for mitigating PSLs. We conclude with a perspective on the future direction of biophysics-based strategies for inhibiting PSLs. STATEMENT OF SIGNIFICANCE: Platelet storage lesions (PSLs) involve a series of structural and functional changes. It has long been accepted that PSLs are initiated by biochemical cues. Our manuscript is the first to propose four major biophysical cues (shear stress, substrate stiffness, hydrostatic pressure, and thermal microenvironment) that platelets experience in each operation step during platelet preparation and storage processes in vitro, which may synergistically contribute to PSLs. We first clarify these biophysical cues and how they induce PSLs. Strategies targeting each biophysical cue to improve PSLs are also summarized. Our review is designed to draw the attention from a broad range of audience, including clinical doctors, biologists, physical scientists, engineers and materials scientists, and immunologist, who study on platelets physiology and pathology.
Collapse
Affiliation(s)
- Shichun Wang
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Qi Liu
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Lihan Cheng
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Lu Wang
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Chunyan Yao
- Department of Blood Transfusion, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, PR China; State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing 400038, PR China.
| |
Collapse
|
3
|
Nguyen N, Thurgood P, Sekar NC, Chen S, Pirogova E, Peter K, Baratchi S, Khoshmanesh K. Microfluidic models of the human circulatory system: versatile platforms for exploring mechanobiology and disease modeling. Biophys Rev 2021; 13:769-786. [PMID: 34777617 DOI: 10.1007/s12551-021-00815-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
The human circulatory system is a marvelous fluidic system, which is very sensitive to biophysical and biochemical cues. The current animal and cell culture models do not recapitulate the functional properties of the human circulatory system, limiting our ability to fully understand the complex biological processes underlying the dysfunction of this multifaceted system. In this review, we discuss the unique ability of microfluidic systems to recapitulate the biophysical, biochemical, and functional properties of the human circulatory system. We also describe the remarkable capacity of microfluidic technologies for exploring the complex mechanobiology of the cardiovascular system, mechanistic studying of cardiovascular diseases, and screening cardiovascular drugs with the additional benefit of reducing the need for animal models. We also discuss opportunities for further advancement in this exciting field.
Collapse
Affiliation(s)
- Ngan Nguyen
- School of Engineering, RMIT University, Melbourne, Australia
| | - Peter Thurgood
- School of Engineering, RMIT University, Melbourne, Australia
| | - Nadia Chandra Sekar
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
| | - Sheng Chen
- School of Engineering, RMIT University, Melbourne, Australia
| | - Elena Pirogova
- School of Engineering, RMIT University, Melbourne, Australia
| | - Karlheinz Peter
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Department of Cardiometabolic Health, The University of Melbourne, Parkville, Australia
| | - Sara Baratchi
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
| | | |
Collapse
|
4
|
Atmaramani R, Veeramachaneni S, Mogas LV, Koppikar P, Black BJ, Hammack A, Pancrazio JJ, Granja-Vazquez R. Investigating the Function of Adult DRG Neuron Axons Using an In Vitro Microfluidic Culture System. MICROMACHINES 2021; 12:mi12111317. [PMID: 34832729 PMCID: PMC8621475 DOI: 10.3390/mi12111317] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022]
Abstract
A critical role of the peripheral axons of nociceptors of the dorsal root ganglion (DRG) is the conduction of all-or-nothing action potentials from peripheral nerve endings to the central nervous system for the perception of noxious stimuli. Plasticity along multiple sites along the pain axis has now been widely implicated in the maladaptive changes that occur in pathological pain states such as neuropathic and inflammatory pain. Notably, increasing evidence suggests that nociceptive axons actively participate through the local expression of ion channels, receptors, and signal transduction molecules through axonal mRNA translation machinery that is independent of the soma component. In this report, we explore the sensitization of sensory neurons through the treatment of compartmentalized axon-like structures spanning microchannels that have been treated with the cytokine IL-6 and, subsequently, capsaicin. These data demonstrate the utility of isolating DRG axon-like structures using microfluidic systems, laying the groundwork for constructing the complex in vitro models of cellular networks that are involved in pain signaling for targeted pharmacological and genetic perturbations.
Collapse
Affiliation(s)
- Rahul Atmaramani
- Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA; (R.A.); (S.V.); (L.V.M.); (B.J.B.)
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; (P.K.); (J.J.P.)
| | - Srivennela Veeramachaneni
- Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA; (R.A.); (S.V.); (L.V.M.); (B.J.B.)
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; (P.K.); (J.J.P.)
| | - Liz Valeria Mogas
- Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA; (R.A.); (S.V.); (L.V.M.); (B.J.B.)
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; (P.K.); (J.J.P.)
| | - Pratik Koppikar
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; (P.K.); (J.J.P.)
| | - Bryan J. Black
- Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA; (R.A.); (S.V.); (L.V.M.); (B.J.B.)
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; (P.K.); (J.J.P.)
| | - Audrey Hammack
- Department of Research, University of Texas at Dallas, Richardson, TX 75080, USA;
| | - Joseph J. Pancrazio
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA; (P.K.); (J.J.P.)
| | - Rafael Granja-Vazquez
- Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA; (R.A.); (S.V.); (L.V.M.); (B.J.B.)
- Correspondence: ; Tel.: +1-972-883-2138
| |
Collapse
|
5
|
Karan P, Chakraborty J, Chakraborty S, Wereley ST, Christov IC. Profiling a soft solid layer to passively control the conduit shape in a compliant microchannel during flow. Phys Rev E 2021; 104:015108. [PMID: 34412219 DOI: 10.1103/physreve.104.015108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 06/30/2021] [Indexed: 12/12/2022]
Abstract
The shape of a microchannel during flow through it is instrumental to understanding the physics that govern various phenomena ranging from rheological measurements of fluids to separation of particles and cells. Two commonly used approaches for obtaining a desired channel shape (for a given application) are (i) fabricating the microchannel in the requisite shape and (ii) actuating the microchannel walls during flow to obtain the requisite shape. However, these approaches are not always viable. We propose an alternative, passive approach to a priori tune the elastohydrodynamics in a microsystem toward achieving a predetermined (but not prefabricated) flow geometry when the microchannel is subjected to flow. That is, we use the interaction between a soft solid layer, the viscous flow beneath it, and the shaped rigid wall above it to tune the fluid domain's shape. Specifically, we study a parallel-wall microchannel whose top wall is a slender soft coating of arbitrary thickness attached to a rigid platform. We derive a nonlinear differential equation for the soft coating's fluid-solid interface, which we use to infer how to achieve specific conduit shapes during flow. Using this theory, we demonstrate the tuning of four categories of microchannel geometries, which establishes, via a proof-of-concept, the viability of our modeling framework. We also explore slip length patterning on the rigid bottom wall of the microchannel, a common technique in microfluidics, as an additional "handle" for microchannel shape control. However, we show that this effect is much weaker in practice.
Collapse
Affiliation(s)
- Pratyaksh Karan
- Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Jeevanjyoti Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Suman Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Steven T Wereley
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Ivan C Christov
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
6
|
Production of erythrocyte microparticles in a sub-hemolytic environment. J Artif Organs 2021; 24:135-145. [PMID: 33420875 DOI: 10.1007/s10047-020-01231-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 11/25/2020] [Indexed: 01/14/2023]
Abstract
Microparticles are produced by various cells due to a number of different stimuli in the circulatory system. Shear stress has been shown to injure red blood cells resulting in hemolysis or non-reversible sub-hemolytic damage. We hypothesized that, in the sub-hemolytic shear range, there exist sufficient mechanical stimuli for red blood cells to respond with production of microparticles. Red blood cells isolated from blood of healthy volunteers were exposed to high shear stress in a microfluidic channel to mimic mechanical trauma similar to that occurring in ventricular assist devices. Utilizing flow cytometry techniques, both an increase of shear rate and exposure time showed higher concentrations of red blood cell microparticles. Controlled shear rate exposure shows that red blood cell microparticle concentration may be indicative of sub-hemolytic damage to red blood cells. In addition, properties of these red blood cell microparticles produced by shear suggest that mechanical trauma may underlie some complications for cardiovascular patients.
Collapse
|
7
|
Buerck JP, Burke DK, Schmidtke DW, Snyder TA, Papavassiliou D, O'Rear EA. A Flow Induced Autoimmune Response and Accelerated Senescence of Red Blood Cells in Cardiovascular Devices. Sci Rep 2019; 9:19443. [PMID: 31857631 PMCID: PMC6923429 DOI: 10.1038/s41598-019-55924-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/03/2019] [Indexed: 12/28/2022] Open
Abstract
Red blood cells (RBCs) passing through heart pumps, prosthetic heart valves and other cardiovascular devices undergo early senescence attributed to non-physiologic forces. We hypothesized that mechanical trauma accelerates aging by deformation of membrane proteins to cause binding of naturally occurring IgG. RBCs isolated from blood of healthy volunteers were exposed to high shear stress in a viscometer or microfluidics channel to mimic mechanical trauma and then incubated with autologous plasma. Increased binding of IgG was observed indicating forces caused conformational changes in a membrane protein exposing an epitope(s), probably the senescent cell antigen of band 3. The binding of immunoglobulin suggests it plays a role in the premature sequestration and phagocytosis of RBCs in the spleen. Measurement of IgG holds promise as a marker foreshadowing complications in cardiovascular patients and as a means to improve the design of medical devices in which RBCs are susceptible to sublethal trauma.
Collapse
Affiliation(s)
- James P Buerck
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Dustin K Burke
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - David W Schmidtke
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Rd., Richardson, TX, 75083, USA
| | - Trevor A Snyder
- VADovations, 1333 Cornell Parkway, Oklahoma City, OK, 73108, USA.,CorWave, SA, 92110, Clichy, France
| | - Dimitrios Papavassiliou
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Edgar A O'Rear
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK, 73019, USA. .,Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, Norman, OK, 73019, USA.
| |
Collapse
|
8
|
Microfluidic models of physiological or pathological flow shear stress for cell biology, disease modeling and drug development. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Hook JS, Cao M, Potera RM, Alsmadi NZ, Schmidtke DW, Moreland JG. Nox2 Regulates Platelet Activation and NET Formation in the Lung. Front Immunol 2019; 10:1472. [PMID: 31338092 PMCID: PMC6626916 DOI: 10.3389/fimmu.2019.01472] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/13/2019] [Indexed: 12/20/2022] Open
Abstract
The mortality rate of patients with critical illness has decreased significantly over the past two decades, but the rate of decline has slowed recently, with organ dysfunction as a major driver of morbidity and mortality. Among patients with the systemic inflammatory response syndrome (SIRS), acute lung injury is a common component with serious morbidity. Previous studies in our laboratory using a murine model of SIRS demonstrated a key role for NADPH oxidase 2 (Nox2)-derived reactive oxygen species in the resolution of inflammation. Nox2-deficient (gp91phox−/y) mice develop profound lung injury secondary to SIRS and fail to resolve inflammation. Alveolar macrophages from gp91phox−/y mice express greater levels of chemotactic and pro-inflammatory factors at baseline providing evidence that Nox2 in alveolar macrophages is critical for homeostasis. Based on the lung pathology with increased thrombosis in gp91phox−/y mice, and the known role of platelets in the inflammatory process, we hypothesized that Nox2 represses platelet activation. In the mouse model, we found that platelet-derived chemokine (C-X-C motif) ligand 4 (CXCL4) and CXCL7 were increased in the bronchoalveolar fluid of gp91phox−/y mice at baseline and 24 h post intraperitoneal zymosan-induced SIRS consistent with platelet activation. Activated platelets interact with leukocytes via P-selectin glycoprotein ligand 1 (PSGL-1). Within 2 h of SIRS induction, alveolar neutrophil PSGL-1 expression was higher in gp91phox−/y mice. Platelet-neutrophil interactions were decreased in the peripheral blood of gp91phox−/y mice consistent with movement of activated platelets to the lung of mice lacking Nox2. Based on the severe lung pathology and the role of platelets in the formation of neutrophil extracellular traps (NETs), we evaluated NET production. In contrast to previous studies demonstrating Nox2-dependent NET formation, staining of lung sections from mice 24 h post zymosan injection revealed a large number of citrullinated histone 3 (H3CIT) and myeloperoxidase positive cells consistent with NET formation in gp91phox−/y mice that was virtually absent in WT mice. In addition, H3CIT protein expression and PAD4 activity were higher in the lung of gp91phox−/y mice post SIRS induction. These results suggest that Nox2 plays a critical role in maintaining homeostasis by regulating platelet activation and NET formation in the lung.
Collapse
Affiliation(s)
- Jessica S Hook
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, United States
| | - Mou Cao
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, United States
| | - Renee M Potera
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, United States
| | - Nesreen Z Alsmadi
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - David W Schmidtke
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Jessica G Moreland
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, United States.,Department of Microbiology, UT Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|