1
|
Salbaing T, Comte D, Lavy L, Lissillour H, Ospina LP, Bertier P, Feketeová L, Calvo F, Farizon B, Farizon M, Märk T. Water molecule elimination from the protonated methanol dimer ion-An example of a size-selective intracluster reaction. J Chem Phys 2024; 160:094301. [PMID: 38436443 DOI: 10.1063/5.0190182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/12/2024] [Indexed: 03/05/2024] Open
Abstract
The abundance of extraterrestrial methanol makes the reaction between methanol molecules in a molecular cluster a possible key step in the search for mechanisms for the formation of more complex molecules under the conditions of the interstellar medium as well as circumstellar and planetary atmospheres. The reaction leading to the formation of the dimethyl ether ion from a methanol molecule interacting with a protonated methanol ion via the elimination of a water molecule is a basic mechanism for the formation of complex organic molecules. Here, we experimentally examine such reactions in the gas phase, analyzing the production and reactivity of protonated cluster ions formed by the ionization of a supersonic jet of methanol. Focusing especially on the post-collisional relaxation of the protonated methanol dimer and trimer ions after high-energy single collisions, the results indicate a strong size selectivity favoring the occurrence of this reaction only in the dimer ion. To elucidate this behavior, the velocity distribution of the eliminated water molecule was measured using an event-by-event coincidence analysis. These results are interpreted using quantum chemical calculations of the dissociation pathways. It turns out that in the dimer case, two transition states are able to contribute to this intracluster reaction. In the trimer case, methanol evaporation appears as the most energetically favorable relaxation pathway.
Collapse
Affiliation(s)
- Thibaud Salbaing
- Université Claude Bernard Lyon 1, IP2I Lyon, UMR 5822, CNRS/IN2P3, F-69622 Villeurbanne, France
| | - Denis Comte
- Université Claude Bernard Lyon 1, IP2I Lyon, UMR 5822, CNRS/IN2P3, F-69622 Villeurbanne, France
- Institut für Ionenphysik und Angewandte Physik, Leopold Franzens Universität, 6020 Innsbruck, Austria
| | - Léo Lavy
- Université Claude Bernard Lyon 1, IP2I Lyon, UMR 5822, CNRS/IN2P3, F-69622 Villeurbanne, France
| | - Hector Lissillour
- Université Claude Bernard Lyon 1, IP2I Lyon, UMR 5822, CNRS/IN2P3, F-69622 Villeurbanne, France
| | - Laura Parrado Ospina
- Université Claude Bernard Lyon 1, IP2I Lyon, UMR 5822, CNRS/IN2P3, F-69622 Villeurbanne, France
| | - Paul Bertier
- Université Claude Bernard Lyon 1, IP2I Lyon, UMR 5822, CNRS/IN2P3, F-69622 Villeurbanne, France
| | - Linda Feketeová
- Université Claude Bernard Lyon 1, IP2I Lyon, UMR 5822, CNRS/IN2P3, F-69622 Villeurbanne, France
| | - Florent Calvo
- Université Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | - Bernadette Farizon
- Université Claude Bernard Lyon 1, IP2I Lyon, UMR 5822, CNRS/IN2P3, F-69622 Villeurbanne, France
| | - Michel Farizon
- Université Claude Bernard Lyon 1, IP2I Lyon, UMR 5822, CNRS/IN2P3, F-69622 Villeurbanne, France
| | - Tilmann Märk
- Institut für Ionenphysik und Angewandte Physik, Leopold Franzens Universität, 6020 Innsbruck, Austria
| |
Collapse
|
2
|
Bertier P, Lavy L, Comte D, Feketeová L, Salbaing T, Azuma T, Calvo F, Farizon B, Farizon M, Märk TD. Energy Dispersion in Pyridinium-Water Nanodroplets upon Irradiation. ACS OMEGA 2022; 7:10235-10242. [PMID: 35382340 PMCID: PMC8973082 DOI: 10.1021/acsomega.1c06842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Postirradiation dissociation of molecular clusters has been mainly studied assuming energy redistribution in the entire cluster prior to the dissociation. Here, the evaporation of water molecules from out-of-equilibrium pyridinium-water cluster ions was investigated using the recently developed correlated ion and neutral time-of-flight (COINTOF) mass spectrometry technique in combination with a velocity-map imaging (VMI) device. This special setup enables the measurement of velocity distributions of the evaporated molecules upon high-velocity collisions with an argon atom. The distributions measured for pyridinium-water cluster ions are found to have two distinct components. Besides a low-velocity contribution, which corresponds to the statistical evaporation of water molecules after nearly complete redistribution of the excitation energy within the clusters, a high-velocity contribution is also found in which the molecules are evaporated before the energy redistribution is complete. These two different evaporation modes were previously observed and described for protonated water cluster ions. However, unlike in the case of pure water clusters, the low-velocity part of the distributions for pyridinium-doped water clusters is itself composed of two distinct Maxwell-Boltzmann distributions, indicating that evaporated molecules originate in this case from out-of-equilibrium processes. Statistical molecular dynamics simulations were performed to (i) understand the effects caused in the ensuing evaporation process by the various excitation modes at different initial cluster constituents and to (ii) simulate the distributions resulting from sequential evaporations. The presence of a hydrophobic impurity in water clusters is shown to impact water molecule evaporation due to the energy storage in the internal degrees of freedom of the impurity.
Collapse
Affiliation(s)
- Paul Bertier
- Université
de Lyon, Université Claude Bernard Lyon1, CNRS, IP2I Lyon/IN2P3,
UMR5822, F-69622, Villeurbanne, France
- Atomic,
Molecular & Optics (AMO) Physics Laboratory, RIKEN Cluster for Pioneering Research, 351-0198 Saitama, Japan
| | - Léo Lavy
- Université
de Lyon, Université Claude Bernard Lyon1, CNRS, IP2I Lyon/IN2P3,
UMR5822, F-69622, Villeurbanne, France
| | - Denis Comte
- Université
de Lyon, Université Claude Bernard Lyon1, CNRS, IP2I Lyon/IN2P3,
UMR5822, F-69622, Villeurbanne, France
- Institut
für Ionenphysik und Angewandte Physik, Leopold Franzens Universität Innsbruck, 6020 Innsbruck, Austria
| | - Linda Feketeová
- Université
de Lyon, Université Claude Bernard Lyon1, CNRS, IP2I Lyon/IN2P3,
UMR5822, F-69622, Villeurbanne, France
| | - Thibaud Salbaing
- Université
de Lyon, Université Claude Bernard Lyon1, CNRS, IP2I Lyon/IN2P3,
UMR5822, F-69622, Villeurbanne, France
| | - Toshiyuki Azuma
- Atomic,
Molecular & Optics (AMO) Physics Laboratory, RIKEN Cluster for Pioneering Research, 351-0198 Saitama, Japan
| | - Florent Calvo
- Université
Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France
| | - Bernadette Farizon
- Université
de Lyon, Université Claude Bernard Lyon1, CNRS, IP2I Lyon/IN2P3,
UMR5822, F-69622, Villeurbanne, France
| | - Michel Farizon
- Université
de Lyon, Université Claude Bernard Lyon1, CNRS, IP2I Lyon/IN2P3,
UMR5822, F-69622, Villeurbanne, France
| | - Tilmann D. Märk
- Institut
für Ionenphysik und Angewandte Physik, Leopold Franzens Universität Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
3
|
Feketeová L, Bertier P, Salbaing T, Azuma T, Calvo F, Farizon B, Farizon M, Märk TD. Impact of a hydrophobic ion on the early stage of atmospheric aerosol formation. Proc Natl Acad Sci U S A 2019; 116:22540-22544. [PMID: 31636185 PMCID: PMC6842599 DOI: 10.1073/pnas.1911136116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Atmospheric aerosols are one of the major factors affecting planetary climate, and the addition of anthropogenic molecules into the atmosphere is known to strongly affect cloud formation. The broad variety of compounds present in such dilute media and their specific underlying thermalization processes at the nanoscale make a complete quantitative description of atmospheric aerosol formation certainly challenging. In particular, it requires fundamental knowledge about the role of impurities in water cluster growth, a crucial step in the early stage of aerosol and cloud formation. Here, we show how a hydrophobic pyridinium ion within a water cluster drastically changes the thermalization properties, which will in turn change the corresponding propensity for water cluster growth. The combination of velocity map imaging with a recently developed mass spectrometry technique allows the direct measurement of the velocity distribution of the water molecules evaporated from excited clusters. In contrast to previous results on pure water clusters, the low-velocity part of the distributions for pyridinium-doped water clusters is composed of 2 distinct Maxwell-Boltzmann distributions, indicating out-of-equilibrium evaporation. More generally, the evaporation of water molecules from excited clusters is found to be much slower when the cluster is doped with a pyridinium ion. Therefore, the presence of a contaminant molecule in the nascent cluster changes the energy storage and disposal in the early stages of gas-to-particle conversion, thereby leading to an increased rate of formation of water clusters and consequently facilitating homogeneous nucleation at the early stages of atmospheric aerosol formation.
Collapse
Affiliation(s)
- Linda Feketeová
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Institut de Physique des 2 Infinis de Lyon (IP2I) Lyon, UMR 5822, F-69622 Villeurbanne, France
| | - Paul Bertier
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Institut de Physique des 2 Infinis de Lyon (IP2I) Lyon, UMR 5822, F-69622 Villeurbanne, France
- Atomic, Molecular & Optics (AMO) Physics Laboratory, RIKEN Cluster for Pioneering Research, 351-0198 Saitama, Japan
| | - Thibaud Salbaing
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Institut de Physique des 2 Infinis de Lyon (IP2I) Lyon, UMR 5822, F-69622 Villeurbanne, France
| | - Toshiyuki Azuma
- Atomic, Molecular & Optics (AMO) Physics Laboratory, RIKEN Cluster for Pioneering Research, 351-0198 Saitama, Japan
| | - Florent Calvo
- Université Grenoble Alpes, CNRS, Laboratoire Interdisciplinaire de Physique (LIPhy), 38000 Grenoble, France
| | - Bernadette Farizon
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Institut de Physique des 2 Infinis de Lyon (IP2I) Lyon, UMR 5822, F-69622 Villeurbanne, France
| | - Michel Farizon
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Institut de Physique des 2 Infinis de Lyon (IP2I) Lyon, UMR 5822, F-69622 Villeurbanne, France;
| | - Tilmann D Märk
- Institut für Lonenphysik und Angewandte Physik, Leopold Franzens Universität, 6020 Innsbruck, Austria
| |
Collapse
|
4
|
Salbaing T, Feketeová L, Abdoul-Carime H, Farizon B, Farizon M, Calvo F, Märk T. 40 Irradiation in molecular nanodroplets. Phys Med 2018. [DOI: 10.1016/j.ejmp.2018.09.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
5
|
Berthias F, Feketeová L, Abdoul-Carime H, Calvo F, Farizon B, Farizon M, Märk TD. Maxwell-Boltzmann versus non-ergodic events in the velocity distribution of water molecules evaporated from protonated water nanodroplets. J Chem Phys 2018; 149:084308. [PMID: 30193492 DOI: 10.1063/1.5037281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Measurement of velocity distributions of evaporated water monomers from small mass- and energy-selected protonated water clusters allows probing the extent of thermalization after excitation of these ultimately small nanodroplets. Electronic excitation of a molecule in the cluster is here induced by a single collision with an argon atom in the keV energy range. The measured velocity distributions of the departing neutral molecules exhibit bimodal shapes with a lower-velocity part consistent with a complete redistribution of the deposited energy in the entire cluster and a higher-velocity contribution corresponding to evaporation before complete energy redistribution. Statistical molecular dynamics calculations reproduce the bimodal shape of the velocity distributions by assuming an initial spreading of the excitation energy among all modes, thereby reproducing the lower velocity contribution of the distribution. By contrast, assuming the deposited energy to be initially localized among the modes of a single molecule leads to calculated distributions with two components whose shape is in accordance with the experimental results. The characteristics and the relative abundance of these two contributions in the velocity distributions obtained are presented and discussed as a function of the number of molecules (n = 2-10) in the ionized nanodroplet H+(H2O) n .
Collapse
Affiliation(s)
- F Berthias
- Institut de Physique Nucléaire de Lyon; CNRS/IN2P3, UMR5822, Université de Lyon, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France
| | - L Feketeová
- Institut de Physique Nucléaire de Lyon; CNRS/IN2P3, UMR5822, Université de Lyon, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France
| | - H Abdoul-Carime
- Institut de Physique Nucléaire de Lyon; CNRS/IN2P3, UMR5822, Université de Lyon, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France
| | - F Calvo
- LIPhy, Université Grenoble 1 and CNRS, UMR 5588, 140, Ave. de la Physique, 38402 Saint-Martin-d'Hères, France
| | - B Farizon
- Institut de Physique Nucléaire de Lyon; CNRS/IN2P3, UMR5822, Université de Lyon, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France
| | - M Farizon
- Institut de Physique Nucléaire de Lyon; CNRS/IN2P3, UMR5822, Université de Lyon, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France
| | - T D Märk
- Institut für Ionenphysik und Angewandte Physik, Leopold Franzens Universität, Technikerstrasse 25, A-6020 Innsbruck, Austria
| |
Collapse
|
6
|
Berthias F, Feketeová L, Abdoul-Carime H, Calvo F, Farizon B, Farizon M, Märk TD. Sequential evaporation of water molecules from protonated water clusters: measurement of the velocity distributions of the evaporated molecules and statistical analysis. Phys Chem Chem Phys 2018; 20:18066-18073. [PMID: 29932203 DOI: 10.1039/c8cp02657b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Velocity distributions of neutral water molecules evaporated after collision induced dissociation of protonated water clusters H+(H2O)n≤10 were measured using the combined correlated ion and neutral fragment time-of-flight (COINTOF) and velocity map imaging (VMI) techniques. As observed previously, all measured velocity distributions exhibit two contributions, with a low velocity part identified by statistical molecular dynamics (SMD) simulations as events obeying the Maxwell-Boltzmann statistics and a high velocity contribution corresponding to non-ergodic events in which energy redistribution is incomplete. In contrast to earlier studies, where the evaporation of a single molecule was probed, the present study is concerned with events involving the evaporation of up to five water molecules. In particular, we discuss here in detail the cases of two and three evaporated molecules. Evaporation of several water molecules after CID can be interpreted in general as a sequential evaporation process. In addition to the SMD calculations, a Monte Carlo (MC) based simulation was developed allowing the reconstruction of the velocity distribution produced by the evaporation of m molecules from H+(H2O)n≤10 cluster ions using the measured velocity distributions for singly evaporated molecules as the input. The observed broadening of the low-velocity part of the distributions for the evaporation of two and three molecules as compared to the width for the evaporation of a single molecule results from the cumulative recoil velocity of the successive ion residues as well as the intrinsically broader distributions for decreasingly smaller parent clusters. Further MC simulations were carried out assuming that a certain proportion of non-ergodic events is responsible for the first evaporation in such a sequential evaporation series, thereby allowing to model the entire velocity distribution.
Collapse
Affiliation(s)
- F Berthias
- Université de Lyon, F-69003, Lyon, France
| | | | | | | | | | | | | |
Collapse
|
7
|
Berthias F, Feketeová L, Della Negra R, Dupasquier T, Fillol R, Abdoul-Carime H, Farizon B, Farizon M, Märk TD. Correlated ion and neutral time of flight technique combined with velocity map imaging: Quantitative measurements for dissociation processes in excited molecular nano-systems. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:013107. [PMID: 29390692 DOI: 10.1063/1.5001162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The combination of the Dispositif d'Irradiation d'Agrégats Moléculaire with the correlated ion and neutral time of flight-velocity map imaging technique provides a new way to explore processes occurring subsequent to the excitation of charged nano-systems. The present contribution describes in detail the methods developed for the quantitative measurement of branching ratios and cross sections for collision-induced dissociation processes of water cluster nano-systems. These methods are based on measurements of the detection efficiency of neutral fragments produced in these dissociation reactions. Moreover, measured detection efficiencies are used here to extract the number of neutral fragments produced for a given charged fragment.
Collapse
Affiliation(s)
- F Berthias
- Université de Lyon, F-69003 Lyon, France; Université Lyon 1, Lyon, Villeurbanne, France; and CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon, F-69622 Lyon, Villeurbanne, France
| | - L Feketeová
- Université de Lyon, F-69003 Lyon, France; Université Lyon 1, Lyon, Villeurbanne, France; and CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon, F-69622 Lyon, Villeurbanne, France
| | - R Della Negra
- Université de Lyon, F-69003 Lyon, France; Université Lyon 1, Lyon, Villeurbanne, France; and CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon, F-69622 Lyon, Villeurbanne, France
| | - T Dupasquier
- Université de Lyon, F-69003 Lyon, France; Université Lyon 1, Lyon, Villeurbanne, France; and CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon, F-69622 Lyon, Villeurbanne, France
| | - R Fillol
- Université de Lyon, F-69003 Lyon, France; Université Lyon 1, Lyon, Villeurbanne, France; and CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon, F-69622 Lyon, Villeurbanne, France
| | - H Abdoul-Carime
- Université de Lyon, F-69003 Lyon, France; Université Lyon 1, Lyon, Villeurbanne, France; and CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon, F-69622 Lyon, Villeurbanne, France
| | - B Farizon
- Université de Lyon, F-69003 Lyon, France; Université Lyon 1, Lyon, Villeurbanne, France; and CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon, F-69622 Lyon, Villeurbanne, France
| | - M Farizon
- Université de Lyon, F-69003 Lyon, France; Université Lyon 1, Lyon, Villeurbanne, France; and CNRS/IN2P3, UMR5822, Institut de Physique Nucléaire de Lyon, F-69622 Lyon, Villeurbanne, France
| | - T D Märk
- Institut für Ionenphysik und Angewandte Physik, Leopold Franzens Universität, Technikerstrasse 25, A-6020 Innsbruck, Austria
| |
Collapse
|