1
|
Moch K, Münzner P, Böhmer R, Gainaru C. Molecular Cross-correlations Govern Structural Rearrangements in a Nonassociating Polar Glass Former. PHYSICAL REVIEW LETTERS 2022; 128:228001. [PMID: 35714246 DOI: 10.1103/physrevlett.128.228001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 01/22/2022] [Accepted: 04/14/2022] [Indexed: 06/15/2023]
Abstract
Self- and cross-correlation dynamics of deeply supercooled liquids were recently identified using photon correlation spectroscopy on the one hand and dielectric investigations on the other. These results fueled a controversial discussion whether the "generic" response identified by photon correlation spectroscopy, or rather the nonuniversal dielectric response, reflect the liquid's structural relaxation. The present study employs physical aging and oscillatory shear rheology to directly access the structural relaxation of a nonassociating glass-forming liquid and reveals that collective equilibrium fluctuations of simple liquids and not single-particle dynamics govern their structural relaxation. The present results thus challenge recent views that the glassy response of polar supercooled liquids can generically be decomposed into a Debye-type, supramolecular response and a single-particle dynamics with the latter reflecting the "true" structural relaxation. Furthermore, the current findings underscore the pivotal role dielectric spectroscopy plays in glass science as one of the rare molecular-level reorientation techniques that senses dynamical cooperativity directly.
Collapse
Affiliation(s)
- K Moch
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - P Münzner
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - R Böhmer
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - C Gainaru
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
2
|
Investigation of dielectric spectrums, relaxation processes, and intermolecular interactions of primary alcohols, carboxylic acids, and their binary mixtures. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Hydration and aggregation in aqueous xylitol solutions in the wide temperature range. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Jang J, Kim S, Eom K. NaCl increases the dielectric constant of nanoconfined water in phospholipid multilamellar vesicle by enhancing intermolecular orientation correlation rather than rotational freedom of individual molecules. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Hölzl C, Forbert H, Marx D. Dielectric relaxation of water: assessing the impact of localized modes, translational diffusion, and collective dynamics. Phys Chem Chem Phys 2021; 23:20875-20882. [PMID: 34523631 DOI: 10.1039/d1cp03507j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A multitude of distinct physical processes and molecular mechanisms have been introduced in the past in an effort to understand the unusual dielectric loss spectrum of water with its pronounced peak at roughly 20 GHz. Our computer simulations including ab initio molecular dynamics provide no evidence for a major impact of cage dynamics or local-diffusive motion on the lineshape below 200 GHz. We also show that the collective motion of hundreds of water molecules and/or their significant diffusive displacements are not required. Instead, the dielectric relaxation of water up to about 200 GHz can be quantitatively described in terms of two unimodal and smoothly decaying spectral contributions.
Collapse
Affiliation(s)
- Christoph Hölzl
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany.
| | - Harald Forbert
- Center for Solvation Science ZEMOS, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany.
| |
Collapse
|
6
|
Vankar H, Rana V, Dey S, Patel H, Jain V. Molecular interaction in binary mixtures of 3-Bromoanisole and methanol: A microwave dielectric relaxation spectroscopy and molecular dynamic simulation study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Arrese-Igor S, Alegría A, Colmenero J. Signature of hydrogen bonding association in the dielectric signal of polyalcohols. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
|
9
|
Arrese-Igor S, Alegría A, Arbe A, Colmenero J. Insights into the non-exponential behavior of the dielectric Debye-like relaxation in monoalcohols. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Romanini M, Barrio M, Macovez R, Capaccioli S, Tamarit JL. Mixtures of m-fluoroaniline with apolar aromatic molecules: Phase behaviour, suppression of H-bonded clusters, and local H-bond relaxation dynamics. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Kripotou S, Zafeiris K, Culebras-Martínez M, Gallego Ferrer G, Kyritsis A. Dynamics of hydration water in gelatin and hyaluronic acid hydrogels. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:109. [PMID: 31444585 DOI: 10.1140/epje/i2019-11871-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
We employed broadband dielectric spectroscopy (BDS), for the investigation of the water dynamics in partially hydrated hyaluronic acid (HA), and gelatin (Gel), enzymatically crosslinked hydrogels, in the water fraction ranges [Formula: see text]. Our results indicate that at low hydrations ([Formula: see text]), where the dielectric response of the hydrogels is identical during cooling and heating, water plasticizes strongly the polymeric matrix and is organized in clusters giving rise to [Formula: see text]-process, secondary water relaxation and to an additional slower relaxation process. This later process has been found to be related with the dc charge conductivity and can be described in terms of the conduction current relaxation mechanism. At slightly higher hydrations, however, always below the hydration level where ice is formed during cooling, we have recorded in HA hydrogel a strong water dielectric relaxation process, [Formula: see text], which has Arrhenius-like temperature dependence and large time scale resembling relaxation processes recorded in bulk low density amorphous solid water structures. This relaxation process shows a strong-to-fragile transition at [Formula: see text]C and our data suggest that the VTF-like process recorded at [Formula: see text]C is controlled by the same molecular process like long range charge transport. In addition, our data imply that the crossover temperature is related with the onset of structural rearrangements (increase in configurational entropy) of the macromolecules. In partially crystallized hydrogels ([Formula: see text]) HA exhibits at low temperatures the ice dielectric process consistent with the bulk hexagonal ice, whereas Gel hydrogel exhibits as main low temperature process a slow relaxation process that refers to open tetrahedral structures of water similar to low density amorphous ice structures and to bulk cubic ice. Regarding the water secondary relaxation processes, we have shown that the [Formula: see text]-process and the [Formula: see text] process are activated in water hydrogen bond networks with different structures.
Collapse
Affiliation(s)
- Sotiria Kripotou
- National Technical University of Athens, Physics Department, Iroon Polytechneiou 9, Zografou Campus, 15780, Athens, Greece
| | - Konstantinos Zafeiris
- National Technical University of Athens, Physics Department, Iroon Polytechneiou 9, Zografou Campus, 15780, Athens, Greece
| | - Maria Culebras-Martínez
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Camino de vera s/n, 46022, Valencia, Spain
| | - Gloria Gallego Ferrer
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Camino de vera s/n, 46022, Valencia, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain
| | - Apostolos Kyritsis
- National Technical University of Athens, Physics Department, Iroon Polytechneiou 9, Zografou Campus, 15780, Athens, Greece.
| |
Collapse
|
12
|
Vondracek H, Alfarano S, Hoberg C, Kolling I, Novelli F, Sebastiani F, Brubach JB, Roy P, Schwaab G, Havenith M. Urea's match in the hydrogen-bond network? A high pressure THz study. Biophys Chem 2019; 254:106240. [PMID: 31442764 DOI: 10.1016/j.bpc.2019.106240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/14/2019] [Accepted: 07/27/2019] [Indexed: 11/28/2022]
Abstract
We present results of the measurement of the low frequency spectrum of solvated urea. The study revealed a blue shift of the intramolecular mode of urea centered at 150 cm-1 of Δν= 17 cm-1 upon increasing the pressure up to 10 kbar. The blue shift scaled linearly with the increase in density and was attributed to a stiffening of the water-urea intermolecular potential. We deduced an increase in the number of affected water molecules from 1 to 2 up to 5-7, which corresponds to the sterical coordination number of urea. The increase in hydration number can be explained by an suppression of the NH2 inversion and the hydrogen bond switching around the NH2 group. Pressure induced sterical constraints are proposed to hinder the rapid switching of hydrogen bond partners and make the water around urea less bulk-like than under ambient conditions.
Collapse
Affiliation(s)
- Hendrik Vondracek
- Ruhr-Universität Bochum, LS Physikalische Chemie II, Universitätsstraße 150, 44801 Bochum, Germany
| | - Serena Alfarano
- Ruhr-Universität Bochum, LS Physikalische Chemie II, Universitätsstraße 150, 44801 Bochum, Germany
| | - Claudius Hoberg
- Ruhr-Universität Bochum, LS Physikalische Chemie II, Universitätsstraße 150, 44801 Bochum, Germany
| | - Inga Kolling
- Ruhr-Universität Bochum, LS Physikalische Chemie II, Universitätsstraße 150, 44801 Bochum, Germany
| | - Fabio Novelli
- Ruhr-Universität Bochum, LS Physikalische Chemie II, Universitätsstraße 150, 44801 Bochum, Germany
| | - Federico Sebastiani
- Ruhr-Universität Bochum, LS Physikalische Chemie II, Universitätsstraße 150, 44801 Bochum, Germany
| | - Jean-Blaise Brubach
- Ligne AILES - Synchrotron SOLEIL, L'Orme des Merisiers, F-91192 Gif-sur-Yvette, France
| | - Pascale Roy
- Ligne AILES - Synchrotron SOLEIL, L'Orme des Merisiers, F-91192 Gif-sur-Yvette, France
| | - Gerhard Schwaab
- Ruhr-Universität Bochum, LS Physikalische Chemie II, Universitätsstraße 150, 44801 Bochum, Germany
| | - Martina Havenith
- Ruhr-Universität Bochum, LS Physikalische Chemie II, Universitätsstraße 150, 44801 Bochum, Germany.
| |
Collapse
|
13
|
Physical Meanings of Fractal Behaviors of Water in Aqueous and Biological Systems with Open-Ended Coaxial Electrodes. SENSORS 2019; 19:s19112606. [PMID: 31181722 PMCID: PMC6604069 DOI: 10.3390/s19112606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 12/01/2022]
Abstract
The dynamics of a hydrogen bonding network (HBN) relating to macroscopic properties of hydrogen bonding liquids were observed as a significant relaxation process by dielectric spectroscopy measurements. In the cases of water and water rich mixtures including biological systems, a GHz frequency relaxation process appearing at around 20 GHz with the relaxation time of 8.2 ps is generally observed at 25 °C. The GHz frequency process can be explained as a rate process of exchanges in hydrogen bond (HB) and the rate becomes higher with increasing HB density. In the present work, this study analyzed the GHz frequency process observed by suitable open-ended coaxial electrodes, and physical meanings of the fractal nature of water structures were clarified in various aqueous systems. Dynamic behaviors of HBN were characterized by a combination of the average relaxation time and the distribution of the relaxation time. This fractal analysis offered an available approach to both solution and dispersion systems with characterization of the aggregation or dispersion state of water molecules. In the case of polymer-water mixtures, the HBN and polymer networks penetrate each other, however, the HBN were segmented and isolated more by dispersed and aggregated particles in the case of dispersion systems. These HBN fragments were characterized by smaller values of the fractal dimension obtained from the fractal analysis. Some examples of actual usages suggest that the fractal analysis is now one of the most effective tools to understand the molecular mechanism of HBN in aqueous complex materials including biological systems.
Collapse
|
14
|
Gailus T, Krah H, Kühnel V, Rupprecht A, Kaatze U. Carboxylic acids in aqueous solutions: Hydrogen bonds, hydrophobic effects, concentration fluctuations, ionization, and catalysis. J Chem Phys 2019; 149:244503. [PMID: 30599745 DOI: 10.1063/1.5063877] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the frequency range between 100 kHz and 2 GHz, ultrasonic absorption spectra have been measured for a series of carboxylic acids from formic to enanthic acid, including constitutional isomers. Also investigated have been the spectra for mixtures with water of short-chain formic, acetic, propionic, butyric, and isobutyric acid, in each case covering the complete composition range. The neat carboxylic acids feature two Debye-type relaxation terms with relaxation times between 5.6 and 260 ns as well as 0.14 and 1.4 ns, respectively, at room temperature. Depending on the composition, mixtures with water reveal an additional Debye relaxation term in the intermediate frequency range (acetic acid) or a term subject to a relaxation time distribution (propionic, butyric, and isobutyric acid). The relaxations of the neat acids are assigned to the equilibrium between monomers and single-hydrogen-bonded linear dimers and between linear and twofold-hydrogen-bonded cyclic dimers. The latter equilibrium is considerably catalyzed by hydronium and carboxylate ions. Several mixtures with water indicate one of the up to three Debye relaxations to reflect the protolysis of the organic acid. The term with underlying relaxation time distribution is due to noncritical fluctuations in the local concentrations. The Debye relaxations are evaluated to yield the parameters of the relevant elementary chemical reactions, such as the rate and equilibrium constants and the isentropic reaction volumes. A comparison of the correlation length of concentration fluctuations with data for other aqueous systems confirms the idea that the hydrophobic part of the organic constituent promotes the formation of a micro-heterogeneous liquid structure, whereas the hydrophilic moiety is of minor importance in this respect. The high-frequency limiting absorption suggests the equilibrium between conformers of linear dimers to contribute to the spectra well above the frequency range of measurements.
Collapse
Affiliation(s)
- Torsten Gailus
- Drittes Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Holger Krah
- Drittes Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Volker Kühnel
- Drittes Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Andreas Rupprecht
- Drittes Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Udo Kaatze
- Drittes Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
15
|
Atawa B, Correia NT, Couvrat N, Affouard F, Coquerel G, Dargent E, Saiter A. Molecular mobility of amorphous N-acetyl-α-methylbenzylamine and Debye relaxation evidenced by dielectric relaxation spectroscopy and molecular dynamics simulations. Phys Chem Chem Phys 2019; 21:702-717. [DOI: 10.1039/c8cp04880k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Molecular mobility of NAC-MBA molecule is described by means of DRS, FSC and MD simulations.
Collapse
|
16
|
|
17
|
Interpretation of the GHz to THz dielectric relaxation dynamics of water in the framework of the Coupling Model. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.01.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Affiliation(s)
- Udo Kaatze
- Drittes Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
19
|
Martin DR, Forsmo JE, Matyushov DV. Complex Dynamics of Water in Protein Confinement. J Phys Chem B 2017; 122:3418-3425. [PMID: 29206460 DOI: 10.1021/acs.jpcb.7b10448] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This paper studies single-molecule and collective dynamics of water confined in protein powders by means of molecular dynamics simulations. The single-particle dynamics show a modest retardation compared to the bulk but become highly stretched in the powder, with the stretching exponent of ≃0.2. The collective dynamics of the total water dipole are affected by intermolecular correlations inside water and by cross-correlations between the water and the protein. The dielectric spectrum of water in the powder has two nearly equal-amplitude peaks: a Debye peak with ≃16 ps relaxation time and a highly stretched peak with the relaxation time of ≃13 ns and a stretching exponent of ≃0.12. The slower relaxation component is not seen in the single-molecule correlation functions and can be assigned to elastic protein motions displacing water in the powder. The loss spectrum of the intermediate scattering function reported by neutron-scattering experiments is also highly stretched, with the high-frequency wing scaling according to a power law. Translational dynamics can become much slower in the powder than in the bulk but are overshadowed by the rotational loss in the overall loss spectrum of neutron scattering.
Collapse
Affiliation(s)
| | - James E Forsmo
- College of Engineering , Georgia Institute of Technology , 225 North Avenue , Atlanta , Georgia 30332 , United States
| | | |
Collapse
|