1
|
Golysheva EA, Kashnik AS, Baranov DS, Dzuba SA. Nanoclusters of Guest Molecules in Lipid Rafts of a Model Membrane Revealed by Pulsed Dipolar EPR Spectroscopy. J Phys Chem B 2025; 129:650-658. [PMID: 39772603 DOI: 10.1021/acs.jpcb.4c05217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Plasma membranes are known to segregate into liquid disordered and ordered nanoscale phases, the latter being called lipid rafts. The structure, lipid composition, and function of lipid rafts have been the subject of numerous studies using a variety of experimental and computational methods. Double electron-electron resonance (DEER, also known as PELDOR) is a member of the pulsed dipole EPR spectroscopy (PDS) family of techniques, allowing the study of nanoscale distances between spin-labeled molecules. To extend the possibilities of DEER in the study of molecule clusters, its joint application with the simple two-pulse electron spin echo (2p ESE) method is carried out here. We studied spin-labeled ibuprofen (ibuprofen-SL) diluted in bilayers composed of equimolar mixtures of dioleoyl-glycero-phosphocholine (DOPC) and dipalmitoyl-glycero-phosphocholine (DPPC) phospholipids, with added cholesterol, a system known as a raft-mimicking. The data obtained show that ibuprofen-SL molecules in this system form isolated clusters of about 4 nm in size, containing 6-8 molecules spaced at least 1.3 nm apart. These results indicate the interaction of ibuprofen-SL molecules with lipid rafts, for which the existence of nanoscale substructures at the boundaries of which adsorption of these molecules occurs is suggested.
Collapse
Affiliation(s)
- Elena A Golysheva
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Anna S Kashnik
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Denis S Baranov
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Sergei A Dzuba
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
2
|
Golysheva EA, Baranov DS, Dzuba SA. Evidence for capture of spin-labeled ibuprofen drug molecules by lipid rafts in model membranes. Chem Phys Lipids 2025; 266:105450. [PMID: 39491578 DOI: 10.1016/j.chemphyslip.2024.105450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Lipid rafts are lipid-cholesterol nanostructures thought to exist in cell membranes, which are characterized by higher ordering compared to their surroundings. Ibuprofen and other non-steroidal anti-inflammatory drugs (NSAIDs) have a high affinity for phospholipid membranes and can alter their structure and biological properties. Here we use electron paramagnetic resonance (EPR) in its pulsed electron spin echo (ESE) version to study spin-labeled ibuprofen (ibuprofen-SL) in a raft-mimicking bilayer, which consists of an equimolar mixture of the phospholipids dioleoyl-glycero-phosphocholine (DOPC) and dipalmitoyl-glycero-phosphocholine (DPPC), with cholesterol added in various proportions. ESE decays are sensitive to the presence of low-temperature small-angle orientational motions of molecules - stochastic molecular librations. The data obtained show that in the presence of lipid rafts the temperature dependence of the spin relaxation rate induced by this motion reaches a plateau. This behavior is characteristic of non-cooperative motion of a molecule bound to some structure denser than the rest of the medium. Based on this analogy, the data obtained were interpreted as evidence that ibuprofen-SL molecules are adsorbed on the raft boundaries.
Collapse
Affiliation(s)
- Elena A Golysheva
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Denis S Baranov
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Sergei A Dzuba
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia.
| |
Collapse
|
3
|
Syryamina VN, Astvatsaturov DA, Dzuba SA, Chumakova NA. Glass-like behavior of intercalated organic solvents in graphite oxide detected by spin-probe EPR. Phys Chem Chem Phys 2023; 25:25720-25727. [PMID: 37721717 DOI: 10.1039/d3cp03253a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Membranes based on graphite oxide (GO) are promising materials for the separation of polar liquids and gases. Understanding the properties of solvents immersed in GO is important for the development of various technological applications. Here, the molecular motions of the TEMPO nitroxide spin probe in acetonitrile intercalated into the GO inter-plane space were studied using electron paramagnetic resonance (EPR), including its pulsed version, and electron spin echo (ESE). For a sample containing 75% acetonitrile relative to equilibrium sorption at room temperature, ESE-detected stochastic librations were observed for TEMPO molecules above 135 K. Since these librations are an inherent property of molecular glasses, this fact indicates that intercalated acetonitrile forms a two-dimensional glass state. Above 225 K, an acceleration of stochastic librations was observed, indicating the manifestation of a glass-like dynamical cross-over. Continuous wave (CW) EPR spectra of TEMPO showed the absence of overall tumbling motions in the entire investigated temperature range of up to 340 K, indicating that the intercalated acetonitrile does not behave as a bulk liquid (the melting point of acetonitrile is 229 K). Dynamical librations of TEMPO molecules detected by CW EPR were found to accelerate above 240 K.
Collapse
Affiliation(s)
- Victoria N Syryamina
- Voevodsky Institute of Chemical Kinetics and Combustion, RAS, Novosibirsk, 630090, Russian Federation.
| | - Dmitry A Astvatsaturov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Science, Kosygin St. 4, Moscow, 119991, Russian Federation
- M.V. Lomonosov Moscow State University, Chemistry Department, Leninskiye Gory, 1/3, Moscow, 119991, Russian Federation
| | - Sergei A Dzuba
- Voevodsky Institute of Chemical Kinetics and Combustion, RAS, Novosibirsk, 630090, Russian Federation.
- Department of Physics, Novosibirsk State University, 630090, Novosibirsk, Russian Federation
| | - Natalia A Chumakova
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Science, Kosygin St. 4, Moscow, 119991, Russian Federation
- M.V. Lomonosov Moscow State University, Chemistry Department, Leninskiye Gory, 1/3, Moscow, 119991, Russian Federation
| |
Collapse
|
4
|
Bartucci R, Aloi E. Librational Dynamics of Spin-Labeled Membranes at Cryogenic Temperatures From Echo-Detected ED-EPR Spectra. Front Mol Biosci 2022; 9:923794. [PMID: 35847982 PMCID: PMC9277068 DOI: 10.3389/fmolb.2022.923794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Methods of electron spin echo of pulse electron paramagnetic resonance (EPR) spectroscopy are increasingly employed to investigate biophysical properties of nitroxide-labeled biosystems at cryogenic temperatures. Two-pulse echo-detected ED-spectra have proven to be valuable tools to describe the librational dynamics in the low-temperature phases of both lipids and proteins in membranes. The motional parameter, α2τC, given by the product of the mean-square angular amplitude, α2, and the rotational correlation time, τC, of the motion, is readily determined from the nitroxide ED-spectra as well as from the W-relaxation rate curves. An independent evaluation of α2 is obtained from the motionally averaged 14N-hyperfine splitting separation in the continuous wave cw-EPR spectra. Finally, the rotational correlation time τC can be estimated by combining ED- and cw-EPR data. In this mini-review, results on the librational dynamics in model and natural membranes are illustrated.
Collapse
Affiliation(s)
- Rosa Bartucci
- Department of Chemistry and Chemical Technologies, University of Calabria, Rende (CS), Italy
- *Correspondence: Rosa Bartucci,
| | - Erika Aloi
- Molecular Biophysics Laboratory, Department of Physics, University of Calabria, Rende (CS), Italy
| |
Collapse
|
5
|
Low-temperature librations and dynamical transition in proteins at differing hydration levels. Biomol Concepts 2022; 13:81-88. [DOI: 10.1515/bmc-2022-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/14/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Hydration of water affects the dynamics and in turn the activity of biomacromolecules. We investigated the dependence of the librational oscillations and the dynamical transition on the hydrating conditions of two globular proteins with different structure and size, namely β-lactoglobulin (βLG) and human serum albumin (HSA), by spin-label electron paramagnetic resonance (EPR) in the temperature range of 120–270 K. The proteins were spin-labeled with 5-maleimide spin-label on free cysteins and prepared in the lyophilized state, at low (h = 0.12) and full (h = 2) hydration levels in buffer. The angular amplitudes of librations are small and almost temperature independent for both lyophilized proteins. Therefore, in these samples, the librational dynamics is restricted and the dynamical transition is absent. In the small and compact beta-structured βLG, the angular librational amplitudes increase with temperature and hydrating conditions, whereas hydration-independent librational oscillations whose amplitudes rise with temperature are recorded in the large and flexible alpha-structured HSA. Both βLG and HSA at low and fully hydration levels undergo the dynamical transition at about 230 K. The overall results indicate that protein librational dynamics is activated at the low hydration level h = 0.12 and highlight biophysical properties that are common to other biosamples at cryogenic temperatures.
Collapse
|
6
|
Aloi E, Bartucci R. Influence of hydration on segmental chain librations and dynamical transition in lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183805. [PMID: 34662568 DOI: 10.1016/j.bbamem.2021.183805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/29/2021] [Accepted: 10/10/2021] [Indexed: 12/23/2022]
Abstract
Continuous wave electron paramagnetic resonance spectroscopy of chain-labeled phospholipids is used to investigate the effects of hydration on the librational oscillations and the dynamical transition of phospholipid membranes in the low-temperature range 120-270 K. Bilayers of dipalmitoylphostatidiycholine (DPPC) spin-labeled at the first acyl chain segments and at the methyl ends and prepared at full, low, and very low hydration are considered. The segmental mean-square angular amplitudes of librations, 〈α2〉, are larger in the bilayer interior than at the polar/apolar interface and larger in the fully and low hydrated than in the very low hydrated membranes. For chain segments at the beginning of the hydrocarbon region, 〈α2〉-values are markedly restricted and temperature independent in DPPC with the lowest water content, whereas they increase with temperature in the low and fully hydrated bilayers, particularly at the highest temperatures. For chain segments at the chain termini, the librational amplitudes increase progressively, first slowly and then more rapidly with temperature in bilayers at any level of hydration. From the temperature dependence of the mean-square librational amplitude, the dynamical transition is detected around 240 K at the polar/apolar interface in fully and low hydrated DPPC and at around 225 K at the inner hydrocarbon region for bilayers at any hydration condition. At the dynamical transition the bilayers cross low energy barriers of activation energy in the range 10-20 kJ/mol. The results highlight biophysical properties of DPPC bilayers at low-temperature and provide evidence of the effects of the hydration on the dynamical transition in bilayers.
Collapse
Affiliation(s)
- Erika Aloi
- Department of Physics, Molecular Biophysics Laboratory, University of Calabria, 87036 Rende, (CS), Italy
| | - Rosa Bartucci
- Department of Chemistry and Chemical Technologies, Molecular Biophysics Laboratory, University of Calabria, 87036 Rende, (CS), Italy.
| |
Collapse
|
7
|
Probing Small-Angle Molecular Motions with EPR Spectroscopy: Dynamical Transition and Molecular Packing in Disordered Solids. MAGNETOCHEMISTRY 2022. [DOI: 10.3390/magnetochemistry8020019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Disordered molecular solids present a rather broad class of substances of different origin—amorphous polymers, materials for photonics and optoelectronics, amorphous pharmaceutics, simple molecular glass formers, and others. Frozen biological media in many respects also may be referred to this class. Theoretical description of dynamics and structure of disordered solids still does not exist, and only some phenomenological models can be developed to explain results of particular experiments. Among different experimental approaches, electron paramagnetic resonance (EPR) applied to spin probes and labels also can deliver useful information. EPR allows probing small-angle orientational molecular motions (molecular librations), which intrinsically are inherent to all molecular solids. EPR is employed in its conventional continuous wave (CW) and pulsed—electron spin echo (ESE)—versions. CW EPR spectra are sensitive to dynamical librations of molecules while ESE probes stochastic molecular librations. In this review, different manifestations of small-angle motions in EPR of spin probes and labels are discussed. It is shown that CW-EPR-detected dynamical librations provide information on dynamical transition in these media, similar to that explored with neutron scattering, and ESE-detected stochastic librations allow elucidating some features of nanoscale molecular packing. The possible EPR applications are analyzed for gel-phase lipid bilayers, for biological membranes interacting with proteins, peptides and cryoprotectants, for supercooled ionic liquids (ILs) and supercooled deep eutectic solvents (DESs), for globular proteins and intrinsically disordered proteins (IDPs), and for some other molecular solids.
Collapse
|
8
|
Golysheva EA, Dzuba SA. Low-temperature molecular motions in a deep eutectic solvent choline chloride/urea studied by spin-probe EPR. Russ Chem Bull 2022. [DOI: 10.1007/s11172-021-3354-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Golysheva E, Maslennikova N, Baranov DS, Dzuba S. Structural properties of supercooled deep eutectic solvents: choline chloride–thiourea compared to reline. Phys Chem Chem Phys 2022; 24:5974-5981. [DOI: 10.1039/d1cp05162h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Deep eutectic solvents (DESs) are eutectic mixtures of hydrogen bond acceptors and hydrogen bond donors which melt at much lower temperatures than the individual components. DESs attract growing interest because...
Collapse
|
10
|
Evidence for an Ordering Transition near 120 K in an Intrinsically Disordered Protein, Casein. Molecules 2021; 26:molecules26195971. [PMID: 34641515 PMCID: PMC8512290 DOI: 10.3390/molecules26195971] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/25/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) are proteins that possess large unstructured regions. Their importance is increasingly recognized in biology but their characterization remains a challenging task. We employed field swept Electron Spin Echoes in pulsed EPR to investigate low-temperature stochastic molecular librations in a spin-labeled IDP, casein (the main protein of milk). For comparison, a spin-labeled globular protein, hen egg white lysozyme, is also investigated. For casein these motions were found to start at 100 K while for lysozyme only above 130 K, which was ascribed to a denser and more ordered molecular packing in lysozyme. However, above 120 K, the motions in casein were found to depend on temperature much slower than those in lysozyme. This abrupt change in casein was assigned to an ordering transition in which peptide residues rearrange making the molecular packing more rigid and/or more cohesive. The found features of molecular motions in these two proteins turned out to be very similar to those known for gel-phase lipid bilayers composed of conformationally ordered and conformationally disordered lipids. This analogy with a simpler molecular system may appear helpful for elucidation properties of molecular packing in IDPs.
Collapse
|
11
|
Ivanov MY, Prikhod’ko SA, Bakulina OD, Kiryutin AS, Adonin NY, Fedin MV. Validation of Structural Grounds for Anomalous Molecular Mobility in Ionic Liquid Glasses. Molecules 2021; 26:5828. [PMID: 34641371 PMCID: PMC8510339 DOI: 10.3390/molecules26195828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 11/25/2022] Open
Abstract
Ionic liquid (IL) glasses have recently drawn much interest as unusual media with unique physicochemical properties. In particular, anomalous suppression of molecular mobility in imidazolium IL glasses vs. increasing temperature was evidenced by pulse Electron Paramagnetic Resonance (EPR) spectroscopy. Although such behavior has been proven to originate from dynamics of alkyl chains of IL cations, the role of electron spin relaxation induced by surrounding protons still remains unclear. In this work we synthesized two deuterated imidazolium-based ILs to reduce electron-nuclear couplings between radical probe and alkyl chains of IL, and investigated molecular mobility in these glasses. The obtained trends were found closely similar for deuterated and protonated analogs, thus excluding the relaxation-induced artifacts and reliably demonstrating structural grounds of the observed anomalies in heterogeneous IL glasses.
Collapse
Affiliation(s)
- Mikhail Yu. Ivanov
- International Tomography Center SB RAS, Institutskaya Street 3a, 630090 Novosibirsk, Russia; (O.D.B.); (A.S.K.)
| | - Sergey A. Prikhod’ko
- Boreskov Institute of Catalysis SB RAS, Lavrentiev Avenue 5, 630090 Novosibirsk, Russia; (S.A.P.); (N.Y.A.)
| | - Olga D. Bakulina
- International Tomography Center SB RAS, Institutskaya Street 3a, 630090 Novosibirsk, Russia; (O.D.B.); (A.S.K.)
| | - Alexey S. Kiryutin
- International Tomography Center SB RAS, Institutskaya Street 3a, 630090 Novosibirsk, Russia; (O.D.B.); (A.S.K.)
| | - Nicolay Yu. Adonin
- Boreskov Institute of Catalysis SB RAS, Lavrentiev Avenue 5, 630090 Novosibirsk, Russia; (S.A.P.); (N.Y.A.)
| | - Matvey V. Fedin
- International Tomography Center SB RAS, Institutskaya Street 3a, 630090 Novosibirsk, Russia; (O.D.B.); (A.S.K.)
| |
Collapse
|
12
|
Benedetto A, Kearley GJ. Experimental demonstration of the novel "van-Hove integral method (vHI)" for measuring diffusive dynamics by elastic neutron scattering. Sci Rep 2021; 11:14093. [PMID: 34238981 PMCID: PMC8266890 DOI: 10.1038/s41598-021-93463-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/24/2021] [Indexed: 11/09/2022] Open
Abstract
Quasi-elastic neutron scattering (QENS)-based on the seminal work of Nobel Laureate Brockhouse-has been one of the major methods for studying pico-second to nano-second diffusive dynamics over the past 70 years. This is regarded as an "inelastic" method for dynamics. In contrast, we recently proposed a new neutron-scattering method for dynamics, which uses the elastic line of the scattering to access system dynamics directly in the time domain (Benedetto and Kearley in Sci Rep 9:11284, 2019). This new method has been denoted "vHI" that stands for "van Hove Integral". The reason is that, under certain conditions, the measured elastic intensity corresponds to the running-time integral of the intermediate scattering function, [Formula: see text], up to a time that is inversely proportional to the energy band-width incident on the sample. As a result, [Formula: see text] is accessed from the time derivative of the measured vHI profile. vHI has been supported by numerical and Monte-Carlo simulations, but has been difficult to validate experimentally due to the lack of a suitable instrument. Here we show that vHI works in practice, which we achieved by using a simple modification to the standard QENS backscattering spectrometer methodology. Basically, we varied the neutron-energy band-widths incident at the sample via a step-wise variation of the frequency of the monochromator Doppler-drive. This provides a measurement of the vHI profile at the detectors. The same instrument and sample were also used in standard QENS mode for comparison. The intermediate scattering functions, [Formula: see text], obtained by the two methods-vHI and QENS-are strikingly similar providing a direct experimental validation of the vHI method. Perhaps surprisingly, the counting statistics of the two methods are comparable even though the instrument used was expressly designed for QENS. This shows that the methodology modification adopted here can be used in practice to access vHI profiles at many of the backscattering spectrometers worldwide. We also show that partial integrations of the measured QENS spectrum cannot provide the vHI profile, which clarifies a common misconception. At the same time, we show a novel approach which does access [Formula: see text] from QENS spectra.
Collapse
Affiliation(s)
- Antonio Benedetto
- School of Physics, University College Dublin, Dublin 4, Ireland.
- Conway Institute, University College Dublin, Dublin 4, Ireland.
- Department of Sciences, University of Roma Tre, Rome, Italy.
- Laboratory for Neutron Scattering, Paul Scherrer Institute, Villigen, Switzerland.
| | - Gordon J Kearley
- School of Physics, University College Dublin, Dublin 4, Ireland
- School of Chemistry, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
13
|
Sannikova N, Timofeev I, Bagryanskaya E, Bowman M, Fedin M, Krumkacheva O. Electron Spin Relaxation of Photoexcited Porphyrin in Water-Glycerol Glass. Molecules 2020; 25:E2677. [PMID: 32527023 PMCID: PMC7321249 DOI: 10.3390/molecules25112677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 02/07/2023] Open
Abstract
Recently, the photoexcited triplet state of porphyrin was proposed as a promising spin-label for pulsed dipolar electron paramagnetic resonance (EPR). Herein, we report the factors that determine the electron spin echo dephasing of the photoexcited porphyrin in a water-glycerol matrix. The electron spin relaxation of a water-soluble porphyrin was measured by Q-band EPR, and the temperature dependence and the effect of solvent deuteration on the relaxation times were studied. The phase memory relaxation rate (1/Tm) is noticeably affected by solvent nuclei and is substantially faster in protonated solvents than in deuterated solvents. The Tm is as large as 13-17 μs in deuterated solvent, potentially expanding the range of distances available for measurement by dipole spectroscopy with photoexcited porphyrin. The 1/Tm depends linearly on the degree of solvent deuteration and can be used to probe the environment of a porphyrin in or near a biopolymer, including the solvent accessibility of porphyrins used in photodynamic therapy. We characterized the noncovalent binding of porphyrin to human serum albumin (HSA) from 1/Tm and electron spin echo envelope modulation (ESEEM) and found that porphyrin is quite exposed to solvent on the surface of HSA. The 1/Tm and ESEEM are equally effective and provide complementary methods to determine the solvent accessibility of a porphyrin bound to protein or to determine the location of the porphyrin.
Collapse
Affiliation(s)
- Natalya Sannikova
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia; (N.S.); (I.T.)
| | - Ivan Timofeev
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia; (N.S.); (I.T.)
| | - Elena Bagryanskaya
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
| | - Michael Bowman
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
- Department of Chemistry & Biochemistry, University of Alabama, Tuscaloosa, AL 35487-0336, USA
| | - Matvey Fedin
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia; (N.S.); (I.T.)
| | - Olesya Krumkacheva
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia; (N.S.); (I.T.)
| |
Collapse
|
14
|
Livshits VA, Meshkov BB, Avakyan VG, Titov SV. ESR, STESR, DFT, and MD Study of the Dynamical Structure of Cucurbituril[7]-Spin Probe Guest-Host Complexes. ACS OMEGA 2020; 5:11901-11914. [PMID: 32548369 PMCID: PMC7271031 DOI: 10.1021/acsomega.9b03772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
We study the molecular dynamics and structures of the guest-host complexes of cucurbituril, CB[7], with spin probes through the conventional electron spin resonance (ESR), saturation transfer ESR (STESR), density functional theory (DFT), and molecular dynamics (MD) computations. Protonated TEMPOamine (I), a derivative of TEMPO having a positive charge and an octyl group on the quaternary nitrogen atom (II), and the neutral spin-labeled indole (III) are used as guests. To eliminate the overall complex rotation, the solutions of complexes in a solid CB[7] matrix were prepared. Resultantly, for all of the spin probes, the combined study of the conventional ESR and STESR spectra indicates the librational character of the rotational motion within the CB[7] cavity as opposed to the diffusional rotation over the whole solid angle. The kinetic accessibilities of the reporter NO groups to the paramagnetic complexes in aqueous solutions, determined by Heisenberg exchange broadening of the ESR spectra, together with the environment polarities from the hyperfine interaction values, as well as DFT computation results and MD simulations, were used to estimate the spin probe location relative to CB[7]. Utilizing the concept of the aqueous clusters surrounding the spin probes and CB[7] molecules and MD simulations has allowed the application of DFT to estimate the aqueous environment effects on the complexation energy and spatial structure of the guest-host complexes.
Collapse
|
15
|
Golysheva EA, Samoilova RI, De Zotti M, Toniolo C, Formaggio F, Dzuba SA. Electron spin echo detection of stochastic molecular librations: Non-cooperative motions on solid surface. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 309:106621. [PMID: 31669794 DOI: 10.1016/j.jmr.2019.106621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/12/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023]
Abstract
In frozen biological media and molecular glasses only restricted motions exist; because of the weakness and disorder of intermolecular bonds these motions may have stochastic nature. Electron spin echo (ESE) spectroscopy of spin-labeled molecules allows detecting their restricted stochastic rotations (stochastic molecular librations). As in molecular disordered media motions may be highly cooperative, it would be desirable to investigate their spectroscopic manifestation also in the systems where cooperative effects would be certainly ruled out. In this work, ESE of spin-labeled molecules adsorbed on inorganic SiO2 surface was investigated in a wide temperature range. The rate of motion-induced spin relaxation was found to become measurable above 130 K, increasing with temperature and attaining then a saturating behavior with a well-defined maximum near 250 K. For two types of molecules differing remarkably in their size and polarity (a small highly-polar nitroxide radical and a large spin-labeled peptide), quite similar results were obtained. This saturating behavior was quantitatively reproduced in simulations within a simple model of jump between two close orientations. Comparison with experiment allowed estimate that at 250 K the correlation time of the motion τc is of the order of several tens of nanoseconds and the angle α between two orientations is around 0.02 rad. As the found saturating behavior is a property of individual motions, for any other molecular system an excess of the spin relaxation rate above the maximum found here for adsorbed molecules may be ascribed to cooperative motions. Comparison with literature data on molecular systems of different origin has shown that effects of cooperativity indeed are present and, moreover, may be very essential.
Collapse
Affiliation(s)
- Elena A Golysheva
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russian Federation; Department of Physics, Novosibirsk State University, Novosibirsk 630090, Russian Federation
| | - Rimma I Samoilova
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russian Federation
| | - Marta De Zotti
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Claudio Toniolo
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy; Institute of Biomolecular Chemistry, Padova Unit, CNR, 35131 Padova, Italy
| | - Fernando Formaggio
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy; Institute of Biomolecular Chemistry, Padova Unit, CNR, 35131 Padova, Italy
| | - Sergei A Dzuba
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russian Federation; Department of Physics, Novosibirsk State University, Novosibirsk 630090, Russian Federation.
| |
Collapse
|
16
|
Golysheva EA, Dzuba SA. Lipid chain mobility and packing in DOPC bilayers at cryogenic temperatures. Chem Phys Lipids 2019; 226:104817. [PMID: 31525380 DOI: 10.1016/j.chemphyslip.2019.104817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/07/2019] [Accepted: 09/03/2019] [Indexed: 11/30/2022]
Abstract
Low-temperature molecular mobility and packing in biological tissues are important for their survival upon cryopreservation. Electron paramagnetic resonance (EPR) in its pulsed version of electron spin echo (ESE) allows studying stochastic librations of spin-labeled molecules, the type of motion which dominates at low temperatures. These librations are characterized by the parameter <α2>τc where <α2> is the mean squared angular amplitude and τc is the correlation time for the motion. This parameter is known to be larger for higher temperature and for looser intermolecular structure. In this work, ESE data for the bilayers comprised of doubly-unsaturated DOPC (dioleoyl-glycero-phosphocholine) lipids and mono-unsaturated POPC (palmitoyl-oleoyl-glycero-phosphocholine) lipids with spin-labeled stearic acids added were obtained in the temperature range between 80 and 210 K; the results were compared also with the previously obtained data for fully-saturated DPPC (dipalmitoyl-glycero-phosphocholine) lipid bilayers [J. Phys. Chem. B2014, 118, 12,478-12,485; Appl. Magn. Reson. 2018, 49, 1369-1383]. It turned out that for DOPC bilayers the <α2>τc values are of intermediate magnitude between those for POPC and DPPC bilayers, which implies an intermediate density of lipid packing. A possible explanation of this result could be rearrangement at cryogenic temperatures of the DOPC lipid tails, with their terminal segments folding cooperatively. This interpretation is also in agreement with the known thermodynamic properties of gel-fluid transition for DOPC bilayer.
Collapse
Affiliation(s)
- Elena A Golysheva
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation; Department of Physics, Novosibirsk State University, Novosibirsk, 630090, Russian Federation
| | - Sergei A Dzuba
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation; Department of Physics, Novosibirsk State University, Novosibirsk, 630090, Russian Federation.
| |
Collapse
|
17
|
Seyedi S, Matyushov DV. Ergodicity breaking of iron displacement in heme proteins. SOFT MATTER 2017; 13:8188-8201. [PMID: 29082406 DOI: 10.1039/c7sm01561e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present a model of the dynamical transition of atomic displacements in proteins. Increased mean-square displacement at higher temperatures is caused by the softening of the force constant for atomic/molecular displacements by electrostatic and van der Waals forces from the protein-water thermal bath. Displacement softening passes through a nonergodic dynamical transition when the relaxation time of the force-force correlation function enters, with increasing temperature, the instrumental observation window. Two crossover temperatures are identified. The lower crossover, presently connected to the glass transition, is related to the dynamical unfreezing of rotations of water molecules within nanodomains polarized by charged surface residues of the protein. The higher crossover temperature, usually assigned to the dynamical transition, marks the onset of water translations. All crossovers are ergodicity breaking transitions depending on the corresponding observation windows. Allowing stretched exponential relaxation of the protein-water thermal bath significantly improves the theory-experiment agreement when applied to solid protein samples studied by Mössbauer spectroscopy.
Collapse
Affiliation(s)
- Salman Seyedi
- Department of Physics, Arizona State University, PO Box 871504, Tempe, Arizona 85287, USA
| | | |
Collapse
|