1
|
Mukherji D. Thermal Conductivity of Polymers: A Simple Matter Where Complexity Matters. Macromol Rapid Commun 2024:e2400517. [PMID: 39422645 DOI: 10.1002/marc.202400517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Indexed: 10/19/2024]
Abstract
Thermal conductivity coefficient κ measures the ability of a material to conduct a heat current. In particular, κ is an important property that often dictates the usefulness of a material over a wide range of environmental conditions. For example, while a low κ is desirable for the thermoelectric applications, a large κ is needed when a material is used under the high temperature conditions. These materials range from common crystals to commodity amorphous polymers. The latter is of particular importance because of their use in designing light weight high performance functional materials. In this context, however, one of the major limitations of the amorphous polymers is their low κ, reaching a maximum value of ≈0.4 W/Km that is 2-3 orders of magnitude smaller than the standard crystals. Moreover, when energy is predominantly transferred through the bonded connections, κ ⩾ 100 W/Km. Recently, extensive efforts have been devoted to attain a tunability in κ via macromolecular engineering. In this work, an overview of the recent results on the κ behavior in polymers and polymeric solids is presented. In particular, computational and theoretical results are discussed within the context of complimentary experiments. Future directions are also highlighted.
Collapse
Affiliation(s)
- Debashish Mukherji
- Quantum Matter Institute, University of British Columbia, Vancouver, V6T 1Z4, Canada
| |
Collapse
|
2
|
Zhao Y, Cortes-Huerto R, Mukherji D. A Simple Generic Model of Elastin-Like Polypeptides with Proline Isomerization. Macromol Rapid Commun 2024; 45:e2400304. [PMID: 38837515 DOI: 10.1002/marc.202400304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/23/2024] [Indexed: 06/07/2024]
Abstract
A generic model of elastin-like polypeptides (ELP) is derived that includes proline isomerization (ProI). As a case study, conformational transition of a -[valine-proline-glycine-valine-glycine]- sequence is investigated in aqueous ethanol mixtures. While the non-bonded interactions are based on the Lennard-Jones (LJ) parameters, the effect of ProI is incorporated by tuning the intramolecular 3- and 4-body interactions known from the underlying all-atom simulations into the generic model. One of the key advantages of such a minimalistic model is that it readily decouples the effects of geometry and the monomer-solvent interactions due to the presence of ProI, thus gives a clearer microscopic picture that is otherwise rather nontrivial within the all-atom setups. These results are consistent with the available all-atom and experimental data. The model derived here may pave the way to investigate large scale self-assembly of ELPs or biomimetic polymers in general.
Collapse
Affiliation(s)
- Yani Zhao
- Bruker Daltonics GmbH & Co. KG, 28359, Bremen, Germany
| | | | - Debashish Mukherji
- Quantum Matter Institute, University of British Columbia, Vancouver, V6T 1Z4, Canada
| |
Collapse
|
3
|
Mukherji D, Kremer K. Smart Polymers for Soft Materials: From Solution Processing to Organic Solids. Polymers (Basel) 2023; 15:3229. [PMID: 37571124 PMCID: PMC10421237 DOI: 10.3390/polym15153229] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Polymeric materials are ubiquitous in our everyday life, where they find a broad range of uses-spanning across common household items to advanced materials for modern technologies. In the context of the latter, so called "smart polymers" have received a lot of attention. These systems are soluble in water below their lower critical solution temperature Tℓ and often exhibit counterintuitive solvation behavior in mixed solvents. A polymer is known as smart-responsive when a slight change in external stimuli can significantly change its structure, functionm and stability. The interplay of different interactions, especially hydrogen bonds, can also be used for the design of lightweight high-performance organic solids with tunable properties. Here, a general scheme for establishing a structure-property relationship is a challenge using the conventional simulation techniques and also in standard experiments. From the theoretical side, a broad range of all-atom, multiscale, generic, and analytical techniques have been developed linking monomer level interaction details with macroscopic material properties. In this review, we briefly summarize the recent developments in the field of smart polymers, together with complementary experiments. For this purpose, we will specifically discuss the following: (1) the solution processing of responsive polymers and (2) their use in organic solids, with a goal to provide a microscopic understanding that may be used as a guiding tool for future experiments and/or simulations regarding designing advanced functional materials.
Collapse
Affiliation(s)
- Debashish Mukherji
- Quantum Matter Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Kurt Kremer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany;
| |
Collapse
|
4
|
Kostyurina E, De Mel JU, Vasilyeva A, Kruteva M, Frielinghaus H, Dulle M, Barnsley L, Förster S, Schneider GJ, Biehl R, Allgaier J. Controlled LCST Behavior and Structure Formation of Alternating Amphiphilic Copolymers in Water. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ekaterina Kostyurina
- Jülich Centre for Neutron Science (JCNS-1) and Institute for Biological Information processing (IBI-8), Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Judith U. De Mel
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Alexandra Vasilyeva
- Jülich Centre for Neutron Science (JCNS-1) and Institute for Biological Information processing (IBI-8), Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Margarita Kruteva
- Jülich Centre for Neutron Science (JCNS-1) and Institute for Biological Information processing (IBI-8), Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Henrich Frielinghaus
- Jülich Centre for Neutron Science at MLZ, Forschungszentrum Jülich GmbH, Garching 85747, Germany
| | - Martin Dulle
- Jülich Centre for Neutron Science (JCNS-1) and Institute for Biological Information processing (IBI-8), Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Lester Barnsley
- Jülich Centre for Neutron Science at MLZ, Forschungszentrum Jülich GmbH, Garching 85747, Germany
- Australian Synchrotron, ANSTO, Clayton, Victoria 3168, Australia
| | - Stephan Förster
- Jülich Centre for Neutron Science (JCNS-1) and Institute for Biological Information processing (IBI-8), Forschungszentrum Jülich GmbH, Jülich 52425, Germany
- Jülich Centre for Neutron Science at MLZ, Forschungszentrum Jülich GmbH, Garching 85747, Germany
| | - Gerald J. Schneider
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
- Department of Physics & Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Ralf Biehl
- Jülich Centre for Neutron Science (JCNS-1) and Institute for Biological Information processing (IBI-8), Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Jürgen Allgaier
- Jülich Centre for Neutron Science (JCNS-1) and Institute for Biological Information processing (IBI-8), Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| |
Collapse
|
5
|
Polymer cyclization for the emergence of hierarchical nanostructures. Nat Commun 2021; 12:3959. [PMID: 34172744 PMCID: PMC8233313 DOI: 10.1038/s41467-021-24222-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/01/2021] [Indexed: 11/29/2022] Open
Abstract
The creation of synthetic polymer nanoobjects with well-defined hierarchical structures is important for a wide range of applications such as nanomaterial synthesis, catalysis, and therapeutics. Inspired by the programmability and precise three-dimensional architectures of biomolecules, here we demonstrate the strategy of fabricating controlled hierarchical structures through self-assembly of folded synthetic polymers. Linear poly(2-hydroxyethyl methacrylate) of different lengths are folded into cyclic polymers and their self-assembly into hierarchical structures is elucidated by various experimental techniques and molecular dynamics simulations. Based on their structural similarity, macrocyclic brush polymers with amphiphilic block side chains are synthesized, which can self-assemble into wormlike and higher-ordered structures. Our work points out the vital role of polymer folding in macromolecular self-assembly and establishes a versatile approach for constructing biomimetic hierarchical assemblies. Synthetic polymer nano-objects with well-defined hierarchical structures are important for a wide range of applications such as nanomaterial synthesis, catalysis, and therapeutics. Here the authors demonstrate the strategy of fabricating controlled hierarchical structures through self-assembly of folded synthetic polymers.
Collapse
|
6
|
Flachmüller A, Mecking S, Peter C. Coarse grained simulation of the aggregation and structure control of polyethylene nanocrystals. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:264001. [PMID: 33857931 DOI: 10.1088/1361-648x/abf881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Polyethylene (PE) telechelics with carboxylate functional groups at both ends have been shown to assemble into hexagonal nanocrystal platelets with a height defined by their chain length in basic CsOH-solution. In this coarse grained (CG) simulation study we show how properties of the functional groups alter the aggregation and crystallization behavior of those telechelics. Systematic variation of the parameters of the CG model showed that important factors which control nanoparticle stability and structure are the PE chain length and the hydrophilicity and the steric demand of the head groups. To characterize the aggregation process we analyzed the number and size of the obtained aggregates as well as intramolecular order and intermolecular alignment of the polymer chains. By comparison of CG and atomistic simulation data, it could be shown that atomistic simulations representing different chemical systems can be emulated with specific, different CG parameter sets. Thus, the results from the (generic) CG simulation models can be used to explain the effect of different head groups and different counterions on the aggregation of PE telechelics and the order of the obtained nanocrystals.
Collapse
Affiliation(s)
| | - Stefan Mecking
- Department of Chemistry, Universität Konstanz, Konstanz, Germany
| | - Christine Peter
- Department of Chemistry, Universität Konstanz, Konstanz, Germany
| |
Collapse
|
7
|
Kapoor U, Kulshreshtha A, Jayaraman A. Development of Coarse-Grained Models for Poly(4-vinylphenol) and Poly(2-vinylpyridine): Polymer Chemistries with Hydrogen Bonding. Polymers (Basel) 2020; 12:E2764. [PMID: 33238611 PMCID: PMC7709027 DOI: 10.3390/polym12112764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022] Open
Abstract
In this paper, we identify the modifications needed in a recently developed generic coarse-grained (CG) model that captured directional interactions in polymers to specifically represent two exemplary hydrogen bonding polymer chemistries-poly(4-vinylphenol) and poly(2-vinylpyridine). We use atomistically observed monomer-level structures (e.g., bond, angle and torsion distribution) and chain structures (e.g., end-to-end distance distribution and persistence length) of poly(4-vinylphenol) and poly(2-vinylpyridine) in an explicitly represented good solvent (tetrahydrofuran) to identify the appropriate modifications in the generic CG model in implicit solvent. For both chemistries, the modified CG model is developed based on atomistic simulations of a single 24-mer chain. This modified CG model is then used to simulate longer (36-mer) and shorter (18-mer and 12-mer) chain lengths and compared against the corresponding atomistic simulation results. We find that with one to two simple modifications (e.g., incorporating intra-chain attraction, torsional constraint) to the generic CG model, we are able to reproduce atomistically observed bond, angle and torsion distributions, persistence length, and end-to-end distance distribution for chain lengths ranging from 12 to 36 monomers. We also show that this modified CG model, meant to reproduce atomistic structure, does not reproduce atomistically observed chain relaxation and hydrogen bond dynamics, as expected. Simulations with the modified CG model have significantly faster chain relaxation than atomistic simulations and slower decorrelation of formed hydrogen bonds than in atomistic simulations, with no apparent dependence on chain length.
Collapse
Affiliation(s)
- Utkarsh Kapoor
- Department of Chemical and Biomolecular Engineering, Colburn Laboratory, University of Delaware, 150 Academy Street, Newark, DE 19716, USA; (U.K.); (A.K.)
| | - Arjita Kulshreshtha
- Department of Chemical and Biomolecular Engineering, Colburn Laboratory, University of Delaware, 150 Academy Street, Newark, DE 19716, USA; (U.K.); (A.K.)
| | - Arthi Jayaraman
- Department of Chemical and Biomolecular Engineering, Colburn Laboratory, University of Delaware, 150 Academy Street, Newark, DE 19716, USA; (U.K.); (A.K.)
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
8
|
Zhao Y, Singh MK, Kremer K, Cortes-Huerto R, Mukherji D. Why Do Elastin-Like Polypeptides Possibly Have Different Solvation Behaviors in Water-Ethanol and Water-Urea Mixtures? Macromolecules 2020; 53:2101-2110. [PMID: 32226139 PMCID: PMC7098058 DOI: 10.1021/acs.macromol.9b02123] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/10/2020] [Indexed: 12/18/2022]
Abstract
The solvent quality determines the collapsed or the expanded state of a polymer. For example, a polymer dissolved in a poor solvent collapses, whereas in a good solvent it opens up. While this standard understanding is generally valid, there are examples when a polymer collapses even in a mixture of two good solvents. This phenomenon, commonly known as co-non-solvency, is usually associated with a wide range of synthetic (smart) polymers. Moreover, recent experiments have shown that some biopolymers, such as elastin-like polypeptides (ELPs) that exhibit lower critical solution behavior T l in pure water, show co-non-solvency behavior in aqueous ethanol mixtures. In this study, we investigate the phase behavior of elastin-like polypeptides (ELPs) in aqueous binary mixtures using molecular dynamics simulations of all-atom and complementary explicit solvent generic models. The model is parameterized by mapping the solvation free energy obtained from the all-atom simulations onto the generic interaction parameters. For this purpose, we derive segment-based (monomer level) generic parameters for four different peptides, namely proline (P), valine (V), glycine (G), and alanine (A), where the first three constitute the basic building blocks of ELPs. Here, we compare the conformational behavior of two ELP sequences, namely -(VPGGG)- and -(VPGVG)-, in aqueous ethanol and -urea mixtures. Consistent with recent experiments, we find that ELPs show co-non-solvency in aqueous ethanol mixtures. Ethanol molecules have preferential binding with all ELP residues, with an interaction contrast of 6-8 k B T, and thus driving the coil-to-globule transition. On the contrary, ELP conformations show a weak variation in aqueous urea mixtures. Our simulations suggest that the glycine residues dictate the overall behavior of ELPs in aqueous urea, where urea molecules have a rather weak preferential binding with glycine as observed from the all atom simulations, i.e., less than k B T. This weak interaction dilutes the overall effect of other neighboring residues and thus ELPs exhibit a different conformational behavior in aqueous urea in comparison to aqueous ethanol mixtures. While the validation of the latter findings will require a more detailed experimental investigation, the results presented here may provide a new twist to the present understanding of cosolvent interactions with peptides and proteins.
Collapse
Affiliation(s)
- Yani Zhao
- Max-Planck Institut
für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| | - Manjesh K. Singh
- Max-Planck Institut
für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
- Department of Mechanical Engineering, Indian
Institute of Technology Kanpur, Kanpur 208016, India
| | - Kurt Kremer
- Max-Planck Institut
für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| | | | - Debashish Mukherji
- Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
9
|
Mukherji D, Watson MD, Morsbach S, Schmutz M, Wagner M, Marques CM, Kremer K. Soft and Smart: Co-nonsolvency-Based Design of Multiresponsive Copolymers. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00414] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Debashish Mukherji
- Max-Planck Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
- Stewart Blusson Quantum Matter Institute, University of British Columbia, V6T 1Z4 Vancouver, British Columbia, Canada
| | - Mark D. Watson
- Department of Chemistry, University of Kentucky, 40506-0055 Lexington, Kentucky, United States
| | - Svenja Morsbach
- Max-Planck Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| | - Marc Schmutz
- Institut Charles Sadron, Université de Strasbourg, CNRS, 67034 Strasbourg, France
| | - Manfred Wagner
- Max-Planck Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| | - Carlos M. Marques
- Institut Charles Sadron, Université de Strasbourg, CNRS, 67034 Strasbourg, France
| | - Kurt Kremer
- Max-Planck Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
10
|
Bejagam KK, An Y, Singh S, Deshmukh SA. Machine-Learning Enabled New Insights into the Coil-to-Globule Transition of Thermosensitive Polymers Using a Coarse-Grained Model. J Phys Chem Lett 2018; 9:6480-6488. [PMID: 30372083 DOI: 10.1021/acs.jpclett.8b02956] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We present a computational framework that integrates coarse-grained (CG) molecular dynamics (MD) simulations and a data-driven machine-learning (ML) method to gain insights into the conformations of polymers in solutions. We employ this framework to study conformational transition of a model thermosensitive polymer, poly( N-isopropylacrylamide) (PNIPAM). Here, we have developed the first of its kind, a temperature-independent CG model of PNIPAM that can accurately predict its experimental lower critical solution temperature (LCST) while retaining the tacticity in the presence of an explicit water model. The CG model was extensively validated by performing CG MD simulations with different initial conformations, varying the radius of gyration of chain, the chain length, and the angle between the adjacent monomers of the initial configuration of PNIPAM (total simulation time = 90 μs). Moreover, for the first time, we utilize the nonmetric multidimensional scaling (NMDS) method, a data-driven ML approach, to gain further insights into the mechanisms and pathways of this coil-to-globule transition by analyzing CG MD simulation trajectories. NMDS analysis provides entirely new insights and shows multiple metastable states of PNIPAM during its coil-to-globule transition above the LCST.
Collapse
Affiliation(s)
- Karteek K Bejagam
- Department of Chemical Engineering , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Yaxin An
- Department of Chemical Engineering , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Samrendra Singh
- CNH Industrial , Burr Ridge , Illinois 60527 , United States
| | - Sanket A Deshmukh
- Department of Chemical Engineering , Virginia Tech , Blacksburg , Virginia 24061 , United States
| |
Collapse
|
11
|
de Oliveira TE, Marques CM, Netz PA. Molecular dynamics study of the LCST transition in aqueous poly(N-n-propylacrylamide). Phys Chem Chem Phys 2018; 20:10100-10107. [PMID: 29589029 DOI: 10.1039/c8cp00481a] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The breadth of technological applications of smart polymers relies on the possibility of tuning their molecular structure to respond to external stimuli. In this context, N-substituted acrylamide-based polymers are widely studied thermoresponsive polymers. Poly(N-n-propylacrylamide) (PNnPAm), which is a structural isomer of the poly(N-isopropylacrylamide) (PNIPAm) exhibits however, a lower phase transition in aqueous solution. In this work, we use all-atom molecular dynamics simulations of PNnPAm in aqueous solutions to study, from a microscopic point-of-view, the influence of chain size and concentration on the LCST of PNnPAm. Our analysis shows that the collapse of a single oligomer of PNnPAm upon heating is dependent on the chain length and corresponds to a complex interplay between hydration and intermolecular interactions. Analysis of systems with multiple chains shows an aggregation of PNnPAm chains above the LCST.
Collapse
Affiliation(s)
- Tiago E de Oliveira
- Institut Charles Sadron, Université de Strasbourg, CNRS, Strasbourg, France.
| | | | | |
Collapse
|
12
|
Samanta S, De Silva CC, Leophairatana P, Koberstein JT. Main-chain polyacetal conjugates with HIF-1 inhibitors: temperature-responsive, pH-degradable drug delivery vehicles. J Mater Chem B 2018; 6:666-674. [PMID: 32254495 DOI: 10.1039/c7tb01417a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Main-chain polymer-drug conjugates are prepared from polyacetals (PA) and three hydrophobic diol-based HIF-1 inhibitors. The new conjugates are temperature-responsive with lower critical solution temperature (LCST) behavior and are intrinsically pH-degradable. While soluble in plasma at room temperature, they lose solubility above a target temperature that can be adjusted to virtually any temperature of physicological interest, providing mechanisms for site-specific delivery by active thermal targeting or temperature-induced gelation. The reverse phase transition temperature can be precisely tuned by proper choice of four structural variables that characterize the amphiphilic diol and divinyl ether monomers used in the synthesis, or by adjusting the content of drug incorporated within the polymer. These main-chain PA-drug conjugates also allow for site-specific controlled release as they degrade in acidic microenvironments such as tumors. The degradation rates increase with decreasing pH, degradation products are neutral, and pristine drug is released, without any remnants of the conjugation chemistry.
Collapse
Affiliation(s)
- Sanjoy Samanta
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, USA.
| | | | | | | |
Collapse
|
13
|
Chudoba R, Heyda J, Dzubiella J. Temperature-Dependent Implicit-Solvent Model of Polyethylene Glycol in Aqueous Solution. J Chem Theory Comput 2017; 13:6317-6327. [DOI: 10.1021/acs.jctc.7b00560] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Richard Chudoba
- Institut
für Physik, Humboldt-Universität zu Berlin, Newtonstraße
15, D-12489 Berlin, Germany
- Institut
für Weiche Materie und Funktionale Materialen, Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, D-14109 Berlin, Germany
| | - Jan Heyda
- Department
of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, CZ-16628 Praha 6, Czech Republic
| | - Joachim Dzubiella
- Institut
für Physik, Humboldt-Universität zu Berlin, Newtonstraße
15, D-12489 Berlin, Germany
- Institut
für Weiche Materie und Funktionale Materialen, Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, D-14109 Berlin, Germany
| |
Collapse
|
14
|
Ohkuma T, Kremer K. Comparison of two coarse-grained models of cis -polyisoprene with and without pressure correction. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.09.062] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|