Chiu SF, Chao SD. Coarse-Grained Simulations Using a Multipolar Force Field Model.
MATERIALS 2018;
11:ma11081328. [PMID:
30065228 PMCID:
PMC6120006 DOI:
10.3390/ma11081328]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 12/20/2022]
Abstract
This paper presents a coarse-grained molecular simulation for fullerenes based on a multipolar expansion method developed previously. The method is enabled by the construction of transferable united atoms potentials that approximate the full atomistic intermolecular interactions, as obtained from ab initio electronic structure calculations supplemented by empirical force fields and experimental data, or any combination of the above. The resultant series contains controllable moment tensors that allow to estimate the errors, and approaches the all-atom intermolecular potential as the expansion order increases. We can compute the united atoms potentials very efficiently with a few interaction moment tensors, in order to implement a parallel algorithm on molecular interactions. Our simulations describe the mechanism for the condensation of fullerenes, and they produce excellent agreement with benchmark fully atomistic molecular dynamics simulations.
Collapse