1
|
Yang J, Gelin MF, Chen L, Šanda F, Thyrhaug E, Hauer J. Two-dimensional fluorescence excitation spectroscopy: A novel technique for monitoring excited-state photophysics of molecular species with high time and frequency resolution. J Chem Phys 2023; 159:074201. [PMID: 37581414 DOI: 10.1063/5.0156297] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/27/2023] [Indexed: 08/16/2023] Open
Abstract
We propose a novel UV/Vis femtosecond spectroscopic technique, two-dimensional fluorescence-excitation (2D-FLEX) spectroscopy, which combines spectral resolution during the excitation process with exclusive monitoring of the excited-state system dynamics at high time and frequency resolution. We discuss the experimental feasibility and realizability of 2D-FLEX, develop the necessary theoretical framework, and demonstrate the high information content of this technique by simulating the 2D-FLEX spectra of a model four-level system and the Fenna-Matthews-Olson antenna complex. We show that the evolution of 2D-FLEX spectra with population time directly monitors energy transfer dynamics and can thus yield direct qualitative insight into the investigated system. This makes 2D-FLEX a highly efficient instrument for real-time monitoring of photophysical processes in polyatomic molecules and molecular aggregates.
Collapse
Affiliation(s)
- Jianmin Yang
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Maxim F Gelin
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | | | - František Šanda
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, 12116 Prague, Czech Republic
| | - Erling Thyrhaug
- Department of Chemistry, Technical University of Munich, D-85747 Garching, Germany
| | - Jürgen Hauer
- Department of Chemistry, Technical University of Munich, D-85747 Garching, Germany
| |
Collapse
|
2
|
Heshmatpour C, Hauer J, Šanda F. Correlated spectral fluctuations quantified by line shape analysis of fifth-order two-dimensional electronic spectra. J Chem Phys 2022; 156:084114. [DOI: 10.1063/5.0081053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Correlated spectral fluctuations were suggested to coordinate excitation transport inside natural light harvesting complexes. We demonstrate the capacities of 2D line shapes from fifth-order coherent electronic signals (R5-2D) to report on such fluctuations in molecular aggregates and present a stochastic approach to fluctuations in correlated site and bi-exciton binding energies in the optical dynamics of Frenkel excitons. The model is applied to R5-2D line shapes of a homodimer, and we show that the peak tilt dynamics are a measure for site energy disorder, inter-site correlation, and the strength of bi-exciton binding energy fluctuations.
Collapse
Affiliation(s)
- Constantin Heshmatpour
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, Prague 121 16, Czech Republic
- Professur für Dynamische Spektroskopien, Fakultät für Chemie, Technische Universität München, Lichtenbergstr. 4, D-85748 Garching b. München, Germany
| | - Jürgen Hauer
- Professur für Dynamische Spektroskopien, Fakultät für Chemie, Technische Universität München, Lichtenbergstr. 4, D-85748 Garching b. München, Germany
| | - František Šanda
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, Prague 121 16, Czech Republic
| |
Collapse
|
3
|
Sláma V, Perlík V, Langhals H, Walter A, Mančal T, Hauer J, Šanda F. Anharmonic Molecular Motion Drives Resonance Energy Transfer in peri-Arylene Dyads. Front Chem 2020; 8:579166. [PMID: 33330367 PMCID: PMC7732524 DOI: 10.3389/fchem.2020.579166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/09/2020] [Indexed: 12/03/2022] Open
Abstract
Spectral and dynamical properties of molecular donor-acceptor systems strongly depend on the steric arrangement of the constituents with exciton coupling J as a key control parameter. In the present work we study two peri-arylene based dyads with orthogonal and parallel transition dipoles for donor and acceptor moieties, respectively. We show that the anharmonic multi-well character of the orthogonal dyad's intramolecular potential explains findings from both stationary and time-resolved absorption experiments. While for a parallel dyad, standard quantum chemical estimates of J at 0 K are in good agreement with experimental observations, J becomes vanishingly small for the orthogonal dyad, in contrast to its ultrafast experimental transfer times. This discrepancy is not resolved even by accounting for harmonic fluctuations along normal coordinates. We resolve this problem by supplementing quantum chemical approaches with dynamical sampling of fluctuating geometries. In contrast to the moderate Gaussian fluctuations of J for the parallel dyad, fluctuations for the orthogonal dyad are found to follow non-Gaussian statistics leading to significantly higher effective J in good agreement with experimental observations. In effort to apply a unified framework for treating the dynamics of optical coherence and excitonic populations of both dyads, we employ a vibronic approach treating electronic and selected vibrational degrees on an equal footing. This vibronic model is used to model absorption and fluorescence spectra as well as donor-acceptor transport dynamics and covers the more traditional categories of Förster and Redfield transport as limiting cases.
Collapse
Affiliation(s)
- Vladislav Sláma
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czechia
| | - Václav Perlík
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czechia
| | - Heinz Langhals
- Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Andreas Walter
- Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tomáš Mančal
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czechia
| | - Jürgen Hauer
- Professur für Dynamische Spektroskopien, Fakultät für Chemie, Technische Universität München, Munich, Germany
| | - František Šanda
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czechia
| |
Collapse
|
4
|
Heshmatpour C, Malevich P, Plasser F, Menger M, Lambert C, Šanda F, Hauer J. Annihilation Dynamics of Molecular Excitons Measured at a Single Perturbative Excitation Energy. J Phys Chem Lett 2020; 11:7776-7781. [PMID: 32842744 DOI: 10.1021/acs.jpclett.0c02141] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Exciton-exciton annihilation (EEA) is a ubiquitous phenomenon, which may limit the efficiency of photovoltaic devices. Conventional methods of determining EEA time scales rely on measuring the intensity dependence of third-order signals. In this work, we directly extract the annihilation rate of molecular excitons in a covalently joined molecular trimer without the need to perform and analyze intensity dependent data by employing fifth-order coherent optical spectroscopy signals emitted into ±2k⃗1 ∓ 2k⃗2 + k⃗3 phase matching directions. Measured two-dimensional line shapes and their time traces are analyzed in the framework of the many-body version of the Frenkel exciton model, extended to incorporate annihilation dynamics. Combining double-sided Feynman diagrams with explicit simulations of the fifth-order response, we identify a single peak as a direct reporter of EEA. We retrieve an annihilation time of 30 fs for the investigated squaraine trimer.
Collapse
Affiliation(s)
- C Heshmatpour
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, Prague 121 16, Czech Republic
- Professur für Dynamische Spektroskopien, Fakultät für Chemie, Technische Universität München, Lichtenbergstrasse 4, D-85748, Garching b. München, Germany
| | - P Malevich
- Professur für Dynamische Spektroskopien, Fakultät für Chemie, Technische Universität München, Lichtenbergstrasse 4, D-85748, Garching b. München, Germany
| | - F Plasser
- Department of Chemistry, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - M Menger
- Faculty of Science and Engineering, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - C Lambert
- Institut für Organische Chemie, Center for Nanosystems Chemistry, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - F Šanda
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, Prague 121 16, Czech Republic
| | - J Hauer
- Professur für Dynamische Spektroskopien, Fakultät für Chemie, Technische Universität München, Lichtenbergstrasse 4, D-85748, Garching b. München, Germany
| |
Collapse
|
5
|
Conti I, Cerullo G, Nenov A, Garavelli M. Ultrafast Spectroscopy of Photoactive Molecular Systems from First Principles: Where We Stand Today and Where We Are Going. J Am Chem Soc 2020; 142:16117-16139. [PMID: 32841559 PMCID: PMC7901644 DOI: 10.1021/jacs.0c04952] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
![]()
Computational spectroscopy is becoming a mandatory tool for the interpretation of the
complex, and often congested, spectral maps delivered by modern non-linear multi-pulse
techniques. The fields of Electronic Structure Methods,
Non-Adiabatic Molecular Dynamics, and Theoretical
Spectroscopy represent the three pillars of the virtual ultrafast
optical spectrometer, able to deliver transient spectra in
silico from first principles. A successful simulation strategy requires a
synergistic approach that balances between the three fields, each one having its very
own challenges and bottlenecks. The aim of this Perspective is to demonstrate that,
despite these challenges, an impressive agreement between theory and experiment is
achievable now regarding the modeling of ultrafast photoinduced processes in complex
molecular architectures. Beyond that, some key recent developments in the three fields
are presented that we believe will have major impacts on spectroscopic simulations in
the very near future. Potential directions of development, pending challenges, and
rising opportunities are illustrated.
Collapse
Affiliation(s)
- Irene Conti
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Giulio Cerullo
- Dipartimento di Fisica, Politecnico di Milano, IFN-CNR, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| | - Artur Nenov
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Marco Garavelli
- Dipartimento di Chimica Industriale, Università degli Studi di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| |
Collapse
|
6
|
Heshmatpour C, Hauer J, Šanda F. Interplay of exciton annihilation and transport in fifth order electronic spectroscopy. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2019.110433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
Galestian Pour A, Lincoln CN, Perlík V, Šanda F, Hauer J. Anharmonic vibrational effects in linear and two-dimensional electronic spectra. Phys Chem Chem Phys 2017; 19:24752-24760. [DOI: 10.1039/c7cp05189a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anharmonic modulation of electronic gap is manifested in changing magnitudes of cross peaks of 2D electronic spectrum.
Collapse
Affiliation(s)
| | | | - Václav Perlík
- Institute of Physics
- Faculty of Mathematics and Physics
- Charles University
- 121 16 Prague
- Czech Republic
| | - František Šanda
- Institute of Physics
- Faculty of Mathematics and Physics
- Charles University
- 121 16 Prague
- Czech Republic
| | | |
Collapse
|