1
|
Alcoba DR, Lain L, Torre A, Ayala TR, Oña OB, Massaccesi GE, Peralta JE, Melo JI. Generalized Spin in the Variance-Based Wave Function Optimization Method within the Doubly Occupied Configuration Interaction Framework. J Phys Chem A 2024; 128:7277-7283. [PMID: 39140833 DOI: 10.1021/acs.jpca.4c02742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
In this work, we implement a generalized spin formulation of the doubly occupied configuration interaction methodology using the energy variance of the N-electron Hamiltonian. We perform the optimization of the N-electron wave functions and calculate their corresponding energies, using a unified variational treatment for ground and excited states based on the energy variance, which allows us to describe the entire energy spectra on an equal footing. We analyze the effects produced by the breakdown of the Ŝ2 and Ŝz symmetries in the spectra of model hydrogenic clusters in terms of energies and spin-related quantities, arising from the restricted, unrestricted, and generalized spin methods. The results are compared with other related methods as well as full configuration interaction.
Collapse
Affiliation(s)
- Diego R Alcoba
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Ciudad Universitaria, 1428 Buenos Aires, Argentina
- CONICET─Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA), Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Luis Lain
- Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, E-48080 Bilbao, Spain
| | - Alicia Torre
- Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, E-48080 Bilbao, Spain
| | - Tomás R Ayala
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Ofelia B Oña
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Diag. 113 y 64 (S/N), Sucursal 4, CC 16, 1900 La Plata, Argentina
| | - Gustavo E Massaccesi
- Departamento de Ciencias Exactas, Ciclo Básico Común, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina
- Instituto de Investigaciones Matemáticas "Luis A. Santaló" (IMAS), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Juan E Peralta
- Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, United States
| | - Juan I Melo
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Ciudad Universitaria, 1428 Buenos Aires, Argentina
- CONICET─Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA), Ciudad Universitaria, 1428 Buenos Aires, Argentina
| |
Collapse
|
2
|
Hirao K, Nakajima T, Chan B. Exploiting the Correlation between the 1s, 2s, and 2p Energies for the Prediction of Core-Level Binding Energies of Si, P, S, and Cl species. J Phys Chem A 2024; 128:6879-6897. [PMID: 39120958 DOI: 10.1021/acs.jpca.4c03252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
The binding energies (BEs) of the 1s, 2s, and 2p core electrons of third-period elements (Si, P, S, Cl) were calculated using Hartree-Fock (HF) and B3LYP, BH&HLYP, and LC-BOP ΔSCF, and the shifted KS ΔSCF methods. Linear relationships between two BEs were derived and compared with the Auger parameter. The derived lines are essentially parallel, with only the intercepts differing. The difference in intercepts is due to the lack of electron correlation effects in HF and the self-interaction errors (SIEs) of the functional. The slope is the slope of the linear relationship between the chemical shifts. The straight lines between the 2s and 2p BEs also coincided with the Auger parameter lines, which have a slope of 1 by definition and an intercept being the difference between the 2s and 2p BEs. The shifted KS ΔSCF scheme compensates for SIEs, yielding equations that are approximately invariant. The calculated average gaps for the 2s and 2p BEs are 51.21 eV for Si, 57.48 eV for P, 63.85 eV for S, and 70.48 eV for Cl. The straight lines representing the relationships between the BEs of the 1s and 2s and 1s and 2p electrons are also parallel to each other in ΔSCF and converge into a single line in the shifted ΔSCF scheme. However, these lines are steeper than the Auger parameter line. The derived relationships can be used to predict unknown BEs, which we have applied to many molecules. The results are highly accurate, with mean absolute errors (MAEs) of less than 0.2 eV compared to experimental values.
Collapse
Affiliation(s)
- Kimihiko Hirao
- Fukui Institute for Fundamental Chemistry, Kyoto University, Takano, Nishihiraki-cho 34-4, Sakyo-ku, Kyoto 606-8103, Japan
- RIKEN Center for Computational Science, 7-1-26, Minatojima-minami-machi, Chuo-ku, Kobe 650-0047, Japan
| | - Takahito Nakajima
- RIKEN Center for Computational Science, 7-1-26, Minatojima-minami-machi, Chuo-ku, Kobe 650-0047, Japan
| | - Bun Chan
- RIKEN Center for Computational Science, 7-1-26, Minatojima-minami-machi, Chuo-ku, Kobe 650-0047, Japan
- Graduate School of Engineering, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan
| |
Collapse
|
3
|
Liu L, Xu Q, dos Anjos Cunha L, Xin H, Head-Gordon M, Qian J. Real-Space Pseudopotential Method for the Calculation of Third-Row Elements X-ray Photoelectron Spectroscopic Signatures. J Chem Theory Comput 2024; 20:6134-6143. [PMID: 38970155 PMCID: PMC11270745 DOI: 10.1021/acs.jctc.4c00535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/08/2024]
Abstract
X-ray photoelectron spectroscopy (XPS) is a powerful characterization technique that unveils subtle chemical environment differences via core-electron binding energy (CEBE) analysis. We extend the development of real-space pseudopotential methods to calculating 1s, 2s, and 2p3/2 CEBEs of third-row elements (S, P, and Si) within the framework of Kohn-Sham density-functional theory (KS-DFT). The new approach systematically prevents variational collapse and simplifies core-excited orbital selection within dense energy level distributions. However, careful error cancellation analysis is required to achieve accuracy comparable to all-electron methods and experiments. Combined with real-space KS-DFT implementation, this development enables large-scale simulations with both Dirichlet boundary conditions and periodic boundary conditions.
Collapse
Affiliation(s)
- Liping Liu
- Department
of Chemical Engineering, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia 24060, United States
| | - Qiang Xu
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Leonardo dos Anjos Cunha
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Hongliang Xin
- Department
of Chemical Engineering, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia 24060, United States
| | - Martin Head-Gordon
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Jin Qian
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
4
|
Alcoba DR, Oña OB, Torre A, Lain L, Sierra G, Massaccesi GE. A variance-based optimization for determining ground and excited N-electron wave functions within the doubly occupied configuration interaction scheme. J Chem Phys 2024; 160:164107. [PMID: 38656446 DOI: 10.1063/5.0191857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/07/2024] [Indexed: 04/26/2024] Open
Abstract
This work describes optimizations of N-electron system wave functions by means of the simulated annealing technique within the doubly occupied configuration interaction framework. Using that technique, we minimize the energy variance of a Hamiltonian, providing determinations of wave functions corresponding to ground or excited states in an identical manner. The procedure that allows us to determine electronic spectra can be performed using treatments of restricted or unrestricted types. The results found in selected systems, described in terms of energy, spin, and wave function, are analyzed, showing the performance of each method. We also compare these results with those arising from more traditional approaches that minimize the energy, in both restricted and unrestricted versions, and with those obtained from the full configuration interaction treatment.
Collapse
Affiliation(s)
- Diego R Alcoba
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Ciudad Universitaria, 1428 Buenos Aires, Argentina
- CONICET - Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA), Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Ofelia B Oña
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Cientıficas y Tócnicas, Diag. 113 y 64 (S/N), Sucursal 4, CC 16, 1900 La Plata, Argentina
| | - Alicia Torre
- Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, E-48080 Bilbao, Spain
| | - Luis Lain
- Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, E-48080 Bilbao, Spain
| | - Guadalupe Sierra
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Gustavo E Massaccesi
- Departamento de Ciencias Exactas, Ciclo Básico Común, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina
- Instituto de Investigaciones Matemáticas Luis Santaló, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| |
Collapse
|
5
|
Oña OB, Massaccesi GE, Melo JI, Torre A, Lain L, Alcoba DR, Peralta JE. Generalized spin σ-SCF method. J Chem Phys 2023; 159:214104. [PMID: 38047509 DOI: 10.1063/5.0178264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/07/2023] [Indexed: 12/05/2023] Open
Abstract
We introduce a generalization of the σ-SCF method to approximate noncollinear spin ground and excited single-reference electronic states by minimizing the Hamiltonian variance. The new method is based on the σ-SCF method, originally proposed by Ye et al. [J. Chem. Phys. 147, 214104 (2017)], and provides a prescription to determine ground and excited noncollinear spin states on an equal footing. Our implementation was carried out utilizing an initial simulated annealing stage followed by a mean-field iterative self-consistent approach to simplify the cumbersome search introduced by generalizing the spin degrees of freedom. The simulated annealing stage ensures a broad exploration of the Hilbert space spanned by the generalized spin single-reference states with random complex element-wise rotations of the generalized density matrix elements in the simulated annealing stage. The mean-field iterative self-consistent stage employs an effective Fockian derived from the variance, which is utilized to converge tightly to the solutions. This process helps us to easily find complex spin structures, avoiding manipulating the initial guess. As proof-of-concept tests, we present results for Hn (n = 3-7) planar rings and polyhedral clusters with geometrical spin frustration. We show that most of these systems have noncollinear spin excited states that can be interpreted in terms of geometric spin frustration. These states are not directly targeted by energy minimization methods, which are meant to converge to the ground state. This stresses the capability of the σ-SCF methodology to find approximate noncollinear spin structures as mean-field excited states.
Collapse
Affiliation(s)
- Ofelia B Oña
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Diag. 113 y 64 (S/N), Sucursal 4, CC 16, 1900 La Plata, Argentina
| | - Gustavo E Massaccesi
- Departamento de Ciencias Exactas, Ciclo Básico Común, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina
- Instituto de Investigaciones Matemáticas "Luis A. Santaló" (IMAS), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Juan I Melo
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Ciudad Universitaria, 1428 Buenos Aires, Argentina
- CONICET - Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA), Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Alicia Torre
- Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, E-48080 Bilbao, Spain
| | - Luis Lain
- Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, E-48080 Bilbao, Spain
| | - Diego R Alcoba
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Ciudad Universitaria, 1428 Buenos Aires, Argentina
- CONICET - Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA), Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Juan E Peralta
- Department of Physics and Science of Advanced Materials, Central Michigan University, Mount Pleasant, Michigan 48859, USA
| |
Collapse
|
6
|
Thompson LM, Kempfer-Robertson EM, Saha S, Parmar S, Kozlowski PM. Nonorthogonal Multireference Wave Function Description of Triplet-Triplet Energy Transfer Couplings. J Chem Theory Comput 2023; 19:7685-7694. [PMID: 37862602 DOI: 10.1021/acs.jctc.3c00898] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
In this study, the use of self-consistent field quasi-diabats is investigated for calculation of triplet energy transfer diabatic coupling elements. It is proposed that self-consistent field quasi-diabats are particularly useful for studying energy transfer (EnT) processes because orbital relaxation in response to changes in electron configuration is implicitly built into the model. The conceptual model that is developed allows for the simultaneous evaluation of direct and charge-transfer mechanisms to establish the importance of the different possible EnT mechanisms. The method's performance is evaluated using two model systems: the ethylene dimer and ethylene with the methaniminium cation. While states that mediate the charge-transfer mechanism were found to be higher in energy than the states involved in the direct mechanism, the coupling elements that control the kinetics were found to be significantly larger in the charge-transfer mechanism. Subsequently, we discuss the advantage of the approach in the context of practical difficulties with the use of established approaches.
Collapse
Affiliation(s)
- Lee M Thompson
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40929, United States
| | | | - Saptarshi Saha
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40929, United States
| | - Saurav Parmar
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40929, United States
| | - Pawel M Kozlowski
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40929, United States
| |
Collapse
|
7
|
Hirao K, Nakajima T, Chan B. Core-Level 2s and 2p Binding Energies of Third-Period Elements (P, S, and Cl) Calculated by Hartree-Fock and Kohn-Sham Δ SCF Theory. J Phys Chem A 2023; 127:7954-7963. [PMID: 37703090 DOI: 10.1021/acs.jpca.3c04783] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
In the present study, we investigate the use of the ΔSCF method and Slater's transition state (STS) theory to calculate the binding energies of the 2s and 2p electrons of third-period elements (P, S, and Cl). Both the Hartree-Fock (HF) and Kohn-Sham (KS) approximations are examined. The STS approximation performs well in reproducing the ΔSCF values. However, for the ΔSCF method itself, while the binding energy of the 2p electrons is accurately predicted, the results for 2s are fairly sensitive to the functional, exhibiting significant variations due to self-interaction errors (SIE). Nonetheless, the variations in chemical shifts between different species remain relatively small, and the values agree with experiments due to the cancellation of SIE. A notable observation is that the chemical shifts of the 2s and 2p electrons are similar, indicating a perturbation caused by the valence electrons. The error in the absolute binding energy of KS ΔSCF against the experiment is nearly constant for the same element in different molecules, and it depends largely on the functional owing to SIE. A shifting scheme previously developed can be employed to reproduce the experimental 2s and 2p binding energies, with dependence on the functional and atom but not on the molecule even for 2s KS ΔSCF binding energies. Upon obtaining the corrected binding energies, we find that the gap between 2s and 2p binding energy is nearly independent of chemical environment for a given element: 57.5, 63.9, and 70.9 eV for the elements P, S, and Cl, respectively.
Collapse
Affiliation(s)
- Kimihiko Hirao
- Fukui Institute for Fundamental Chemistry, Kyoto University, Takano, Nishihiraki-cho 34-4, Sakyo-ku, Kyoto 606-8103, Japan
- RIKEN Center for Computational Science, 7-1-26, Minatojima-minami-machi, Chuo-ku, Kobe 650-0047, Japan
| | - Takahito Nakajima
- RIKEN Center for Computational Science, 7-1-26, Minatojima-minami-machi, Chuo-ku, Kobe 650-0047, Japan
| | - Bun Chan
- Graduate School of Engineering, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan
| |
Collapse
|
8
|
Marie A, Burton HGA. Excited States, Symmetry Breaking, and Unphysical Solutions in State-Specific CASSCF Theory. J Phys Chem A 2023; 127:4538-4552. [PMID: 37141564 DOI: 10.1021/acs.jpca.3c00603] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
State-specific electronic structure theory provides a route toward balanced excited-state wave functions by exploiting higher-energy stationary points of the electronic energy. Multiconfigurational wave function approximations can describe both closed- and open-shell excited states and avoid the issues associated with state-averaged approaches. We investigate the existence of higher-energy solutions in complete active space self-consistent field (CASSCF) theory and characterize their topological properties. We demonstrate that state-specific approximations can provide accurate higher-energy excited states in H2 (6-31G) with more compact active spaces than would be required in a state-averaged formalism. We then elucidate the unphysical stationary points, demonstrating that they arise from redundant orbitals when the active space is too large or symmetry breaking when the active space is too small. Furthermore, we investigate the singlet-triplet crossing in CH2 (6-31G) and the avoided crossing in LiF (6-31G), revealing the severity of root flipping and demonstrating that state-specific solutions can behave quasi-diabatically or adiabatically. These results elucidate the complexity of the CASSCF energy landscape, highlighting the advantages and challenges of practical state-specific calculations.
Collapse
Affiliation(s)
- Antoine Marie
- Physical and Theoretical Chemical Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, U.K
| | - Hugh G A Burton
- Physical and Theoretical Chemical Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, U.K
| |
Collapse
|
9
|
Zhang J, Tang Z, Zhang X, Zhu H, Zhao R, Lu Y, Gao J. Target State Optimized Density Functional Theory for Electronic Excited and Diabatic States. J Chem Theory Comput 2023; 19:1777-1789. [PMID: 36917687 DOI: 10.1021/acs.jctc.2c01317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
A flexible self-consistent field method, called target state optimization (TSO), is presented for exploring electronic excited configurations and localized diabatic states. The key idea is to partition molecular orbitals into different subspaces according to the excitation or localization pattern for a target state. Because of the orbital-subspace constraint, orbitals belonging to different subspaces do not mix. Furthermore, the determinant wave function for such excited or diabatic configurations can be variationally optimized as a ground state procedure, unlike conventional ΔSCF methods, without the possibility of collapsing back to the ground state or other lower-energy configurations. The TSO method can be applied both in Hartree-Fock theory and in Kohn-Sham density functional theory (DFT). The density projection procedure and the working equations for implementing the TSO method are described along with several illustrative applications. For valence excited states of organic compounds, it was found that the computed excitation energies from TSO-DFT and time-dependent density functional theory (TD-DFT) are of similar quality with average errors of 0.5 and 0.4 eV, respectively. For core excitation, doubly excited states and charge-transfer states, the performance of TSO-DFT is clearly superior to that from conventional TD-DFT calculations. It is shown that variationally optimized charge-localized diabatic states can be defined using TSO-DFT in energy decomposition analysis to gain both qualitative and quantitative insights on intermolecular interactions. Alternatively, the variational diabatic states may be used in molecular dynamics simulation of charge transfer processes. The TSO method can also be used to define basis states in multistate density functional theory for excited states through nonorthogonal state interaction calculations. The software implementing TSO-DFT can be accessed from the authors.
Collapse
Affiliation(s)
- Jun Zhang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, P. R. China
| | - Zhen Tang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, P. R. China
| | - Xiaoyong Zhang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, P. R. China
| | - Hong Zhu
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, P. R. China.,School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Ruoqi Zhao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, P. R. China.,Institute of Theoretical Chemistry, Jilin University, Changchun, 130023 Jilin, P. R. China
| | - Yangyi Lu
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, P. R. China
| | - Jiali Gao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, P. R. China.,School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China.,Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
10
|
Hirao K, Nakajima T, Chan B, Lee HJ. The core ionization energies calculated by delta SCF and Slater's transition state theory. J Chem Phys 2023; 158:064112. [PMID: 36792520 DOI: 10.1063/5.0140032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The core ionization energies of the second-period and third-period elements are studied by ΔSCF and Slater's transition state (STS) theory by using Hartree-Fock (HF) and Kohn-Sham (KS) approximations. Electron correlation increases the estimated core ionization energies, while the self-interaction error (SIE) decreases them, especially for the third-period elements and is a more significant factor. As a result, while HF lacks electron correlation, it is free of SIE and reasonably predicts the core ionization energies. The core ionization energies calculated by HF STS are very close to those calculated by HF ΔSCF, showing that STS reasonably describes the relaxation of the core hole. The core ionization energies calculated by KS are particularly sensitive to the SIE of the functional used, with functionals having less SIE yielding more accurate ΔSCF core ionization energies. Consequently, BH&HLYP gives better results than B3LYP and LC-BOP since BH&HLYP is the hybrid functional with high proportion of the exact HF exchange. Although the core ionization energies are underestimated by ΔSCF due to SIE, STS gives larger core ionization energies than ΔSCF due to a concave behavior of the error curves of STS, which is also related to SIE. The mean absolute deviations of STS relative to ΔSCF, and relative to the experiment, are almost constant regardless of the nuclei among the element in the second period, and likewise among those in the third period. The systematic nature suggests that shifting the STS core ionization energies may be useful. We propose the shifted STS (1) for reproducing ΔSCF values, and the shifted STS (2) to reproduce the observed ones for KS calculations. Both schemes work quite well. The calculated results of KS ΔSCF and STS vary depending on the functional. However, the variation of each species' shifted STS (2) is very small, and all shifted STS (2) values are close to the observed ones. As the shifted STS require only one SCF calculation, they are simple and practical for predicting the core ionization energies.
Collapse
Affiliation(s)
- Kimihiko Hirao
- Fukui Institute for Fundamental Chemistry, Kyoto University, Takano, Nishihiraki-cho 34-4, Sakyo-ku, Kyoto 606-8103, Japan
| | - Takahito Nakajima
- RIKEN Center for Computational Science, 7-1-26, Minatojima-minami-machi, Chuo-ku, Kobe 650-0047, Japan
| | - Bun Chan
- Graduate School of Engineering, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan
| | - Ho-Jin Lee
- Department of Natural Sciences, Southwest Tennessee Community College, Memphis, Tennessee 38015, USA
| |
Collapse
|
11
|
Otis L, Neuscamman E. A promising intersection of excited‐state‐specific methods from quantum chemistry and quantum Monte Carlo. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2023. [DOI: 10.1002/wcms.1659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Leon Otis
- Department of Physics University of California Berkeley Berkeley California USA
| | - Eric Neuscamman
- Department of Chemistry University of California Berkeley Berkeley California USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley California USA
| |
Collapse
|
12
|
Convergence of Møller–Plesset perturbation theory for excited reference states. ADVANCES IN QUANTUM CHEMISTRY 2023. [DOI: 10.1016/bs.aiq.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
13
|
Hanscam R, Neuscamman E. Applying Generalized Variational Principles to Excited-State-Specific Complete Active Space Self-consistent Field Theory. J Chem Theory Comput 2022; 18:6608-6621. [PMID: 36215108 DOI: 10.1021/acs.jctc.2c00639] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We employ a generalized variational principle to improve the stability, reliability, and precision of fully excited-state-specific complete active space self-consistent field theory. Compared to previous approaches that similarly seek to tailor this ansatz's orbitals and configuration interaction expansion for an individual excited state, we find the present approach to be more resistant to root flipping and better at achieving tight convergence to an energy stationary point. Unlike state-averaging, this approach allows orbital shapes to be optimal for individual excited states, which is especially important for charge-transfer states and some doubly excited states. We demonstrate the convergence and state-targeting abilities of this method in LiH, ozone, and MgO, showing in the latter that it is capable of finding three excited-state energy stationary points that no previous method has been able to locate.
Collapse
Affiliation(s)
- Rebecca Hanscam
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Eric Neuscamman
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
14
|
Hait D, Oosterbaan KJ, Carter-Fenk K, Head-Gordon M. Computing x-ray absorption spectra from linear-response particles atop optimized holes. J Chem Phys 2022; 156:201104. [PMID: 35649868 DOI: 10.1063/5.0092987] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
State specific orbital optimized density functional theory (OO-DFT) methods, such as restricted open-shell Kohn-Sham (ROKS), can attain semiquantitative accuracy for predicting x-ray absorption spectra of closed-shell molecules. OO-DFT methods, however, require that each state be individually optimized. In this Communication, we present an approach to generate an approximate core-excited state density for use with the ROKS energy ansatz, which is capable of giving reasonable accuracy without requiring state-specific optimization. This is achieved by fully optimizing the core-hole through the core-ionized state, followed by the use of electron-addition configuration interaction singles to obtain the particle level. This hybrid approach can be viewed as a DFT generalization of the static-exchange (STEX) method and can attain ∼0.6 eV rms error for the K-edges of C-F through the use of local functionals, such as PBE and OLYP. This ROKS(STEX) approach can also be used to identify important transitions for full OO ROKS treatment and can thus help reduce the computational cost of obtaining OO-DFT quality spectra. ROKS(STEX), therefore, appears to be a useful technique for the efficient prediction of x-ray absorption spectra.
Collapse
Affiliation(s)
- Diptarka Hait
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Katherine J Oosterbaan
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Kevin Carter-Fenk
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| |
Collapse
|
15
|
Kumar C, Luber S. Robust ΔSCF calculations with direct energy functional minimization methods and STEP for molecules and materials. J Chem Phys 2022; 156:154104. [PMID: 35459303 DOI: 10.1063/5.0075927] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The direct energy functional minimization method using the orbital transformation (OT) scheme in the program package CP2K has been employed for Δ self-consistent field (ΔSCF) calculations. The OT method for non-uniform molecular orbitals occupations allows us to apply the ΔSCF method for various kinds of molecules and periodic systems. Vertical excitation energies of heteroaromatic molecules and condensed phase systems, such as solvated ethylene and solvated uracil obeying periodic boundary conditions, are reported using the ΔSCF method. In addition, a Re-phosphate molecule attached to the surface of anatase (TiO2) has been investigated. Additionally, we have implemented a recently proposed state-targeted energy projection ΔSCF algorithm [K. Carter-Fenk and J. M. Herbert, J. Chem. Theory Comput. 16(8), 5067-5082 (2020)] for diagonalization based SCF in CP2K. It is found that the OT scheme provides a smooth and robust SCF convergence for all investigated excitation energies and (non-)periodic systems.
Collapse
Affiliation(s)
- Chandan Kumar
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Sandra Luber
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Cunha LA, Hait D, Kang R, Mao Y, Head-Gordon M. Relativistic Orbital-Optimized Density Functional Theory for Accurate Core-Level Spectroscopy. J Phys Chem Lett 2022; 13:3438-3449. [PMID: 35412838 DOI: 10.1021/acs.jpclett.2c00578] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Core-level spectra of 1s electrons of elements heavier than Ne show significant relativistic effects. We combine advances in orbital-optimized density functional theory (OO-DFT) with the spin-free exact two-component (X2C) model for scalar relativistic effects to study K-edge spectra of third period elements. OO-DFT/X2C is found to be quite accurate at predicting energies, yielding a ∼0.5 eV root-mean-square error versus experiment with the modern SCAN (and related) functionals. This marks a significant improvement over the >50 eV deviations that are typical for the popular time-dependent DFT (TDDFT) approach. Consequently, experimental spectra are quite well reproduced by OO-DFT/X2C, sans empirical shifts for alignment. OO-DFT/X2C combines high accuracy with ground state DFT cost and is thus a promising route for computing core-level spectra of third period elements. We also explored K and L edges of 3d transition metals to identify limitations of the OO-DFT/X2C approach in modeling the spectra of heavier atoms.
Collapse
Affiliation(s)
- Leonardo A Cunha
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Diptarka Hait
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Richard Kang
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Yuezhi Mao
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
17
|
Vandaele E, Mališ M, Luber S. The ΔSCF method for non-adiabatic dynamics of systems in the liquid phase. J Chem Phys 2022; 156:130901. [PMID: 35395890 DOI: 10.1063/5.0083340] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Computational studies of ultrafast photoinduced processes give valuable insights into the photochemical mechanisms of a broad range of compounds. In order to accurately reproduce, interpret, and predict experimental results, which are typically obtained in a condensed phase, it is indispensable to include the condensed phase environment in the computational model. However, most studies are still performed in vacuum due to the high computational cost of state-of-the-art non-adiabatic molecular dynamics (NAMD) simulations. The quantum mechanical/molecular mechanical (QM/MM) solvation method has been a popular model to perform photodynamics in the liquid phase. Nevertheless, the currently used QM/MM embedding techniques cannot sufficiently capture all solute-solvent interactions. In this Perspective, we will discuss the efficient ΔSCF electronic structure method and its applications with respect to the NAMD of solvated compounds, with a particular focus on explicit quantum mechanical solvation. As more research is required for this method to reach its full potential, some challenges and possible directions for future research are presented as well.
Collapse
Affiliation(s)
- Eva Vandaele
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Momir Mališ
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Sandra Luber
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
18
|
Burton HGA. Energy Landscape of State-Specific Electronic Structure Theory. J Chem Theory Comput 2022; 18:1512-1526. [PMID: 35179023 PMCID: PMC9082508 DOI: 10.1021/acs.jctc.1c01089] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Indexed: 11/29/2022]
Abstract
State-specific approximations can provide a more accurate representation of challenging electronic excitations by enabling relaxation of the electron density. While state-specific wave functions are known to be local minima or saddle points of the approximate energy, the global structure of the exact electronic energy remains largely unexplored. In this contribution, a geometric perspective on the exact electronic energy landscape is introduced. On the exact energy landscape, ground and excited states form stationary points constrained to the surface of a hypersphere, and the corresponding Hessian index increases at each excitation level. The connectivity between exact stationary points is investigated, and the square-magnitude of the exact energy gradient is shown to be directly proportional to the Hamiltonian variance. The minimal basis Hartree-Fock and excited-state mean-field representations of singlet H2 (STO-3G) are then used to explore how the exact energy landscape controls the existence and properties of state-specific approximations. In particular, approximate excited states correspond to constrained stationary points on the exact energy landscape, and their Hessian index also increases for higher energies. Finally, the properties of the exact energy are used to derive the structure of the variance optimization landscape and elucidate the challenges faced by variance optimization algorithms, including the presence of unphysical saddle points or maxima of the variance.
Collapse
Affiliation(s)
- Hugh G. A. Burton
- Physical and Theoretical
Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
19
|
Corzo HH, Abou Taka A, Pribram-Jones A, Hratchian HP. Using projection operators with maximum overlap methods to simplify challenging self-consistent field optimization. J Comput Chem 2021; 43:382-390. [PMID: 34936117 DOI: 10.1002/jcc.26797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/30/2021] [Accepted: 11/28/2021] [Indexed: 02/04/2023]
Abstract
Maximum overlap methods are effective tools for optimizing challenging ground- and excited-state wave functions using self-consistent field models such as Hartree-Fock and Kohn-Sham density functional theory. Nevertheless, such models have shown significant sensitivity to the user-defined initial guess of the target wave function. In this work, a projection operator framework is defined and used to provide a metric for non-aufbau orbital selection in maximum-overlap-methods. The resulting algorithms, termed the Projection-based Maximum Overlap Method (PMOM) and Projection-based Initial Maximum Overlap Method (PIMOM), are shown to perform exceptionally well when using simple user-defined target solutions based on occupied/virtual molecular orbital permutations. This work also presents a new metric that provides a simple and conceptually convenient measure of agreement between the desired target and the current or final SCF results during a calculation employing a maximum-overlap method.
Collapse
Affiliation(s)
- Hector H Corzo
- Department of Chemistry and Biochemistry and Center for Chemical Computation and Theory, University of California, Merced, California, USA
| | - Ali Abou Taka
- Department of Chemistry and Biochemistry and Center for Chemical Computation and Theory, University of California, Merced, California, USA
| | - Aurora Pribram-Jones
- Department of Chemistry and Biochemistry and Center for Chemical Computation and Theory, University of California, Merced, California, USA
| | - Hrant P Hratchian
- Department of Chemistry and Biochemistry and Center for Chemical Computation and Theory, University of California, Merced, California, USA
| |
Collapse
|
20
|
Daga LE, Maschio L. Electronic Excitations in Crystalline Solids through the Maximum Overlap Method. J Chem Theory Comput 2021; 17:6073-6079. [PMID: 34591492 PMCID: PMC8515789 DOI: 10.1021/acs.jctc.1c00427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The maximum overlap
method (MOM) has emerged from molecular quantum
chemistry as a convenient practical procedure for studying excited
states. Unlike the Aufbau principle, during self-consistent field
(SCF) iterations, the MOM forces orbital occupation to be maximally
similar to that of a reference state. Although still within a single-particle
framework, this approach allows for the evaluation of excitation energies
(Δ-SCF) and geometry optimization of electronic configurations
other than the ground state. In this work, we present an extension
of the MOM to periodic crystalline solids, within the framework of
an atom-centered Gaussian basis set. In order to obtain a realistic
concentration of excited electrons, we allow excitation in only one—or
a few—points of the Brillouin zone, leading to a fractional
occupation of crystalline Kohn–Sham states. Since periodic
SCF solution techniques involve an iteration between direct and reciprocal
spaces, only totally symmetric excitations are allowed in our treatment,
in order to preserve the translational symmetry: vertical Γ-point
excitations or collective excitations in a sphere around Γ.
Other types of excitations are accessible through folding of the Brillouin
zone subsequent to the creation of a supercell. The features and performance
of the method are presented through its application to prototypical
solids such as bulk silicon, diamond, and lithium fluoride and comparing
the results with the available experimental data. The demonstrative
application to nickel oxide and solid CuI(piperazine)—a luminescent
copper halide compound—highlights the promising potential of
the MOM in solid-state quantum chemistry.
Collapse
Affiliation(s)
- Loredana Edith Daga
- Dipartimento di Chimica, Università di Torino and NIS Centre, Via P. Giuria 5, 10125 Torino, Italy
| | - Lorenzo Maschio
- Dipartimento di Chimica, Università di Torino and NIS Centre, Via P. Giuria 5, 10125 Torino, Italy
| |
Collapse
|
21
|
Marie A, Kossoski F, Loos PF. Variational coupled cluster for ground and excited states. J Chem Phys 2021; 155:104105. [PMID: 34525834 DOI: 10.1063/5.0060698] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In single-reference coupled-cluster (CC) methods, one has to solve a set of non-linear polynomial equations in order to determine the so-called amplitudes that are then used to compute the energy and other properties. Although it is of common practice to converge to the (lowest-energy) ground-state solution, it is also possible, thanks to tailored algorithms, to access higher-energy roots of these equations that may or may not correspond to genuine excited states. Here, we explore the structure of the energy landscape of variational CC and we compare it with its (projected) traditional version in the case where the excitation operator is restricted to paired double excitations (pCCD). By investigating two model systems (the symmetric stretching of the linear H4 molecule and the continuous deformation of the square H4 molecule into a rectangular arrangement) in the presence of weak and strong correlations, the performance of variational pCCD (VpCCD) and traditional pCCD is gauged against their configuration interaction (CI) equivalent, known as doubly occupied CI, for reference Slater determinants made of ground- or excited-state Hartree-Fock orbitals or state-specific orbitals optimized directly at the VpCCD level. The influence of spatial symmetry breaking is also investigated.
Collapse
Affiliation(s)
- Antoine Marie
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Fábris Kossoski
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
22
|
David G, Irons TJP, Fouda AEA, Furness JW, Teale AM. Self-Consistent Field Methods for Excited States in Strong Magnetic Fields: a Comparison between Energy- and Variance-Based Approaches. J Chem Theory Comput 2021; 17:5492-5508. [PMID: 34517708 DOI: 10.1021/acs.jctc.1c00236] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Self-consistent field methods for excited states offer an attractive low-cost route to study not only excitation energies but also properties of excited states. Here, we present the generalization of two self-consistent field methods, the maximum overlap method (MOM) and the σ-SCF method, to calculate excited states in strong magnetic fields and investigate their stability and accuracy in this context. These methods use different strategies to overcome the well-known variational collapse of energy-based optimizations to the lowest solution of a given symmetry. The MOM tackles this problem in the definition of the orbital occupations to constrain the self-consistent field procedure to converge on excited states, while the σ-SCF method is based on the minimization of the variance instead of the energy. To overcome the high computational cost of the variance minimization, we present a new implementation of the σ-SCF method with the resolution of identity approximation, allowing the use of large basis sets, which is an important requirement for calculations in strong magnetic fields. The accuracy of these methods is assessed by comparison with the benchmark literature data for He, H2, and CH+. The results reveal severe limitations of the variance-based scheme, which become more acute in large basis sets. In particular, many states are not accessible using variance optimization. Detailed analysis shows that this is a general feature of variance optimization approaches due to the masking of local minima in the optimization. In contrast, the MOM shows promising performance for computing excited states under these conditions, yielding results consistent with available benchmark data for a diverse range of electronic states.
Collapse
Affiliation(s)
- Grégoire David
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Tom J P Irons
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Adam E A Fouda
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, U.K.,Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S Cass Avenue, Lemont, Illinois 60439, United States
| | - James W Furness
- Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, United States
| | - Andrew M Teale
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, U.K.,Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, Oslo N-0315, Norway
| |
Collapse
|
23
|
Ivanov AV, Levi G, Jónsson EÖ, Jónsson H. Method for Calculating Excited Electronic States Using Density Functionals and Direct Orbital Optimization with Real Space Grid or Plane-Wave Basis Set. J Chem Theory Comput 2021; 17:5034-5049. [PMID: 34227810 DOI: 10.1021/acs.jctc.1c00157] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A direct orbital optimization method is presented for density functional calculations of excited electronic states using either a real space grid or a plane-wave basis set. The method is variational, provides atomic forces in the excited states, and can be applied to Kohn-Sham (KS) functionals as well as orbital-density-dependent (ODD) functionals including explicit self-interaction correction. The implementation for KS functionals involves two nested loops: (1) An inner loop for finding a stationary point in a subspace spanned by the occupied and a few virtual orbitals corresponding to the excited state; (2) an outer loop for minimizing the energy in a tangential direction in the space of the orbitals. For ODD functionals, a third loop is used to find the unitary transformation that minimizes the energy functional among occupied orbitals only. Combined with the maximum overlap method, the algorithm converges in challenging cases where conventional self-consistent field algorithms tend to fail. The benchmark tests presented include two charge-transfer excitations in nitrobenzene and an excitation of CO to degenerate π* orbitals where the importance of complex orbitals is illustrated. The application of this method to several metal-to-ligand charge-transfer and metal-centered excited states of an FeII photosensitizer complex is described, and the results are compared to reported experimental estimates. This method is also used to study the effect of the Perdew-Zunger self-interaction correction on valence and Rydberg excited states of several molecules, both singlet and triplet states, and the performance compared to semilocal and hybrid functionals.
Collapse
Affiliation(s)
- Aleksei V Ivanov
- Science Institute and Faculty of Physical Sciences, University of Iceland, VR-III, 107 Reykjavík, Iceland
| | - Gianluca Levi
- Science Institute and Faculty of Physical Sciences, University of Iceland, VR-III, 107 Reykjavík, Iceland
| | - Elvar Ö Jónsson
- Science Institute and Faculty of Physical Sciences, University of Iceland, VR-III, 107 Reykjavík, Iceland
| | - Hannes Jónsson
- Science Institute and Faculty of Physical Sciences, University of Iceland, VR-III, 107 Reykjavík, Iceland
| |
Collapse
|
24
|
Alcoba DR, Oña OB, Lain L, Torre A, Capuzzi P, Massaccesi GE, Ríos E, Rubio-García A, Dukelsky J. Variational determination of ground and excited-state two-electron reduced density matrices in the doubly occupied configuration space: A dispersion operator approach. J Chem Phys 2021; 154:224104. [PMID: 34241224 DOI: 10.1063/5.0051793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This work implements a variational determination of the elements of two-electron reduced density matrices corresponding to the ground and excited states of N-electron interacting systems based on the dispersion operator technique. The procedure extends the previously reported proposal [Nakata et al., J. Chem. Phys. 125, 244109 (2006)] to two-particle interaction Hamiltonians and N-representability conditions for the two-, three-, and four-particle reduced density matrices in the doubly occupied configuration interaction space. The treatment has been applied to describe electronic spectra using two benchmark exactly solvable pairing models: reduced Bardeen-Cooper-Schrieffer and Richardson-Gaudin-Kitaev Hamiltonians. The dispersion operator combined with N-representability conditions up to the four-particle reduced density matrices provides excellent results.
Collapse
Affiliation(s)
- Diego R Alcoba
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Ofelia B Oña
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Universidad de la Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Diag. 113 y 64 (S/N), Sucursal 4, CC 16, 1900 La Plata, Argentina
| | - Luis Lain
- Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, E-48080 Bilbao, Spain
| | - Alicia Torre
- Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, E-48080 Bilbao, Spain
| | - Pablo Capuzzi
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Gustavo E Massaccesi
- Departamento de Ciencias Exactas, Ciclo Básico Común, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Elías Ríos
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Universidad de la Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Diag. 113 y 64 (S/N), Sucursal 4, CC 16, 1900 La Plata, Argentina
| | - Alvaro Rubio-García
- Instituto de Estructura de la Materia, CSIC, Serrano 123, 28006 Madrid, Spain
| | - Jorge Dukelsky
- Instituto de Estructura de la Materia, CSIC, Serrano 123, 28006 Madrid, Spain
| |
Collapse
|
25
|
Hait D, Head-Gordon M. Orbital Optimized Density Functional Theory for Electronic Excited States. J Phys Chem Lett 2021; 12:4517-4529. [PMID: 33961437 DOI: 10.1021/acs.jpclett.1c00744] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Density functional theory (DFT) based modeling of electronic excited states is of importance for investigation of the photophysical/photochemical properties and spectroscopic characterization of large systems. The widely used linear response time-dependent DFT (TDDFT) approach is, however, not effective at modeling many types of excited states, including (but not limited to) charge-transfer states, doubly excited states, and core-level excitations. In this perspective, we discuss state-specific orbital optimized (OO) DFT approaches as an alterative to TDDFT for electronic excited states. We motivate the use of OO-DFT methods and discuss reasons behind their relatively restricted historical usage (vs TDDFT). We subsequently highlight modern developments that address these factors and allow efficient and reliable OO-DFT computations. Several successful applications of OO-DFT for challenging electronic excitations are also presented, indicating their practical efficacy. OO-DFT approaches are thus increasingly becoming a useful route for computing excited states of large chemical systems. We conclude by discussing the limitations and challenges still facing OO-DFT methods, as well as some potential avenues for addressing them.
Collapse
Affiliation(s)
- Diptarka Hait
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
26
|
Ye HZ, Tran HK, Van Voorhis T. Accurate Electronic Excitation Energies in Full-Valence Active Space via Bootstrap Embedding. J Chem Theory Comput 2021; 17:3335-3347. [PMID: 33957050 DOI: 10.1021/acs.jctc.0c01221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fragment embedding has been widely used to circumvent the high computational scaling of using accurate electron correlation methods to describe the electronic ground states of molecules and materials. However, similar applications that utilize fragment embedding to treat electronic excited states are comparably less reported in the literature. The challenge here is twofold. First, most fragment embedding methods are most effective when the property of interest is local, but the change of the wave function upon excitation is nonlocal in general. Second, even for local excitations, an accurate estimate of, for example, the excitation energy can still be challenging owing to the need for a balanced treatment of both the ground and the excited states. In this work, we show that bootstrap embedding (BE), a fragment embedding method developed recently by our group, is promising toward describing general electronic excitations. Numerical simulations show that the excitation energies in full-valence active space (FVAS) can be well-estimated by BE to an error of ∼0.05 eV using relatively small fragments, for both local excitations and the excitations of some large dye molecules that exhibit strong charge-transfer characters. We hence anticipate BE to be a promising solution to accurately describing the excited states of large chemical systems.
Collapse
Affiliation(s)
- Hong-Zhou Ye
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Henry K Tran
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Troy Van Voorhis
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
27
|
Besley NA. Modeling of the spectroscopy of core electrons with density functional theory. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1527] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nicholas A. Besley
- School of Chemistry, University of Nottingham University Park Nottingham UK
| |
Collapse
|
28
|
Affiliation(s)
- Hugh G. A. Burton
- Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - David J. Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
29
|
Tran HK, Ye HZ, Van Voorhis T. Bootstrap embedding with an unrestricted mean-field bath. J Chem Phys 2020; 153:214101. [PMID: 33291897 DOI: 10.1063/5.0029092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A suite of quantum embedding methods have recently been developed where the Schmidt decomposition is applied to the full system wavefunction to derive basis states that preserve the entanglement between the fragment and the bath. The quality of these methods can depend heavily on the quality of the initial full system wavefunction. Most of these methods, including bootstrap embedding (BE) [M. Welborn et al; J. Chem. Phys. 145, 074102 (2016)], start from a spin-restricted mean-field wavefunction [call this restricted BE (RBE)]. Given that spin-unrestricted wavefunctions can capture a significant amount of strong correlation at the mean-field level, we suspect that starting from a spin-unrestricted mean-field wavefunction will improve these embedding methods for strongly correlated systems. In this work, BE is generalized to an unrestricted Hartree-Fock bath [call this unrestricted BE (UBE)], and UBE is applied to model hydrogen ring systems. UBE's improved versatility over RBE is utilized to calculate high spin symmetry states that were previously unattainable with RBE. Ionization potentials, electron affinities, and spin-splittings are computed using UBE with accuracy on par with spin-unrestricted coupled cluster singles and doubles. Even for cases where RBE is viable, UBE converges more reliably. We discuss the limitations or weaknesses of each calculation and how improvements to RBE and density matrix embedding theory these past few years can also improve UBE.
Collapse
Affiliation(s)
- Henry K Tran
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Hong-Zhou Ye
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Troy Van Voorhis
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
30
|
DiRisio RJ, Jones CM, Ma H, Rousseau BJG. Viewpoints on the 2020 Virtual Conference on Theoretical Chemistry. J Phys Chem A 2020; 124:8875-8883. [PMID: 33054223 DOI: 10.1021/acs.jpca.0c08955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Ryan J DiRisio
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Chey M Jones
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - He Ma
- Institute for Molecular engineering, University of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637, United States
| | - Benjamin J G Rousseau
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
31
|
Hardikar TS, Neuscamman E. A self-consistent field formulation of excited state mean field theory. J Chem Phys 2020; 153:164108. [DOI: 10.1063/5.0019557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Tarini S. Hardikar
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Eric Neuscamman
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
32
|
Kempfer-Robertson EM, Pike TD, Thompson LM. Difference projection-after-variation double-hybrid density functional theory applied to the calculation of vertical excitation energies. J Chem Phys 2020; 153:074103. [DOI: 10.1063/5.0017222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
| | - Thomas Dane Pike
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40205, USA
| | - Lee M. Thompson
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40205, USA
| |
Collapse
|
33
|
Dong X, Mahler AD, Kempfer-Robertson EM, Thompson LM. Global Elucidation of Self-Consistent Field Solution Space Using Basin Hopping. J Chem Theory Comput 2020; 16:5635-5644. [DOI: 10.1021/acs.jctc.0c00488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xinju Dong
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40205, United States
| | - Andrew D. Mahler
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40205, United States
| | | | - Lee M. Thompson
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40205, United States
| |
Collapse
|
34
|
Carter-Fenk K, Herbert JM. State-Targeted Energy Projection: A Simple and Robust Approach to Orbital Relaxation of Non-Aufbau Self-Consistent Field Solutions. J Chem Theory Comput 2020; 16:5067-5082. [DOI: 10.1021/acs.jctc.0c00502] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Kevin Carter-Fenk
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - John M. Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
35
|
Zhao L, Neuscamman E. Excited state mean-field theory without automatic differentiation. J Chem Phys 2020; 152:204112. [DOI: 10.1063/5.0003438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Luning Zhao
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Eric Neuscamman
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
36
|
Hait D, Head-Gordon M. Excited State Orbital Optimization via Minimizing the Square of the Gradient: General Approach and Application to Singly and Doubly Excited States via Density Functional Theory. J Chem Theory Comput 2020; 16:1699-1710. [PMID: 32017554 DOI: 10.1021/acs.jctc.9b01127] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present a general approach to converge excited state solutions to any quantum chemistry orbital optimization process, without the risk of variational collapse. The resulting square gradient minimization (SGM) approach only requires analytic energy/Lagrangian orbital gradients and merely costs 3 times as much as ground state orbital optimization (per iteration), when implemented via a finite difference approach. SGM is applied to both single determinant ΔSCF and spin-purified restricted open-shell Kohn-Sham (ROKS) approaches to study the accuracy of orbital optimized DFT excited states. It is found that SGM can converge challenging states where the maximum overlap method (MOM) or analogues either collapse to the ground state or fail to converge. We also report that ΔSCF/ROKS predict highly accurate excitation energies for doubly excited states (which are inaccessible via TDDFT). Singly excited states obtained via ROKS are also found to be quite accurate, especially for Rydberg states that frustrate (semi)local TDDFT. Our results suggest that orbital optimized excited state DFT methods can be used to push past the limitations of TDDFT to doubly excited, charge-transfer, or Rydberg states, making them a useful tool for the practical quantum chemist's toolbox for studying excited states in large systems.
Collapse
Affiliation(s)
- Diptarka Hait
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
37
|
Hait D, Head-Gordon M. Highly Accurate Prediction of Core Spectra of Molecules at Density Functional Theory Cost: Attaining Sub-electronvolt Error from a Restricted Open-Shell Kohn-Sham Approach. J Phys Chem Lett 2020; 11:775-786. [PMID: 31917579 DOI: 10.1021/acs.jpclett.9b03661] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We present the use of the recently developed square gradient minimization (SGM) algorithm for excited-state orbital optimization to obtain spin-pure restricted open-shell Kohn-Sham (ROKS) energies for core excited states of molecules. The SGM algorithm is robust against variational collapse and offers a reliable route to converging orbitals for target excited states at only 2-3 times the cost of ground-state orbital optimization (per iteration). ROKS/SGM with the modern SCAN/ωB97X-V functionals is found to predict the K-edge of C, N, O, and F to a root mean squared error of ∼0.3 eV. ROKS/SGM is equally effective at predicting L-edge spectra of third period elements, provided a perturbative spin-orbit correction is employed. This high accuracy can be contrasted with traditional time-dependent density functional theory (TDDFT), which typically has greater than 10 eV error and requires translation of computed spectra to align with experiment. ROKS is computationally affordable (having the same scaling as ground-state DFT and a slightly larger prefactor) and can be applied to geometry optimizations/ab initio molecular dynamics of core excited states, as well as condensed phase simulations. ROKS can also model doubly excited/ionized states with one broken electron pair, which are beyond the ability of linear response based methods.
Collapse
Affiliation(s)
- Diptarka Hait
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry , University of California , Berkeley , California 94720 , United States
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry , University of California , Berkeley , California 94720 , United States
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| |
Collapse
|
38
|
Shea JAR, Gwin E, Neuscamman E. A Generalized Variational Principle with Applications to Excited State Mean Field Theory. J Chem Theory Comput 2020; 16:1526-1540. [DOI: 10.1021/acs.jctc.9b01105] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jacqueline A. R. Shea
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Elise Gwin
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Eric Neuscamman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
39
|
Lesko E, Ardiansyah M, Brorsen KR. Vibrational adaptive sampling configuration interaction. J Chem Phys 2019; 151:164103. [DOI: 10.1063/1.5126510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ethan Lesko
- Department of Chemistry, University of Missouri, Columbia, Missouri 65203, USA
| | - Muhammad Ardiansyah
- Department of Chemistry, University of Missouri, Columbia, Missouri 65203, USA
| | - Kurt R. Brorsen
- Department of Chemistry, University of Missouri, Columbia, Missouri 65203, USA
| |
Collapse
|
40
|
Abstract
Recent developments in quantum embedding have offered an attractive approach to describing electron correlation in molecules. However, previous methods such as density matrix embedding theory (DMET) require rigid partitioning of the system into fragments, which creates significant ambiguity for molecules. Bootstrap embedding (BE) is more flexible because it allows overlapping fragments, but when done on an orbital-by-orbital basis, BE introduces ambiguity in defining the connectivity of the orbitals. In this Letter, we present an atom-based fragment definition that significantly augments BE's performance in molecules. The resulting method, which we term atom-based BE, is very effective at recovering valence electron correlation in moderate-sized bases and delivers near-chemical-accuracy results using extrapolation. We anticipate atom-based BE may lead to a low-scaling and highly accurate approach to electron correlation in large molecules.
Collapse
Affiliation(s)
- Hong-Zhou Ye
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Troy Van Voorhis
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
41
|
Tran LN, Shea JAR, Neuscamman E. Tracking Excited States in Wave Function Optimization Using Density Matrices and Variational Principles. J Chem Theory Comput 2019; 15:4790-4803. [DOI: 10.1021/acs.jctc.9b00351] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lan Nguyen Tran
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Ho Chi Minh City Institute of Physics, VAST, Ho Chi Minh City 700000, Vietnam
| | - Jacqueline A. R. Shea
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Eric Neuscamman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
42
|
Tran HK, Van Voorhis T, Thom AJW. Using SCF metadynamics to extend density matrix embedding theory to excited states. J Chem Phys 2019; 151:034112. [DOI: 10.1063/1.5096177] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Henry K. Tran
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Troy Van Voorhis
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Alex J. W. Thom
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
43
|
Zhao L, Neuscamman E. Variational Excitations in Real Solids: Optical Gaps and Insights into Many-Body Perturbation Theory. PHYSICAL REVIEW LETTERS 2019; 123:036402. [PMID: 31386452 DOI: 10.1103/physrevlett.123.036402] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 02/26/2019] [Indexed: 06/10/2023]
Abstract
We present an approach to studying optical band gaps in real solids in which quantum Monte Carlo methods allow for the application of a rigorous variational principle to both ground and excited state wave functions. In tests that include small, medium, and large band gap materials, optical gaps are predicted with a mean absolute deviation of 3.5% against experiment, less than half the equivalent errors for typical many-body perturbation theories. The approach is designed to be insensitive to the choice of density functional, a property we exploit in order to provide insight into how far different functionals are from satisfying the assumptions of many-body perturbation theory. We explore this question most deeply in the challenging case of ZnO, where we show that, although many commonly used functionals have shortcomings, there does exist a one-particle basis in which perturbation theory's zeroth-order picture is sound. Insights of this nature should be useful in guiding the future application and improvement of these widely used techniques.
Collapse
Affiliation(s)
- Luning Zhao
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Eric Neuscamman
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Lawrence Berkeley National Laboratory, Chemical Sciences Division, Berkeley, California 94720, USA
| |
Collapse
|
44
|
Ye HZ, Van Voorhis T. Half-Projected σ Self-Consistent Field For Electronic Excited States. J Chem Theory Comput 2019; 15:2954-2965. [PMID: 30995060 DOI: 10.1021/acs.jctc.8b01224] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fully self-consistent mean-field solutions of electronic excited states have been much less accessible compared to ground state solutions (e.g., Hartree-Fock). The main reason for this is that most excited states are energy saddle points, and hence energy-based optimization methods such as Δ-SCF often collapse to the ground state. Recently, our research group has developed a new method, σ-SCF [ J. Chem. Phys. 2017 , 147 , 214104 ], that successfully solves the "variational collapse" problem of energy-based methods. Despite the success, σ-SCF solutions are often spin-contaminated for open-shell states due to the single-determinant nature; unphysical behaviors such as disappearing solutions and discontinuous first-order energy derivatives are also observed along with the spontaneous breaking of spin or spatial symmetries. In this work, we tackle these problems by partially restoring the broken spin-symmetry of a σ-SCF solution through an approximate spin-projection scheme called half-projection. Orbitals of the projected wave function are optimized in a variation-after-projection (VAP) manner. The resulting theory, which we term half-projected (HP) σ-SCF, brings substantial improvement to the description of singlet and triplet excitations of the original σ-SCF method. Numerical simulations on small molecules suggest that HP σ-SCF delivers high-quality excited-state solutions that exist in a wide range of geometries with smooth potential energy surfaces. We also show that local excitations in HP σ-SCF can be size-intensive.
Collapse
Affiliation(s)
- Hong-Zhou Ye
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Troy Van Voorhis
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
45
|
Baiardi A, Stein CJ, Barone V, Reiher M. Optimization of highly excited matrix product states with an application to vibrational spectroscopy. J Chem Phys 2019; 150:094113. [DOI: 10.1063/1.5068747] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Alberto Baiardi
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Christopher J. Stein
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Markus Reiher
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
46
|
Michelitsch GS, Reuter K. Efficient simulation of near-edge x-ray absorption fine structure (NEXAFS) in density-functional theory: Comparison of core-level constraining approaches. J Chem Phys 2019; 150:074104. [DOI: 10.1063/1.5083618] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Georg S. Michelitsch
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, D-85748 Garching, Germany
| | - Karsten Reuter
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, D-85748 Garching, Germany
| |
Collapse
|
47
|
Pineda Flores SD, Neuscamman E. Excited State Specific Multi-Slater Jastrow Wave Functions. J Phys Chem A 2019; 123:1487-1497. [DOI: 10.1021/acs.jpca.8b10671] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sergio D. Pineda Flores
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Eric Neuscamman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
48
|
Otis L, Neuscamman E. Complementary first and second derivative methods for ansatz optimization in variational Monte Carlo. Phys Chem Chem Phys 2019; 21:14491-14510. [DOI: 10.1039/c9cp02269d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This Perspective contrasts first and second derivative methods in variational Monte Carlo and presents a hybrid optimization approach that combines their advantages.
Collapse
Affiliation(s)
- Leon Otis
- Department of Physics
- University of California
- Berkeley
- USA
| | - Eric Neuscamman
- Department of Chemistry
- University of California
- Berkeley
- USA
- Chemical Sciences Division
| |
Collapse
|
49
|
Shea JAR, Neuscamman E. Communication: A mean field platform for excited state quantum chemistry. J Chem Phys 2018; 149:081101. [DOI: 10.1063/1.5045056] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Eric Neuscamman
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
50
|
Fouda AEA, Purnell GI, Besley NA. Simulation of Ultra-Fast Dynamics Effects in Resonant Inelastic X-ray Scattering of Gas-Phase Water. J Chem Theory Comput 2018; 14:2586-2595. [DOI: 10.1021/acs.jctc.8b00211] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Adam E. A. Fouda
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Gregory I. Purnell
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Nicholas A. Besley
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|