1
|
Li SJ, Sun YW, Li ZW. Two-Step Chirality Transfer to Twisted Assemblies: Synergistic Interplay of Chiral and Aggregation Interactions. ACS NANO 2024; 18:26560-26567. [PMID: 39298663 DOI: 10.1021/acsnano.4c03147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Chirality plays a pivotal role in both the origin of life and the self-assembly of materials. However, the governing principles behind chirality transfer in hierarchical self-assembly across multiple length scales remain elusive. Here, we propose a concise and versatile simulation strategy using the patchy particle chain model to investigate the self-assembly of rods interacting through chiral and aggregation interactions. We reveal that chiral interaction possessing an entropic nature, amplifies the fluctuations and twists in the alignment of rods, while aggregation interaction serves as a foundational platform for aggregation and assembly. When both interactions exhibit moderate absolute and relative values, their synergistic interplay facilitates the chirality transfer from rods to assemblies, resulting in the formation of chiral mesoscale ordered structures. Furthermore, we observe a two-step chirality transfer process by monitoring the formation kinetics of the twisted assemblies. This work not only provides a comprehensive insight into chirality transfer mechanisms, but also introduces a versatile mesoscale simulation framework for exploring the role of chirality in hierarchical self-assembly.
Collapse
Affiliation(s)
- Shu-Jia Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yu-Wei Sun
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhan-Wei Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
2
|
Gaiduk EA, Fomin YD, Tsiok EN, Ryzhov VN. Anomalous behavior of a two-dimensional Hertzian disk system. Phys Rev E 2022; 106:024602. [PMID: 36110004 DOI: 10.1103/physreve.106.024602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
The anomalous behavior of a two-dimensional system of Hertzian disks with exponent α=7/2 has been studied using the method of molecular dynamics. The phase diagram of this system is the melting line of a triangular crystal with several maxima and minima. Waterlike density and diffusion anomalies have been found in the reentrant melting regions. Noteworthy, a density anomaly has been observed not only in the liquid and hexatic but also in the solid phase. The calculations of the phonon spectra of longitudinal and transverse modes have yielded negative dependence of the frequency of transverse modes on density along all directions in the regions with a density anomaly. This indicates an association of the density anomaly with transverse oscillations of the crystal lattice. The regions of density and diffusion anomalies have been drawn on the phase diagram. It has been found that the stability regions of anomalous diffusion extend to temperatures well above the maximum melting point T=0.0058 of the triangular crystal.
Collapse
Affiliation(s)
- Eu A Gaiduk
- Vereshchagin Institute of High Pressure Physics, Russian Academy of Sciences, Kaluzhskoe shosse, 14, Troitsk, Moscow, 108840 Russia
| | - Yu D Fomin
- Vereshchagin Institute of High Pressure Physics, Russian Academy of Sciences, Kaluzhskoe shosse, 14, Troitsk, Moscow, 108840 Russia
| | - E N Tsiok
- Vereshchagin Institute of High Pressure Physics, Russian Academy of Sciences, Kaluzhskoe shosse, 14, Troitsk, Moscow, 108840 Russia
| | - V N Ryzhov
- Vereshchagin Institute of High Pressure Physics, Russian Academy of Sciences, Kaluzhskoe shosse, 14, Troitsk, Moscow, 108840 Russia
| |
Collapse
|
3
|
Sun YW, Li Z, Sun ZY. Multiple 2D crystal structures in bilayered lamellae from direct self-assembly of 3D systems of soft Janus particles. Phys Chem Chem Phys 2022; 24:7874-7881. [DOI: 10.1039/d1cp05894k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Numerous crystals and Frank-Kasper phases in two-dimensional (2D) systems of soft particles have been presented by theoretical investigations. How to realize 2D crystals or Frank-kasper phases by direct self-assembly of...
Collapse
|
4
|
Sun YW, Chen ZQ, Zhu YL, Li ZW, Lu ZY, Sun ZY. Intercluster Exchange-Stabilized Novel Complex Colloidal χ c Phase. J Phys Chem Lett 2021; 12:8872-8881. [PMID: 34498873 DOI: 10.1021/acs.jpclett.1c01916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Designing complex cluster crystals with a specific function using simple colloidal building blocks remains a challenge in materials science. Herein, we propose a conceptually new design strategy for constructing complex cluster crystals via hierarchical self-assembly of simple soft Janus colloids. A novel and previously unreported colloidal cluster-χ (χc) phase, which resembles the essential structural features of α-manganese but at a larger length scale, is obtained through molecular dynamics simulations. The formation of the χc phase undergoes a remarkable two-step self-assembly process, that is, the self-assembly of clusters with specific size dispersity from Janus colloids, followed by the highly ordered organization of these clusters. More importantly, the dynamic exchange of particles between these clusters plays a critical role in stabilizing the χc phase. Such a conceptual design framework based on intercluster exchange has the potential to effectively construct novel complex cluster crystals by hierarchical self-assembly of colloidal building blocks.
Collapse
Affiliation(s)
- Yu-Wei Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Zi-Qin Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - You-Liang Zhu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Zhan-Wei Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China
| | - Zhao-Yan Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
5
|
Levashov VA, Ryltsev RE, Chtchelkatchev NM. Structure of the simple harmonic-repulsive system in liquid and glassy states studied by the triple correlation function. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:025403. [PMID: 33063696 DOI: 10.1088/1361-648x/abb516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
An efficient description of the structures of liquids and, in particular, the structural changes that happen with liquids on supercooling remains to be a challenge. The systems composed of soft particles are especially interesting in this context because they often demonstrate non-trivial local orders that do not allow to introduce the concept of the nearest-neighbor shell. For this reason, the use of some methods, developed for the structure analysis of atomic liquids, is questionable for the soft-particle systems. Here we report about our investigations of the structure of the simple harmonic-repulsive liquid in 3D using the triple correlation function (TCF), i.e., the method that does not rely on the nearest neighbor concept. The liquid is considered at reduced pressure (P = 1.8) at which it exhibits remarkable stability against crystallization on cooling. It is demonstrated that the TCF allows addressing the development of the orientational correlations in the structures that do not allow drawing definite conclusions from the studies of the bond-orientational order parameters. Our results demonstrate that the orientational correlations, if measured by the heights of the peaks in the TCF, significantly increase on cooling. This rise in the orientational ordering is not captured properly by the Kirkwood's superposition approximation. Detailed considerations of the peaks' shapes in the TCF suggest the existence of a link between the orientational ordering and the slowdown of the system's dynamics. Our findings support the view that the development of the orientational correlations in liquids may play a significant role in the liquids' dynamics and that the considerations of the pair distribution function may not be sufficient to understand intuitively all the structural changes that happen with liquids on supercooling. In general, our results demonstrate that the considerations of the TCF are useful in the discussions of the liquid's structures beyond the pair density function and interpreting the results obtained with the bond-orientational order parameters.
Collapse
Affiliation(s)
- V A Levashov
- Technological Design Institute of Scientific Instrument Engineering, 630055, Novosibirsk, Russia
- Vereshchagin Institute for High Pressure Physics, Russian Academy of Sciences, 108840, Troitsk, Moscow, Russia
| | - R E Ryltsev
- Vereshchagin Institute for High Pressure Physics, Russian Academy of Sciences, 108840, Troitsk, Moscow, Russia
- Institute of Metallurgy, UB RAS, 620016, 101 Amundsen str., Ekaterinburg, Russia
- Ural Federal University, 620002, 19 Mira str,, Ekaterinburg, Russia
| | - N M Chtchelkatchev
- Vereshchagin Institute for High Pressure Physics, Russian Academy of Sciences, 108840, Troitsk, Moscow, Russia
- Ural Federal University, 620002, 19 Mira str,, Ekaterinburg, Russia
| |
Collapse
|
6
|
Levashov VA, Ryltsev R, Chtchelkatchev N. Anomalous behavior and structure of a liquid of particles interacting through the harmonic-repulsive pair potential near the crystallization transition. SOFT MATTER 2019; 15:8840-8854. [PMID: 31613306 DOI: 10.1039/c9sm01475f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A characteristic property of many soft matter systems is an ultrasoft effective interaction between their structural units. This softness often leads to complex behavior. In particular, ultrasoft systems under pressure demonstrate polymorphism of complex crystal and quasicrystal structures. Therefore, it is of interest to investigate how different can be the structure of the fluid state in such systems at different pressures. Here we address this issue for a model liquid composed of particles interacting through the harmonic-repulsive pair potential. This system can form different crystal structures as the liquid is cooled. We find that, at certain pressures, the liquid exhibits unusual properties, such as a negative thermal expansion coefficient. Besides, the volume and the potential energy of the system can increase during crystallization. At certain pressures, the system demonstrates high stability against crystallization and it is hardly possible to crystallize it on the timescales of the simulations. To address the liquid's structure at high pressures, we consider the scaled pair distribution function (PDF) and the bond-orientational order (BOO) parameters. The marked change happening with the PDF, as pressure increases, is the splitting of the first peak which is caused by the appearance of non-negligible interactions with the second neighbors and the following rearrangement of the structure. Our findings suggest that non-trivial effects, usually explained by different interactions at different spatial scales, can also be observed in one-component systems with simple one-length-scale ultrasoft repulsive interactions.
Collapse
Affiliation(s)
- Valentin A Levashov
- Technological Design Institute of Scientific Instrument Engineering, 630055, Novosibirsk, Russia. and Institute for High Pressure Physics, Russian Academy of Sciences, 108840, Moscow (Troitsk), Russia
| | - Roman Ryltsev
- Institute for High Pressure Physics, Russian Academy of Sciences, 108840, Moscow (Troitsk), Russia and Institute of Metallurgy, UB RAS, 101 Amundsen str., 620016, Ekaterinburg, Russia and Ural Federal University, 19 Mira str., 620002, Ekaterinburg, Russia
| | - Nikolay Chtchelkatchev
- Institute for High Pressure Physics, Russian Academy of Sciences, 108840, Moscow (Troitsk), Russia and Ural Federal University, 19 Mira str., 620002, Ekaterinburg, Russia and Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, Moscow Region 141700, Russia
| |
Collapse
|
7
|
Chen D, Zhang G, Torquato S. Inverse Design of Colloidal Crystals via Optimized Patchy Interactions. J Phys Chem B 2018; 122:8462-8468. [DOI: 10.1021/acs.jpcb.8b05627] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|