1
|
Oang KY, Park S, Moon J, Park E, Lee HK, Sato T, Nozawa S, Adachi SI, Kim J, Kim J, Sohn JH, Ihee H. Extracting Kinetics and Thermodynamics of Molecules without Heavy Atoms via Time-Resolved Solvent Scattering Signals. J Phys Chem Lett 2023; 14:3103-3110. [PMID: 36951437 DOI: 10.1021/acs.jpclett.3c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Time-resolved X-ray liquidography (TRXL) has emerged as a powerful technique for studying the structural dynamics of small molecules and macromolecules in liquid solutions. However, TRXL has limited sensitivity for small molecules containing light atoms only, whose signal has lower contrast compared with the signal from solvent molecules. Here, we present an alternative approach to bypass this limitation by detecting the change in solvent temperature resulting from a photoinduced reaction. Specifically, we analyzed the heat dynamics of TRXL data obtained from p-hydroxyphenacyl diethyl phosphate (HPDP). This analysis enabled us to experimentally determine the number of intermediates and their respective enthalpy changes, which can be compared to theoretical enthalpies to identify the intermediates. This work demonstrates that TRXL can be used to uncover the kinetics and reaction pathways for small molecules without heavy atoms even if the scattering signal from the solute molecules is buried under the strong solvent scattering signal.
Collapse
Affiliation(s)
- Key Young Oang
- Radiation Center for Ultrafast Science, Korea Atomic Energy Research Institute (KAERI), Daejeon 34057, Republic of Korea
| | - Sungjun Park
- Department of Chemistry and KI for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Jiwon Moon
- Department of Chemistry, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Eunji Park
- Department of Chemistry, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Hyun Kyung Lee
- Department of Chemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Tokushi Sato
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Shunsuke Nozawa
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Shin-Ichi Adachi
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
- Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Joonghan Kim
- Department of Chemistry, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Jeongho Kim
- Department of Chemistry, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Jeong-Hun Sohn
- Department of Chemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyotcherl Ihee
- Department of Chemistry and KI for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| |
Collapse
|
2
|
Gu J, Lee S, Eom S, Ki H, Choi EH, Lee Y, Nozawa S, Adachi SI, Kim J, Ihee H. Structural Dynamics of C 2F 4I 2 in Cyclohexane Studied via Time-Resolved X-ray Liquidography. Int J Mol Sci 2021; 22:9793. [PMID: 34575954 PMCID: PMC8469616 DOI: 10.3390/ijms22189793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 11/28/2022] Open
Abstract
The halogen elimination of 1,2-diiodoethane (C2H4I2) and 1,2-diiodotetrafluoroethane (C2F4I2) serves as a model reaction for investigating the influence of fluorination on reaction dynamics and solute-solvent interactions in solution-phase reactions. While the kinetics and reaction pathways of the halogen elimination reaction of C2H4I2 were reported to vary substantially depending on the solvent, the solvent effects on the photodissociation of C2F4I2 remain to be explored, as its reaction dynamics have only been studied in methanol. Here, to investigate the solvent dependence, we conducted a time-resolved X-ray liquidography (TRXL) experiment on C2F4I2 in cyclohexane. The data revealed that (ⅰ) the solvent dependence of the photoreaction of C2F4I2 is not as strong as that observed for C2H4I2, and (ⅱ) the nongeminate recombination leading to the formation of I2 is slower in cyclohexane than in methanol. We also show that the molecular structures of the relevant species determined from the structural analysis of TRXL data provide an excellent benchmark for DFT calculations, especially for investigating the relevance of exchange-correlation functionals used for the structural optimization of haloalkanes. This study demonstrates that TRXL is a powerful technique to study solvent dependence in the solution phase.
Collapse
Affiliation(s)
- Jain Gu
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (J.G.); (S.L.); (S.E.); (H.K.); (E.H.C.); (Y.L.)
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Seonggon Lee
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (J.G.); (S.L.); (S.E.); (H.K.); (E.H.C.); (Y.L.)
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Seunghwan Eom
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (J.G.); (S.L.); (S.E.); (H.K.); (E.H.C.); (Y.L.)
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Hosung Ki
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (J.G.); (S.L.); (S.E.); (H.K.); (E.H.C.); (Y.L.)
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Eun Hyuk Choi
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (J.G.); (S.L.); (S.E.); (H.K.); (E.H.C.); (Y.L.)
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Yunbeom Lee
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (J.G.); (S.L.); (S.E.); (H.K.); (E.H.C.); (Y.L.)
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Shunsuke Nozawa
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801, Ibaraki, Japan; (S.N.); (S.-i.A.)
- Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies, 1-1 Oho, Tsukuba 305-0801, Ibaraki, Japan
| | - Shin-ichi Adachi
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801, Ibaraki, Japan; (S.N.); (S.-i.A.)
- Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies, 1-1 Oho, Tsukuba 305-0801, Ibaraki, Japan
| | - Jeongho Kim
- Department of Chemistry, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea;
| | - Hyotcherl Ihee
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (J.G.); (S.L.); (S.E.); (H.K.); (E.H.C.); (Y.L.)
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Korea
| |
Collapse
|
3
|
Kim JG, Choi EH, Lee Y, Ihee H. Femtosecond X-ray Liquidography Visualizes Wavepacket Trajectories in Multidimensional Nuclear Coordinates for a Bimolecular Reaction. Acc Chem Res 2021; 54:1685-1698. [PMID: 33733724 DOI: 10.1021/acs.accounts.0c00812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ConspectusVibrational wavepacket motions on potential energy surfaces are one of the critical factors that determine the reaction dynamics of photoinduced reactions. The motions of vibrational wavepackets are often discussed in the interpretation of observables measured with various time-resolved vibrational or electronic spectroscopies but mostly in terms of the frequencies of wavepacket motions, which are approximated by normal modes, rather than the actual positions of the wavepacket. Although the time-dependent positions (that is, the trajectory) of wavepackets are hypothesized or drawn in imagined or calculated potential energy surfaces, it is not trivial to experimentally determine the trajectory of wavepackets, especially in multidimensional nuclear coordinates for a polyatomic molecule. Recently, we performed a femtosecond X-ray liquidography (solution scattering) experiment on a gold trimer complex (GTC), [Au(CN)2-]3, in water at X-ray free-electron lasers (XFELs) and elucidated the time-dependent positions of vibrational wavepackets from the Franck-Condon region to equilibrium structures on both excited and ground states in the course of the formation of covalent bonds between gold atoms.Bond making is an essential process in chemical reactions, but it is challenging to keep track of detailed atomic movements associated with bond making because of its bimolecular nature that requires slow diffusion of two reaction parties to meet each other. Bond formation in the solution phase has been elusive because the diffusion of the reactants limits the reaction rate of a bimolecular process, making it difficult to initiate and track the bond-making processes with an ultrafast time resolution. In principle, if the bimolecular encounter can be controlled to overcome the limitation caused by diffusion, the bond-making processes can be tracked in a time-resolved manner, providing valuable insight into the bimolecular reaction mechanism. In this regard, GTC offers a good model system for studying the dynamics of bond formation in solution. Au(I) atoms in GTC exhibit a noncovalent aurophilic interaction, making GTC an aggregate complex without any covalent bond. Upon photoexcitation of GTC, an electron is excited from an antibonding orbital to a bonding orbital, leading to the formation of covalent bonds among Au atoms. Since Au atoms in the ground state of GTC are located in close proximity within the same solvent cage, the formation of Au-Au covalent bonds occurs without its reaction rate being limited by diffusion through the solvent.Femtosecond time-resolved X-ray liquidography (fs-TRXL) data revealed that the ground state has an asymmetric bent structure. From the wavepacket trajectory determined in three-dimensional nuclear coordinates (two internuclear distances and one bond angle), we found that two covalent bonds are formed between three Au atoms of GTC asynchronously. Specifically, one covalent bond is formed first for the shorter Au-Au pair (of the asymmetric and bent ground-state structure) in 35 fs, and subsequently, the other covalent bond is formed for the longer Au-Au pair within 360 fs. The resultant trimer complex has a symmetric and linear geometry, implying the occurrence of bent-to-linear transformation concomitant with the formation of two equivalent covalent bonds, and exhibits vibrations that can be unambiguously assigned to specific normal modes based on the wavepacket trajectory, even without the vibrational frequencies provided by quantum calculation.
Collapse
Affiliation(s)
- Jong Goo Kim
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
- KI for the BioCentury, KAIST, Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Eun Hyuk Choi
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
- KI for the BioCentury, KAIST, Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Yunbeom Lee
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
- KI for the BioCentury, KAIST, Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Hyotcherl Ihee
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
- KI for the BioCentury, KAIST, Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| |
Collapse
|
4
|
Kunnus K, Vacher M, Harlang TCB, Kjær KS, Haldrup K, Biasin E, van Driel TB, Pápai M, Chabera P, Liu Y, Tatsuno H, Timm C, Källman E, Delcey M, Hartsock RW, Reinhard ME, Koroidov S, Laursen MG, Hansen FB, Vester P, Christensen M, Sandberg L, Németh Z, Szemes DS, Bajnóczi É, Alonso-Mori R, Glownia JM, Nelson S, Sikorski M, Sokaras D, Lemke HT, Canton SE, Møller KB, Nielsen MM, Vankó G, Wärnmark K, Sundström V, Persson P, Lundberg M, Uhlig J, Gaffney KJ. Vibrational wavepacket dynamics in Fe carbene photosensitizer determined with femtosecond X-ray emission and scattering. Nat Commun 2020; 11:634. [PMID: 32005815 PMCID: PMC6994595 DOI: 10.1038/s41467-020-14468-w] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/30/2019] [Indexed: 12/31/2022] Open
Abstract
The non-equilibrium dynamics of electrons and nuclei govern the function of photoactive materials. Disentangling these dynamics remains a critical goal for understanding photoactive materials. Here we investigate the photoinduced dynamics of the [Fe(bmip)2]2+ photosensitizer, where bmip = 2,6-bis(3-methyl-imidazole-1-ylidine)-pyridine, with simultaneous femtosecond-resolution Fe Kα and Kβ X-ray emission spectroscopy (XES) and X-ray solution scattering (XSS). This measurement shows temporal oscillations in the XES and XSS difference signals with the same 278 fs period oscillation. These oscillations originate from an Fe-ligand stretching vibrational wavepacket on a triplet metal-centered (3MC) excited state surface. This 3MC state is populated with a 110 fs time constant by 40% of the excited molecules while the rest relax to a 3MLCT excited state. The sensitivity of the Kα XES to molecular structure results from a 0.7% average Fe-ligand bond length shift between the 1 s and 2p core-ionized states surfaces.
Collapse
Affiliation(s)
- Kristjan Kunnus
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA.
| | - Morgane Vacher
- Department of Chemistry - Ångström laboratory, Uppsala University, Box 538, 75121, Uppsala, Sweden
| | - Tobias C B Harlang
- Department of Chemical Physics, Lund University, P.O. Box 12 4, 22100, Lund, Sweden
- Department of Physics, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Kasper S Kjær
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA
- Department of Chemical Physics, Lund University, P.O. Box 12 4, 22100, Lund, Sweden
- Department of Physics, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Kristoffer Haldrup
- Department of Physics, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Elisa Biasin
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA
- Department of Physics, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Tim B van Driel
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Mátyás Pápai
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800, Kongens Lyngby, Denmark
| | - Pavel Chabera
- Department of Chemical Physics, Lund University, P.O. Box 12 4, 22100, Lund, Sweden
| | - Yizhu Liu
- Department of Chemical Physics, Lund University, P.O. Box 12 4, 22100, Lund, Sweden
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, 22100, Lund, Sweden
| | - Hideyuki Tatsuno
- Department of Chemical Physics, Lund University, P.O. Box 12 4, 22100, Lund, Sweden
| | - Cornelia Timm
- Department of Chemical Physics, Lund University, P.O. Box 12 4, 22100, Lund, Sweden
| | - Erik Källman
- Department of Chemistry - Ångström laboratory, Uppsala University, Box 538, 75121, Uppsala, Sweden
| | - Mickaël Delcey
- Department of Chemistry - Ångström laboratory, Uppsala University, Box 538, 75121, Uppsala, Sweden
| | - Robert W Hartsock
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA
| | - Marco E Reinhard
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA
| | - Sergey Koroidov
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA
| | - Mads G Laursen
- Department of Physics, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Frederik B Hansen
- Department of Physics, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Peter Vester
- Department of Physics, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Morten Christensen
- Department of Physics, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Lise Sandberg
- Department of Physics, Technical University of Denmark, DK-2800, Lyngby, Denmark
- University of Copenhagen, Niels Bohr Institute, Blegdamsvej 17, 2100, Copenhagen, Denmark
| | - Zoltán Németh
- Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525, Budapest, Hungary
| | - Dorottya Sárosiné Szemes
- Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525, Budapest, Hungary
| | - Éva Bajnóczi
- Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525, Budapest, Hungary
| | | | - James M Glownia
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Silke Nelson
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Marcin Sikorski
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | | | - Henrik T Lemke
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Sophie E Canton
- ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics ter 13, Szeged, 6720, Hungary
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, D-22607, Hamburg, Germany
| | - Klaus B Møller
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800, Kongens Lyngby, Denmark
| | - Martin M Nielsen
- Department of Physics, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - György Vankó
- Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525, Budapest, Hungary
| | - Kenneth Wärnmark
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, 22100, Lund, Sweden
| | - Villy Sundström
- Department of Chemical Physics, Lund University, P.O. Box 12 4, 22100, Lund, Sweden
| | - Petter Persson
- Theoretical Chemistry Division, Lund University, P.O. Box 124, 22100, Lund, Sweden
| | - Marcus Lundberg
- Department of Chemistry - Ångström laboratory, Uppsala University, Box 538, 75121, Uppsala, Sweden
| | - Jens Uhlig
- Department of Chemical Physics, Lund University, P.O. Box 12 4, 22100, Lund, Sweden
| | - Kelly J Gaffney
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA.
| |
Collapse
|
5
|
Kong Q, Khakhulin D, Shkrob IA, Lee JH, Zhang X, Kim J, Kim KH, Jo J, Kim J, Kang J, Pham VT, Jennings G, Kurtz C, Spence R, Chen LX, Wulff M, Ihee H. Solvent-dependent complex reaction pathways of bromoform revealed by time-resolved X-ray solution scattering and X-ray transient absorption spectroscopy. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2019; 6:064902. [PMID: 31893214 PMCID: PMC6930140 DOI: 10.1063/1.5132968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
The photochemical reaction pathways of CHBr3 in solution were unveiled using two complementary X-ray techniques, time-resolved X-ray solution scattering (TRXSS) and X-ray transient absorption spectroscopy, in a wide temporal range from 100 ps to tens of microseconds. By performing comparative measurements in protic (methanol) and aprotic (methylcyclohexane) solvents, we found that the reaction pathways depend significantly on the solvent properties. In methanol, the major photoproducts are CH3OCHBr2 and HBr generated by rapid solvolysis of iso-CHBr2-Br, an isomer of CHBr3. In contrast, in methylcyclohexane, iso-CHBr2-Br returns to CHBr3 without solvolysis. In both solvents, the formation of CHBr2 and Br is a competing reaction channel. From the structural analysis of TRXSS data, we determined the structures of key intermediate species, CH3OCHBr2 and iso-CHBr2-Br in methanol and methylcyclohexane, respectively, which are consistent with the structures from density functional theory calculations.
Collapse
Affiliation(s)
- Qingyu Kong
- Authors to whom correspondence should be addressed: and
| | | | - Ilya A. Shkrob
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60349, USA
| | - Jae Hyuk Lee
- Pohang Accelerator Laboratory, Pohang 37673, South Korea
| | - Xiaoyi Zhang
- X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60349, USA
| | - Jeongho Kim
- Department of Chemistry, Inha University, Incheon 22212, South Korea
| | - Kyung Hwan Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | | | | | | | - Van-Thai Pham
- Synchrotron Soleil, L'Orme des Merisiers, St. Aubin, 91192 Gif-sur-Yvette, France
| | - Guy Jennings
- X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60349, USA
| | - Charles Kurtz
- X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60349, USA
| | - Rick Spence
- X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60349, USA
| | | | - Michael Wulff
- European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex, France
| | | |
Collapse
|
6
|
Choi EH, Ahn DS, Park S, Kim C, Ahn CW, Kim S, Choi M, Yang C, Kim TW, Ki H, Choi J, Pedersen MN, Wulff M, Kim J, Ihee H. Structural Dynamics of Bismuth Triiodide in Solution Triggered by Photoinduced Ligand-to-Metal Charge Transfer. J Phys Chem Lett 2019; 10:1279-1285. [PMID: 30835478 DOI: 10.1021/acs.jpclett.9b00365] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bismuth triiodide, BiI3, is one of the simplest bismuth halides, which have recently attracted considerable attention because of their promising properties. Here, we investigate the structural dynamics of a photoinduced reaction of BiI3 in solution phase using time-resolved X-ray liquidography (TRXL) and density functional theory (DFT) and time-dependent DFT (TDDFT) calculations. The photoreaction was initiated by excitation at 400 nm, which corresponds to the ligand-to-metal charge-transfer transition. The detailed structures and kinetic profiles of all relevant intermediate species from the TRXL data show that the trigonal planar structure of BiI3, which is predicted to be the most stable structure of the lowest excited state by TDDFT calculation, was not observed, and the photoreaction proceeds via two parallel pathways within the time resolution of 100 ps: (i) isomer formation to produce iso-BiI2-I, which relaxes back to the ground-state structure, and (ii) dissociation into BiI2· and I· radicals, which nongeminately recombine to generate ground-state BiI3 and I2.
Collapse
Affiliation(s)
- Eun Hyuk Choi
- Department of Chemistry and KI for the BioCentury , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea
- Center for Nanomaterials and Chemical Reactions , Institute for Basic Science (IBS) , Daejeon 34141 , Republic of Korea
| | - Doo-Sik Ahn
- Department of Chemistry and KI for the BioCentury , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea
- Center for Nanomaterials and Chemical Reactions , Institute for Basic Science (IBS) , Daejeon 34141 , Republic of Korea
| | - Sungjun Park
- Department of Chemistry and KI for the BioCentury , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea
- Center for Nanomaterials and Chemical Reactions , Institute for Basic Science (IBS) , Daejeon 34141 , Republic of Korea
| | - Changwon Kim
- Department of Chemistry and KI for the BioCentury , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea
- Center for Nanomaterials and Chemical Reactions , Institute for Basic Science (IBS) , Daejeon 34141 , Republic of Korea
| | - Chi Woo Ahn
- Department of Chemistry and KI for the BioCentury , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea
- Center for Nanomaterials and Chemical Reactions , Institute for Basic Science (IBS) , Daejeon 34141 , Republic of Korea
| | - Siin Kim
- Department of Chemistry and KI for the BioCentury , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea
- Center for Nanomaterials and Chemical Reactions , Institute for Basic Science (IBS) , Daejeon 34141 , Republic of Korea
| | - Minseo Choi
- Department of Chemistry and KI for the BioCentury , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea
- Center for Nanomaterials and Chemical Reactions , Institute for Basic Science (IBS) , Daejeon 34141 , Republic of Korea
| | - Cheolhee Yang
- Center for Nanomaterials and Chemical Reactions , Institute for Basic Science (IBS) , Daejeon 34141 , Republic of Korea
| | - Tae Wu Kim
- Center for Nanomaterials and Chemical Reactions , Institute for Basic Science (IBS) , Daejeon 34141 , Republic of Korea
| | - Hosung Ki
- Center for Nanomaterials and Chemical Reactions , Institute for Basic Science (IBS) , Daejeon 34141 , Republic of Korea
| | - Jungkweon Choi
- Department of Chemistry and KI for the BioCentury , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea
- Center for Nanomaterials and Chemical Reactions , Institute for Basic Science (IBS) , Daejeon 34141 , Republic of Korea
| | | | - Michael Wulff
- European Synchrotron Radiation Facility (ESRF) , 38000 Grenoble Cedex 9, France
| | - Jeongho Kim
- Department of Chemistry , Inha University , 100 Inha-ro, Nam-gu , Incheon 22212 , Republic of Korea
| | - Hyotcherl Ihee
- Department of Chemistry and KI for the BioCentury , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea
- Center for Nanomaterials and Chemical Reactions , Institute for Basic Science (IBS) , Daejeon 34141 , Republic of Korea
| |
Collapse
|