1
|
Koschade SE, Tascher G, Parmar BS, Brandts CH, Münch C. SpinTip: A Simple, Robust, and Versatile Preanalytical Method for Microscale Suspension Cell Proteomics. J Proteome Res 2022; 21:2827-2835. [PMID: 36239476 DOI: 10.1021/acs.jproteome.2c00478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sample loss and contamination are critical preanalytical pitfalls in microscale proteomic applications of nonadhering cells. Common assays and workflows are not easily adoptable to microscale sample sizes of suspension cells due to inadvertent sample loss. This impedes preanalytical experimental manipulation of limited suspension cell samples for microscale proteomics applications, such as encountered for primary human materials. Here, we describe and test a simple manual batch technique for single-step 100-fold concentration of scarce numbers of diluted suspension cells (down to 5000 cells) by volume reduction, facilitating microscale experiments with suspension cells. Pipette tips with heat-sealed orifices (SpinTips) are manufactured within 1 min and serve as versatile microcentrifugation vessels from which supernatant can be aspirated with minimal cell loss. A residual volume of approximately 3 μL can be achieved without visualization of the cell pellet. The results show that SpinTips enable the concentration, medium exchange, washing, and culture of highly limited amounts of suspension cells for functional manipulation and microscale proteomics and are readily incorporated into standard workflows. The application is illustrated by profiling ex vivo responses of primary acute myeloid leukemia (AML) cells from one AML patient to daunorubicin (DNR) to a depth of 3462 quantified proteins with excellent repeatability.
Collapse
Affiliation(s)
- Sebastian E Koschade
- Department of Medicine, Hematology/Oncology, University Hospital, Goethe University, 60590 Frankfurt, Germany.,Institute of Biochemistry II, Goethe University, 60590 Frankfurt, Germany.,Frankfurt Cancer Institute, 60590 Frankfurt, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,University Cancer Center Frankfurt (UCT), University Hospital, Goethe University, 60590 Frankfurt, Germany
| | - Georg Tascher
- Institute of Biochemistry II, Goethe University, 60590 Frankfurt, Germany
| | - Bhavesh S Parmar
- Institute of Biochemistry II, Goethe University, 60590 Frankfurt, Germany
| | - Christian H Brandts
- Department of Medicine, Hematology/Oncology, University Hospital, Goethe University, 60590 Frankfurt, Germany.,Frankfurt Cancer Institute, 60590 Frankfurt, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,University Cancer Center Frankfurt (UCT), University Hospital, Goethe University, 60590 Frankfurt, Germany
| | - Christian Münch
- Institute of Biochemistry II, Goethe University, 60590 Frankfurt, Germany.,Frankfurt Cancer Institute, 60590 Frankfurt, Germany.,Cardio-Pulmonary Institute, 60590 Frankfurt, Germany
| |
Collapse
|
2
|
Tang H, Niu J, Jin H, Lin S, Cui D. Geometric structure design of passive label-free microfluidic systems for biological micro-object separation. MICROSYSTEMS & NANOENGINEERING 2022; 8:62. [PMID: 35685963 PMCID: PMC9170746 DOI: 10.1038/s41378-022-00386-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/27/2022] [Accepted: 03/18/2022] [Indexed: 05/05/2023]
Abstract
Passive and label-free microfluidic devices have no complex external accessories or detection-interfering label particles. These devices are now widely used in medical and bioresearch applications, including cell focusing and cell separation. Geometric structure plays the most essential role when designing a passive and label-free microfluidic chip. An exquisitely designed geometric structure can change particle trajectories and improve chip performance. However, the geometric design principles of passive and label-free microfluidics have not been comprehensively acknowledged. Here, we review the geometric innovations of several microfluidic schemes, including deterministic lateral displacement (DLD), inertial microfluidics (IMF), and viscoelastic microfluidics (VEM), and summarize the most creative innovations and design principles of passive and label-free microfluidics. We aim to provide a guideline for researchers who have an interest in geometric innovations of passive label-free microfluidics.
Collapse
Affiliation(s)
- Hao Tang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240 China
| | - Jiaqi Niu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240 China
| | - Han Jin
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240 China
- National Engineering Research Center for Nanotechnology, Shanghai Jiao Tong University, 28 Jiangchuan Easternroad, Shanghai, 200241 China
| | - Shujing Lin
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240 China
- National Engineering Research Center for Nanotechnology, Shanghai Jiao Tong University, 28 Jiangchuan Easternroad, Shanghai, 200241 China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240 China
- National Engineering Research Center for Nanotechnology, Shanghai Jiao Tong University, 28 Jiangchuan Easternroad, Shanghai, 200241 China
| |
Collapse
|
3
|
Fan L, Zhu X, Yan Q, Zhe J, Zhao L. A passive microfluidic device for continuous microparticle enrichment. Electrophoresis 2018; 40:1000-1009. [DOI: 10.1002/elps.201800454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/13/2018] [Accepted: 11/22/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Liang‐Liang Fan
- School of Food Equipment Engineering and Science Xi'an Jiaotong University Xi'an Shaanxi P. R. China
- School of Mechanical Engineering Xi'an Jiaotong University Xi'an Shaanxi P. R. China
- State Key Laboratory of Multiphase Flow in Power Engineering Xi'an Jiaotong University Xi'an Shaanxi P. R. China
| | - Xiao‐Liang Zhu
- Department of Mechanical Engineering University of Akron Akron OH USA
| | - Qing Yan
- State Key Laboratory of Multiphase Flow in Power Engineering Xi'an Jiaotong University Xi'an Shaanxi P. R. China
| | - Jiang Zhe
- Department of Mechanical Engineering University of Akron Akron OH USA
| | - Liang Zhao
- State Key Laboratory of Multiphase Flow in Power Engineering Xi'an Jiaotong University Xi'an Shaanxi P. R. China
| |
Collapse
|
4
|
Xiang N, Shi X, Han Y, Shi Z, Jiang F, Ni Z. Inertial Microfluidic Syringe Cell Concentrator. Anal Chem 2018; 90:9515-9522. [DOI: 10.1021/acs.analchem.8b02201] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Xin Shi
- Department of General Surgery, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Yu Han
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Zhiguo Shi
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Fengtao Jiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Zhonghua Ni
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| |
Collapse
|