1
|
McGinnis KR, McGee CJ, Jarrold CC. Isomer-Dependent Electron Affinities of Fluorophenyl Radicals, •C 6H 5-xF x (2 ≤ x ≤ 4). J Am Chem Soc 2024; 146:7063-7075. [PMID: 38440870 DOI: 10.1021/jacs.4c00556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Di-, tri-, and tetrafluorophenyl radicals each have three regioisomers, several of which can form multiple distinct radical structures. We present the photoelectron spectra of the di-, tri-, and tetrafluorophenide regioisomer anions generated from their associated fluorobenzene precursors. By comparing the spectra to the results of density functional theory calculations, we determine that in cases where more than one possible radical isomer is possible for a given regioisomer (radicals formed from 1,2-difluorobenzene, 1,3-difluorobenzene, 1,2,3-trifluorobenzene, and 1,2,4-trifluorobenzene) the most stable anion corresponds to a less stable neutral, suggesting that the reactive C-center on these fluorine-substituted phenyl groups can be controlled by charge state. Full analyses of the spectra and computational results yield further insights into the differences between the electronic and molecular structures of the fluorophenyl radicals and their associated anions.
Collapse
Affiliation(s)
- Kristen Rose McGinnis
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Conor J McGee
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Caroline Chick Jarrold
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
2
|
McGee CJ, McGinnis KR, Jarrold CC. Anion Photoelectron Imaging Spectroscopy of C 6HF 5-, C 6F 6-, and the Absence of C 6H 2F 4. J Phys Chem A 2023; 127:8556-8565. [PMID: 37816145 DOI: 10.1021/acs.jpca.3c04016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Substituents have a profound effect on the electronic structure of the benzene molecule. In this paper, we present new photoelectron spectra of the C5HF5- molecular anion, to test predictions [ Int. J. Quant. Chem. 2017, 188, e25504] that pentafluorobenzene has a positive electron affinity, as hexafluorobenzene was already known to have. The PE spectrum of C6HF5- exhibits a broad and vibrationally unresolved band due to significant differences between the structure of the anion and the neutral. The vertical detachment energy (VDE) of C5HF5- is determined to be 1.33 ± 0.05 eV, and the lowest binding energy at which the signal is observed is 0.53 ± 0.05 eV, which, if taken as the electron affinity, is in good agreement with the computed value. In addition, we attempted to generate intact C6H2F4- molecular ions using the 1,2,3,4-tetrafluorobenzene, 1,2,3,5-tetrafluorobenzene, and 1,2,4,5-tetrafluorobenzene precursors, as tetrafluorobenzene was predicted to have a near-zero but marginally positive electron affinity. Using a photoemission anion source, we were not able to produce the intact tetrafluorobenzene anion. Density functional theory calculations support a more detailed discussion of the impact of fluorine substitution on the electronic structure of these species.
Collapse
Affiliation(s)
- Conor J McGee
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Kristen Rose McGinnis
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Caroline Chick Jarrold
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
3
|
McGee CJ, McGinnis KR, Jarrold CC. Trend in the Electron Affinities of Fluorophenyl Radicals ·C 6H 5-xF x (1 ≤ x ≤ 4). J Phys Chem A 2023; 127:7264-7273. [PMID: 37603043 DOI: 10.1021/acs.jpca.3c04327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
The electron affinities (EAs) of a series of ·C6H5-xFx (1 ≤ x ≤ 4) fluorophenyl radicals are determined from the photoelectron spectra of their associated fluorophenide anions generated from C6H6-xFx (1 ≤ x ≤ 4) fluorobenzene precursors. The spectra show a near-linear incremental increase in EA of 0.4 eV/x. The spectra exhibit vibrationally unresolved and broad detachment transitions consistent with significant differences in the molecular structures of the anion and neutral radical species. The experimental EAs and broad spectra are consistent with density functional theory calculations on these species. While the anion detachment transitions all involve an electron in a non-bonding orbital, the differences in structure between the neutral and anion are in part due to repulsion between the lone pair on the C-center on which the excess charge is localized and neighboring F atoms. The C6H5-xFx- (2 ≤ x ≤ 4) spectra show features at lower binding energy that appear to be due to constitutional isomers formed in the ion source.
Collapse
Affiliation(s)
- Conor J McGee
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Kristen Rose McGinnis
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Caroline Chick Jarrold
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
4
|
Mason JL, Huizenga CD, Ray M, Kafader JO, Jarrold CC. Electronic Structure of Heteronuclear Cerium-Platinum Clusters. J Phys Chem A 2023; 127:6749-6763. [PMID: 37531463 DOI: 10.1021/acs.jpca.3c03738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Beyond the now well-known strong catalyst-support interactions reported for ceria-supported platinum catalysts, intermetallic Ce-Pt compounds exhibit fascinating properties such as heavy fermion behavior and magnetic instability. Small heterometallic Ce-Pt clusters, which can provide insights into the local features that govern bulk phenomena, have been less explored. Herein, the anion photoelectron spectra of three small mixed Ce-Pt clusters, Ce2OPt-, Ce2Pt-, and Ce3Pt-, are presented and interpreted with supporting density functional theory calculations. The calculations, which are readily reconciled with the experimental spectra, suggest the presence of numerous close-lying spin states, including states in which the Ce 4f electrons are ferromagnetically coupled or antiferromagnetically coupled. The Pt center is consistently in a nominal -2 charge state in all cluster neutrals and anions, giving the Ce-Pt bond ionic character. Ce-Pt bonds are stronger than Ce-Ce bonds, and the O atom in Ce2OPt- coordinates only with the Ce centers. The energy of the singly occupied Ce-local 4f orbitals relative to the Pt-local orbitals changes with cluster composition. Discussion of the results includes potential implications for Ce-rich intermetallic materials.
Collapse
Affiliation(s)
- Jarrett L Mason
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave, Bloomington, Indiana 47405, United States
| | - Caleb D Huizenga
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave, Bloomington, Indiana 47405, United States
| | - Manisha Ray
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave, Bloomington, Indiana 47405, United States
| | - Jared O Kafader
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave, Bloomington, Indiana 47405, United States
| | - Caroline Chick Jarrold
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave, Bloomington, Indiana 47405, United States
| |
Collapse
|
5
|
Dobulis MA, Thompson MC, Jarrold CC. Identification of Isoprene Oxidation Reaction Products via Anion Photoelectron Spectroscopy. J Phys Chem A 2021; 125:10089-10102. [PMID: 34755517 DOI: 10.1021/acs.jpca.1c08176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present a study on the oxidation of isoprene under several different conditions that may model both atmospheric and combustion chemistry. Anions, formed by passing isoprene/oxidant gas mixtures through a pulsed discharge generating a range of species, are separated via mass spectrometry and characterized by anion photoelectron (PE) spectroscopy supported by computations. Specifically, a UV-irradiated isoprene/O2 mixture, which additionally produces O3, and an isoprene/O2/H2 mixture, which generates •OH when passed through the discharge, were sampled. The mass spectra of ions generated under both conditions show the production of intact molecular ions, ion-molecule complexes (e.g., O2-, O4-, and O2-·isoprene), and singly deprotonated species (e.g., deprotonated isoprene, C5H7-). In addition, both smaller and oxidized fragments are observed using both gas mixtures, though relative abundances differ. From the UV-irradiated isoprene/O2 gas mixture, additional intact molecular products of reactions initiated by ozonolysis of isoprene, methylglyoxal, and dimethylglyoxal were observed. Fragmentation and oxidation of isoprene observed in both gas mixtures included species with m/z 39, 53, 67, 69, and 83 that we attribute to a series of alkyl- and alkenoxide-based anions. The coexistence of intact molecules and complexes with fragments and reaction products demonstrates the versatility of this ion source as a simple and efficient anion formation method for studying species that may be relevant in atmospheric and combustion chemistry.
Collapse
Affiliation(s)
- Marissa A Dobulis
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Michael C Thompson
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Caroline Chick Jarrold
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
6
|
Mason JL, Harb H, Abou Taka A, Huizenga CD, Corzo HH, Hratchian HP, Jarrold CC. New Photoelectron-Valence Electron Interactions Evident in the Photoelectron Spectrum of Gd 2O . J Phys Chem A 2021; 125:9892-9903. [PMID: 34730978 DOI: 10.1021/acs.jpca.1c07818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Evidence of strong photoelectron-valence electron (PEVE) interactions has been observed in the anion photoelectron (PE) spectra of several lanthanide suboxide clusters, which are exceptionally complex from an electronic structure standpoint and are strongly correlated systems. The PE spectrum of Gd2O-, which should have relatively simple electronic structure because of its half-filled 4f subshell, exhibits numerous electronic transitions. The electron affinity determined from the spectrum is 0.26 eV. The intensities of transitions to excited states increase relative to the lower-energy states with lower photon energy, which is consistent with shakeup transitions driven by time-dependent electron-neutral interactions. A group of intense spectral features that lie between electron binding energies of 0.7 and 2.3 eV are assigned to transitions involving detachment of an electron from outer-valence σu and σg orbitals that have large Gd 6s contributions. The spectra show parallel transition manifolds in general, which is consistent with detachment from these orbitals. However, several distinct perpendicular transitions are observed adjacent to several of the vertical transitions. A possible explanation invoking interaction between the ejected electron and the high-spin neutral is proposed. Specifically, the angular momentum of electrons ejected from σu or σg orbitals, which is l = 1, can switch to l = 0, 2 with an associated change in the Ms of the remnant neutral, which is spin-orbit coupling between a free electron and the spin of a neutral.
Collapse
Affiliation(s)
- Jarrett L Mason
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Hassan Harb
- Department of Chemistry and Biochemistry, University of California, Merced, 5200 North Lake Road, Merced, California 95343, United States
| | - Ali Abou Taka
- Department of Chemistry and Biochemistry, University of California, Merced, 5200 North Lake Road, Merced, California 95343, United States
| | - Caleb D Huizenga
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Hector H Corzo
- Department of Chemistry and Biochemistry, University of California, Merced, 5200 North Lake Road, Merced, California 95343, United States
| | - Hrant P Hratchian
- Department of Chemistry and Biochemistry, University of California, Merced, 5200 North Lake Road, Merced, California 95343, United States
| | - Caroline Chick Jarrold
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
7
|
Mason JL, Folluo CN, Jarrold CC. More than little fragments of matter: Electronic and molecular structures of clusters. J Chem Phys 2021; 154:200901. [DOI: 10.1063/5.0054222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jarrett L. Mason
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA
| | - Carley N. Folluo
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA
| | - Caroline Chick Jarrold
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA
| |
Collapse
|
8
|
McMahon AJ, Jarrold CC. Using anion photoelectron spectroscopy of cluster models to gain insights into mechanisms of catalyst-mediated H 2 production from water. Phys Chem Chem Phys 2020; 22:27936-27948. [PMID: 33201956 DOI: 10.1039/d0cp05055e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metal oxide cluster models of catalyst materials offer a powerful platform for probing the molecular-scale features and interactions that govern catalysis. This perspective gives an overview of studies implementing the combination of anion photoelectron (PE) spectroscopy and density functional theory calculations toward exploring cluster models of metal oxides and metal-oxide supported Pt that catalytically drive the hydrogen evolution reaction (HER) or the water-gas shift reaction. The utility in the combination of these experimental and computational techniques lies in our ability to unambiguously determine electronic and molecular structures, which can then connect to results of reactivity studies. In particular, we focus on the activity of oxygen vacancies modeled by suboxide clusters, the critical mechanistic step of forming proximal metal hydride and hydroxide groups as a prerequisite for H2 production, and the structural features that lead to trapped dihydroxide groups. The pronounced asymmetric oxidation found in heterometallic group 6 oxides and near-neighbor group 5/group 6 results in higher activity toward water, while group 7/group 6 oxides form very specific stoichiometries that suggest facile regeneration. Studies on the trans-periodic combination of cerium oxide and platinum as a model for ceria supported Pt atoms and nanoparticles reveal striking negative charge accumulation by Pt, which, combined with the ionic conductivity of ceria, suggests a mechanism for the exceptionally high activity of this system towards the water-gas shift reaction.
Collapse
Affiliation(s)
- Abbey J McMahon
- Indiana University, Department of Chemistry, 800 E. Kirkwood Avenue, Bloomington, IN 47405, USA.
| | | |
Collapse
|
9
|
Dobulis MA, Thompson MC, Patros KM, Sommerfeld T, Jarrold CC. Emerging Nonvalence Anion States of [Isoprene-H·]·H 2O Accessed via Detachment of OH -·Isoprene. J Phys Chem A 2020; 124:2279-2287. [PMID: 32091900 DOI: 10.1021/acs.jpca.0c01250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The anion photoelectron imaging spectra of an ion with m/z 85, generated under ion source conditions that optimize •OH production in a coexpansion with isoprene, are presented and analyzed with supporting calculations. A spectroscopic feature observed at a vertical electron detachment energy of 2.45 eV, which dominates the photoelectron spectrum measured at 3.495 eV photon energy, is consistent with the OH-·isoprene ion-molecule complex, while additional signal observed at lower electron binding energy can be attributed to other constitutional isomers. However, spectra measured over a 2.2-2.6 eV photon energy range, i.e., from near threshold of the predominant OH-·isoprene detachment feature through the vertical detachment energy, exhibit sharp features with common electron kinetic energies, suggesting autodetachment from a temporary anion prepared by photoexcitation. The photon energy independence of the electron kinetic energy of these features along with the low dipole moment predicted for the neutral •OH·isoprene van der Waals complex, suggest a complex photon-driven process. We present calculations supporting a hypothesis that near-threshold production of the •OH···isoprene reactive complex results in hydrogen abstraction of the isoprene molecule. The newly formed activated complex anion supports a dipole bound state that temporarily traps the near zero-kinetic energy electron and then autodetaches, encoding the low-frequency modes of the dehydrogenated neutral isoprene radical in the electron kinetic energies.
Collapse
Affiliation(s)
- Marissa A Dobulis
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Michael C Thompson
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Kellyn M Patros
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Thomas Sommerfeld
- Department of Chemistry and Physics, Southeast Louisiana University, SLU 10878, Hammond, Louisiana 70402, United States
| | - Caroline Chick Jarrold
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
10
|
Mason JL, Gupta AK, McMahon AJ, Folluo CN, Raghavachari K, Jarrold CC. The striking influence of oxophilicity differences in heterometallic Mo–Mn oxide cluster reactions with water. J Chem Phys 2020; 152:054301. [DOI: 10.1063/1.5142398] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Jarrett L. Mason
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA
| | - Ankur K. Gupta
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA
| | - Abbey J. McMahon
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA
| | - Carley N. Folluo
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA
| | - Krishnan Raghavachari
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA
| | - Caroline Chick Jarrold
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA
| |
Collapse
|
11
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2018. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Mason JL, Harb H, Huizenga CD, Ewigleben JC, Topolski JE, Hratchian HP, Jarrold CC. Electronic and Molecular Structures of the CeB6 Monomer. J Phys Chem A 2019; 123:2040-2048. [DOI: 10.1021/acs.jpca.8b12399] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jarrett L. Mason
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Hassan Harb
- Department of Chemistry and Chemical Biology, University of California, Merced, 5200 North Lake Road, Merced, California 95343, United States
| | - Caleb D. Huizenga
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Joshua C. Ewigleben
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Josey E. Topolski
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Hrant P. Hratchian
- Department of Chemistry and Chemical Biology, University of California, Merced, 5200 North Lake Road, Merced, California 95343, United States
| | - Caroline Chick Jarrold
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
13
|
Patros KM, Mann JE, Dobulis MA, Thompson MC, Jarrold CC. Probing alkenoxy radical electronic structure using anion PEI spectroscopy. J Chem Phys 2019; 150:034302. [PMID: 30660161 DOI: 10.1063/1.5064795] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Photoelectron imaging spectra of three alkenoxide radical anions (3-buten-1-oxide, 3-buten-2-oxide, and 2-propenoxide) are presented and analyzed with supporting results of density functional theory calculations. In all spectra, intense detachment features are observed at approximately 2 eV electron binding energy, which is similar to the electron affinities of saturated neutral alkoxy radicals [Ramond et al., J. Chem. Phys. 112, 1158 (2000)]. Photoelectron angular distributions suggest the presence of several overlapping transitions which are assigned to the X̃ and à states of multiple energetically competitive conformers. The term energy of the à state of the 2-propenoxy radical, 0.17 eV, is higher than that of 3-buten-2-oxy (0.13 eV) and 3-buten-1-oxy (0.05 eV) radicals. Comparing the butenoxy radicals, we infer that stronger interactions between the non-bonding O 2p orbitals and the π bond increase the splitting between the ground and the first excited state in the 3-buten-2-oxy radical relative to the 3-buten-1-oxy radical.
Collapse
Affiliation(s)
- Kellyn M Patros
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA
| | - Jennifer E Mann
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA
| | - Marissa A Dobulis
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA
| | - Michael C Thompson
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA
| | - Caroline Chick Jarrold
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA
| |
Collapse
|
14
|
Mason JL, Harb H, Topolski JE, Hratchian HP, Jarrold CC. A Tale of Two Stabilities: How One Boron Atom Affects a Switch in Bonding Motifs in CeO2Bx– (x = 2, 3) Complexes. J Phys Chem A 2018; 122:9879-9885. [DOI: 10.1021/acs.jpca.8b10446] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jarrett L. Mason
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Hassan Harb
- Department of Chemistry and Chemical Biology, University of California, Merced, 5200 North Lake Road, Merced, California 95343, United States
| | - Josey E. Topolski
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Hrant P. Hratchian
- Department of Chemistry and Chemical Biology, University of California, Merced, 5200 North Lake Road, Merced, California 95343, United States
| | - Caroline Chick Jarrold
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
15
|
Topolski JE, Kafader JO, Marrero-Colon V, Iyengar SS, Hratchian HP, Jarrold CC. Exotic electronic structures of SmxCe3−xOy (x = 0-3; y = 2-4) clusters and the effect of high neutral density of low-lying states on photodetachment transition intensities. J Chem Phys 2018; 149:054305. [DOI: 10.1063/1.5043490] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Josey E. Topolski
- Department of Chemistry, Indiana University, 800 East Kirkwood Ave., Bloomington, Indiana 47405, USA
| | - Jared O. Kafader
- Department of Chemistry, Indiana University, 800 East Kirkwood Ave., Bloomington, Indiana 47405, USA
| | - Vicmarie Marrero-Colon
- Department of Chemistry, Indiana University, 800 East Kirkwood Ave., Bloomington, Indiana 47405, USA
| | - Srinivasan S. Iyengar
- Department of Chemistry, Indiana University, 800 East Kirkwood Ave., Bloomington, Indiana 47405, USA
| | - Hrant P. Hratchian
- Department of Chemistry and Chemical Biology, University of California, Merced, 5200 North Lake Road, Merced, California 95343, USA
| | - Caroline Chick Jarrold
- Department of Chemistry, Indiana University, 800 East Kirkwood Ave., Bloomington, Indiana 47405, USA
| |
Collapse
|