1
|
Lass M, Kenter T, Plessl C, Brehm M. Characterizing Microheterogeneity in Liquid Mixtures via Local Density Fluctuations. ENTROPY (BASEL, SWITZERLAND) 2024; 26:322. [PMID: 38667876 PMCID: PMC11049288 DOI: 10.3390/e26040322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024]
Abstract
We present a novel approach to characterize and quantify microheterogeneity and microphase separation in computer simulations of complex liquid mixtures. Our post-processing method is based on local density fluctuations of the different constituents in sampling spheres of varying size. It can be easily applied to both molecular dynamics (MD) and Monte Carlo (MC) simulations, including periodic boundary conditions. Multidimensional correlation of the density distributions yields a clear picture of the domain formation due to the subtle balance of different interactions. We apply our approach to the example of force field molecular dynamics simulations of imidazolium-based ionic liquids with different side chain lengths at different temperatures, namely 1-ethyl-3-methylimidazolium chloride, 1-hexyl-3-methylimidazolium chloride, and 1-decyl-3-methylimidazolium chloride, which are known to form distinct liquid domains. We put the results into the context of existing microheterogeneity analyses and demonstrate the advantages and sensitivity of our novel method. Furthermore, we show how to estimate the configuration entropy from our analysis, and we investigate voids in the system. The analysis has been implemented into our program package TRAVIS and is thus available as free software.
Collapse
Affiliation(s)
- Michael Lass
- Faculty of Computer Science, Electrical Engineering and Mathematics, Department of Computer Science, Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany; (M.L.); (T.K.); (C.P.)
| | - Tobias Kenter
- Faculty of Computer Science, Electrical Engineering and Mathematics, Department of Computer Science, Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany; (M.L.); (T.K.); (C.P.)
| | - Christian Plessl
- Faculty of Computer Science, Electrical Engineering and Mathematics, Department of Computer Science, Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany; (M.L.); (T.K.); (C.P.)
| | - Martin Brehm
- Faculty of Science, Department of Chemistry, Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| |
Collapse
|
2
|
Memar ZO, Moosavi M. Uncovering the Properties of Dicationic Ionic Liquid Nanodroplets through Ab Initio Molecular Dynamics Simulations. J Phys Chem B 2023; 127:9111-9131. [PMID: 37843820 DOI: 10.1021/acs.jpcb.3c03585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
The behavior of nanodroplets of an imidazolium-based dicationic ionic liquid, i.e., [C1(mim)2][PF6]2, was investigated in this study using ab initio molecular dynamics simulations. The vibrational features as well as the structural, interfacial, and dynamical properties of different sized droplets were analyzed and compared to the bulk phase system. Structural properties of the droplets, such as π-π stacking, radial distribution functions, structure factors, combined distribution functions, and angular distribution functions were analyzed to understand the interactions and orientations of their ions. The vibrational features and hydrogen bonding strength of droplets were studied by calculating their infrared (IR) and power spectra, determining the contribution of different types of hydrogen bonding to each vibrational mode. The calculated spectra showed good overall agreement with the experimental results. The interfacial properties of the droplets and the orientation of their ions were analyzed using density profiles and an exposed surface. The results showed that, in all systems studied, cations and anions were equally likely to exist in both inner and outer layers, and the cations tended to be oriented toward the center of droplets with obtuse angles. Additionally, the droplet densities were extrapolated to predict the bulk phase density with less than 2% deviation. The dynamical properties of hydrogen bonds, mean square displacement, and van Hove correlations of cations and anions were also analyzed. The results indicated that there was no regular trend in the dynamic properties of droplets with an increasing system size.
Collapse
Affiliation(s)
| | - Majid Moosavi
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| |
Collapse
|
3
|
Garrote-Márquez A, Lodeiro L, Suresh R, Cruz Hernández N, Grau-Crespo R, Menéndez-Proupin E. Hydrogen Bonds in Lead Halide Perovskites: Insights from Ab Initio Molecular Dynamics. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:15901-15910. [PMID: 37609385 PMCID: PMC10440809 DOI: 10.1021/acs.jpcc.3c02376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/12/2023] [Indexed: 08/24/2023]
Abstract
Hydrogen bonds (HBs) play an important role in the rotational dynamics of organic cations in hybrid organic/inorganic halide perovskites, thus affecting the structural and electronic properties of the perovskites. However, the properties and even the existence of HBs in these perovskites are not well established. In this study, we investigate HBs in perovskites MAPbBr3 (MA+ = CH3NH3+), FAPbI3 (FA+ = CH(NH2)2+), and their solid solution with composition (FAPbI3)7/8(MAPbBr3)1/8, using ab initio molecular dynamics and electronic structure calculations. We consider HBs donated by X-H fragments (X = N and C) of the organic cations and accepted by the halides (Y = Br and I) and characterize their properties based on pair distribution functions and on a combined distribution function of the hydrogen-acceptor distance with the donor-hydrogen-acceptor angle. By analyzing these functions, we establish geometrical criteria for HB existence based on the hydrogen-acceptor (H-Y) distance and donor-hydrogen-acceptor angle (X-H-Y). The distance condition is defined as d(H - Y) < 3 Å for N-H-donated HBs and d(H - Y) < 4 Å for C-H-donated HBs. The angular condition is 135° < (X - H - Y) < 180° for both types of HBs. A HB is considered to be formed when both angular and distance conditions are simultaneously satisfied. At the simulated temperature (350 K), the HBs dynamically break and form. We compute the time correlation functions of HB existence and HB lifetimes, which range between 0.1 and 0.3 ps at that temperature. The analysis of HB lifetimes indicates that N-H-Br bonds are relatively stronger than N-H-I bonds, while C-H-Y bonds are weaker, with a minimal influence from the halide and cation. To evaluate the impact of HBs on the vibrational spectra, we present the power spectrum in the region of N-H and C-H stretching modes, comparing them with the normal mode frequencies of isolated cations. We show that the peaks associated with N-H stretching modes in perovskites are redshifted and asymmetrically deformed, while the C-H peaks do not exhibit these effects.
Collapse
Affiliation(s)
- Alejandro Garrote-Márquez
- Departamento
de Física Aplicada I, Escuela Politécnica Superior, Universidad de Sevilla, Seville E-41011, Spain
| | - Lucas Lodeiro
- Departamento
de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago, Ñuñoa 7800003, Chile
| | - Rahul Suresh
- Departamento
de Física Aplicada I, Escuela Politécnica Superior, Universidad de Sevilla, Seville E-41011, Spain
- International
Research Center of Spectroscopy and Quantum Chemistry - IRC SQC, Siberian Federal University, 79 Svobodny pr., 660041 Krasnoyarsk, Russia
| | - Norge Cruz Hernández
- Departamento
de Física Aplicada I, Escuela Politécnica Superior, Universidad de Sevilla, Seville E-41011, Spain
| | - Ricardo Grau-Crespo
- Department
of Chemistry, Whiteknights, University of
Reading, Reading RG6 6DX, UK
| | - Eduardo Menéndez-Proupin
- Departamento
de Física Aplicada I, Escuela Politécnica Superior, Universidad de Sevilla, Seville E-41011, Spain
| |
Collapse
|
4
|
Roos E, Sebastiani D, Brehm M. A force field for bio-polymers in ionic liquids (BILFF) - part 2: cellulose in [EMIm][OAc]/water mixtures. Phys Chem Chem Phys 2023; 25:8755-8766. [PMID: 36897117 DOI: 10.1039/d2cp05636d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
We present the extension of our force field BILFF (Bio-Polymers in Ionic Liquids Force Field) to the bio-polymer cellulose. We already published BILFF parameters for mixtures of ionic liquid 1-ethyl-3-methylimidazolium acetate ([EMIm][OAc]) with water. Our all-atom force field focuses on a quantitative reproduction of the hydrogen bonds in the complex mixture of cellulose, [EMIm]+, [OAc]- and water when compared to reference ab initio molecular dynamics (AIMD) simulations. To enhance the sampling, 50 individual AIMD simulations starting from different initial configurations were performed for cellulose in solvent instead of one long simulation, and the resulting averages were used for force field optimization. All cellulose force field parameters were iteratively adjusted starting from the literature force field of W. Damm et al. We were able to obtain a very good agreement with respect to both the microstructure of the reference AIMD simulations and experimental results such as the system density (even at higher temperatures) and the crystal structure. Our new force field allows performing very long simulations of large systems containing cellulose solvated in (aqueous) [EMIm][OAc] with almost ab initio accuracy.
Collapse
Affiliation(s)
- Eliane Roos
- Institut für Chemie - Theoretische Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany.
| | - Daniel Sebastiani
- Institut für Chemie - Theoretische Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany.
| | - Martin Brehm
- Institut für Chemie - Theoretische Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany.
| |
Collapse
|
5
|
Bodo E. Perspectives in the Computational Modeling of New Generation, Biocompatible Ionic Liquids. J Phys Chem B 2022; 126:3-13. [PMID: 34978449 PMCID: PMC8762658 DOI: 10.1021/acs.jpcb.1c09476] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/15/2021] [Indexed: 12/11/2022]
Abstract
In this Perspective, I review the current state of computational simulations on ionic liquids with an emphasis on the recent biocompatible variants. These materials are used here as an example of relatively complex systems that highlights the limits of some of the approaches commonly used to study their structure and dynamics. The source of these limits consists of the coexistence of nontrivial electrostatic, many-body quantum effects, strong hydrogen bonds, and chemical processes affecting the mutual protonation state of the constituent molecular ions. I also provide examples on how it is possible to overcome these problems using suitable simulation paradigms and recently improved techniques that, I expect, will be gradually introduced in the state-of-the-art of computational simulations of ionic liquids.
Collapse
Affiliation(s)
- Enrico Bodo
- Chemistry Department, University of Rome “La Sapienza”, P. A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
6
|
Bodo E. Modelling biocompatible ionic liquids based on organic acids and amino acids: challenges for computational models and future perspectives. Org Biomol Chem 2021; 19:4002-4013. [PMID: 33978045 DOI: 10.1039/d1ob00011j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this short review I shall highlight the basic principle and the difficulties that arise in attempting the computational modeling of seemingly simple systems which hide an unexpected complexity. Biocompatible ionic liquids which are based on the coupling of organic or amino acid anions with metabolic cations such as cholinium are the target of this review. These substances have been the subject of intense research activities in the last few years and have attracted the attention of computational chemists. I shall show that the computational description of these substances is far from trivial and requires the use of sophisticated techniques in order to account for a surprisingly rich chemistry that is due to several phenomena such as polarization, charge transfer, proton transfer equilibria and tautomerization reactions.
Collapse
Affiliation(s)
- Enrico Bodo
- Chemistry Department, University of Rome "La Sapienza", P. A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
7
|
Brehm M, Thomas M. Optimized Atomic Partial Charges and Radii Defined by Radical Voronoi Tessellation of Bulk Phase Simulations. Molecules 2021; 26:1875. [PMID: 33810337 PMCID: PMC8036805 DOI: 10.3390/molecules26071875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/05/2022] Open
Abstract
We present a novel method for the computation of well-defined optimized atomic partial charges and radii from the total electron density. Our method is based on a two-step radical Voronoi tessellation of the (possibly periodic) system and subsequent integration of the total electron density within each Voronoi cell. First, the total electron density is partitioned into the contributions of each molecule, and subsequently the electron density within each molecule is assigned to the individual atoms using a second set of atomic radii for the radical Voronoi tessellation. The radii are optimized on-the-fly to minimize the fluctuation (variance) of molecular and atomic charges. Therefore, our method is completely free of empirical parameters. As a by-product, two sets of optimized atomic radii are produced in each run, which take into account many specific properties of the system investigated. The application of an on-the-fly interpolation scheme reduces discretization noise in the Voronoi integration. The approach is particularly well suited for the calculation of partial charges in periodic bulk phase systems. We apply the method to five exemplary liquid phase simulations and show how the optimized charges can help to understand the interactions in the systems. Well-known effects such as reduced ion charges below unity in ionic liquid systems are correctly predicted without any tuning, empiricism, or rescaling. We show that the basis set dependence of our method is very small. Only the total electron density is evaluated, and thus, the approach can be combined with any electronic structure method that provides volumetric total electron densities-it is not limited to Hartree-Fock or density functional theory (DFT). We have implemented the method into our open-source software tool TRAVIS.
Collapse
Affiliation(s)
- Martin Brehm
- Institut für Chemie, Martin-Luther-Universität Halle–Wittenberg, von-Danckelmann-Platz 4, D-06120 Halle (Saale), Germany;
| | | |
Collapse
|
8
|
Roos E, Brehm M. A force field for bio-polymers in ionic liquids (BILFF) - part 1: [EMIm][OAc]/water mixtures. Phys Chem Chem Phys 2021; 23:1242-1253. [PMID: 33355320 DOI: 10.1039/d0cp04537c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present BILFF, a novel force field for bio-polymers in ionic liquids. In the first part of our study, we introduce optimized force field parameters for mixtures of the ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate ([EMIm][OAc]) with water. This imidazolium-based IL is of particular practical importance as it can dissolve significant amounts of cellulose even at room temperature. An understanding of this dissolution process via molecular dynamics simulations requires a quantitative description of the microscopic structure and the strong hydrogen bonds with a method able of simulating at least several dozen nanoseconds, which is the main aim of our novel force field. To reach this goal, we optimize the force field parameters to reproduce radial, spatial, and combined distribution functions, hydrogen bond lifetimes, diffusion coefficients, and several other quantities from reference ab initio molecular dynamics (AIMD) simulations. Non-trivial effects such as dispersion interactions between the side chains and π-π stacking of the cations are reproduced very well. We further validate the force field by comparison to experimental data such as thermal expansion coefficients, bulk modulus, and density at different temperatures, which yields good agreement and correct trends. No other force field with optimized parameters for mixtures of [EMIm][OAc] and water has been presented in the literature yet. Optimized force field parameters for cellulose and other ILs will be published in upcoming articles.
Collapse
Affiliation(s)
- Eliane Roos
- Institut für Chemie - Theoretische Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany.
| | - Martin Brehm
- Institut für Chemie - Theoretische Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany.
| |
Collapse
|
9
|
Zeng HJ, Khuu T, Chambreau SD, Boatz JA, Vaghjiani GL, Johnson MA. Ionic Liquid Clusters Generated from Electrospray Thrusters: Cold Ion Spectroscopic Signatures of Size-Dependent Acid-Base Interactions. J Phys Chem A 2020; 124:10507-10516. [PMID: 33284621 DOI: 10.1021/acs.jpca.0c07595] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We determine the intramolecular distortions at play in the 2-hydroxyethylhydrazinium nitrate (HEHN) ionic liquid (IL) propellant, which presents the interesting case that the HEH+ cation has multiple sites (i.e., hydroxy, primary amine, and secondary ammonium groups) available for H-bonding with the nitrate anion. These interactions are quantified by analyzing the vibrational band patterns displayed by cold cationic clusters, (HEH+)n(NO3-)n-1, n = 2-6, which are obtained using IR photodissociation of the cryogenically cooled, mass-selected ions. The strong interaction involving partial proton transfer of the acidic N-H proton in HEH+ cation to the nitrate anion is strongly enhanced in the ternary n = 2 cluster but is suppressed with increasing cluster size. The cluster spectra recover the bands displayed by the bulk liquid by n = 5, thus establishing the minimum domain required to capture this aspect of macroscopic behavior.
Collapse
Affiliation(s)
- Helen J Zeng
- Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, United States
| | - Thien Khuu
- Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, United States
| | - Steven D Chambreau
- Jacobs Technology, Inc., Air Force Research Laboratory, AFRL/RQRP, Edwards Air Force Base, California 93524, United States
| | - Jerry A Boatz
- Propellants Branch, Rocket Propulsion Division, Aerospace Systems Directorate, Air Force Research Laboratory, AFRL/RQRP, Edwards Air Force Base, California 93524, United States
| | - Ghanshyam L Vaghjiani
- In-Space Propulsion Branch, Rocket Propulsion Division, Aerospace Systems Directorate, Air Force Research Laboratory, AFRL/RQRP, Edwards Air Force Base, California 93524, United States
| | - Mark A Johnson
- Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
10
|
Weiß M, Brehm M. Exploring Free Energy Profiles of Enantioselective Organocatalytic Aldol Reactions under Full Solvent Influence. Molecules 2020; 25:E5861. [PMID: 33322424 PMCID: PMC7764805 DOI: 10.3390/molecules25245861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 12/29/2022] Open
Abstract
We present a computational study on the enantioselectivity of organocatalytic proline-catalyzed aldol reactions between aldehydes in dimethylformamide (DMF). To explore the free energy surface of the reaction, we apply two-dimensional metadynamics on top of ab initio molecular dynamics (AIMD) simulations with explicit solvent description on the DFT level of theory. We avoid unwanted side reactions by utilizing our newly developed hybrid AIMD (HyAIMD) simulation scheme, which adds a simple force field to the AIMD simulation to prevent unwanted bond breaking and formation. Our condensed phase simulation results are able to nicely reproduce the experimental findings, including the main stereoisomer that is formed, and give a correct qualitative prediction of the change in syn:anti product ratio with different substituents. Furthermore, we give a microscopic explanation for the selectivity. We show that both the explicit description of the solvent and the inclusion of entropic effects are vital to a good outcome-metadynamics simulations in vacuum and static nudged elastic band (NEB) calculations yield significantly worse predictions when compared to the experiment. The approach described here can be applied to a plethora of other enantioselective or organocatalytic reactions, enabling us to tune the catalyst or determine the solvent with the highest stereoselectivity.
Collapse
Affiliation(s)
| | - Martin Brehm
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, D-06120 Halle (Saale), Germany;
| |
Collapse
|
11
|
Macchieraldo R, Ingenmey J, Kirchner B. Understanding the Complex Surface Interplay for Extraction: A Molecular Dynamics Study. Chemistry 2020; 26:14969-14977. [PMID: 32668054 PMCID: PMC7756757 DOI: 10.1002/chem.202002744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/13/2020] [Indexed: 11/22/2022]
Abstract
By means of classical molecular dynamics simulation the interfacial properties of methanol and n‐dodecane, which are two potential candidate solvents for use in non‐aqueous liquid–liquid extraction, were assessed. The question of how the interface changes depending on the concentration of extractant (tri‐n‐butyl phosphate) and salt (LiCl) is addressed. Two different models to represent systems were used to evaluate how LiCl and tri‐n‐butyl phosphate affect mutual miscibility, and how the last‐named behaves depending on the chemical environment. Tri‐n‐butyl phosphate increases the mutual solubility of the solvents, whereas LiCl counteracts it. The extractant was found to be mostly adsorbed on the interface between the solvents, and therefore the structural features of the adsorption were investigated. Adsorption of tri‐n‐butyl phosphate changes depending on its concentration and the presence of LiCl. It exhibits a preferential orientation in which the butyl chains point at the n‐dodecane phase and the phosphate group points at the methanol phase. For high concentrations of tri‐n‐butyl phosphate, its molecular orientation is preserved by diffusion of the excess molecules into both the methanol and n‐dodecane phases. However, LiCl hinders the diffusion into the methanol phase, and thus increases the concentration of tri‐n‐butyl phosphate at the interface and forces a rearrangement with subsequent loss of orientation.
Collapse
Affiliation(s)
- Roberto Macchieraldo
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstrasse 4+6, 53115, Bonn, Germany
| | - Johannes Ingenmey
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstrasse 4+6, 53115, Bonn, Germany
| | - Barbara Kirchner
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstrasse 4+6, 53115, Bonn, Germany
| |
Collapse
|
12
|
Brehm M, Radicke J, Pulst M, Shaabani F, Sebastiani D, Kressler J. Dissolving Cellulose in 1,2,3-Triazolium- and Imidazolium-Based Ionic Liquids with Aromatic Anions. Molecules 2020; 25:E3539. [PMID: 32748878 PMCID: PMC7435399 DOI: 10.3390/molecules25153539] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 11/16/2022] Open
Abstract
We present 1,2,3-triazolium- and imidazolium-based ionic liquids (ILs) with aromatic anions as a new class of cellulose solvents. The two anions in our study, benzoate and salicylate, possess a lower basicity when compared to acetate and therefore should lead to a lower amount of N-heterocyclic carbenes (NHCs) in the ILs. We characterize their physicochemical properties and find that all of them are liquids at room temperature. By applying force field molecular dynamics (MD) simulations, we investigate the structure and dynamics of the liquids and find strong and long-lived hydrogen bonds, as well as significant π-π stacking between the aromatic anion and cation. Our ILs dissolve up to 8.5 wt.-% cellulose. Via NMR spectroscopy of the solution, we rule out chain degradation or derivatization, even after several weeks at elevated temperature. Based on our MD simulations, we estimate the enthalpy of solvation and derive a simple model for semi-quantitative prediction of cellulose solubility in ILs. With the help of Sankey diagrams, we illustrate the hydrogen bond network topology of the solutions, which is characterized by competing hydrogen bond donors and acceptors. The hydrogen bonds between cellulose and the anions possess average lifetimes in the nanosecond range, which is longer than found in common pure ILs.
Collapse
Affiliation(s)
- Martin Brehm
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, D-06120 Halle, Germany
| | - Julian Radicke
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, D-06120 Halle, Germany
| | - Martin Pulst
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, D-06120 Halle, Germany
| | - Farzaneh Shaabani
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, D-06120 Halle, Germany
| | - Daniel Sebastiani
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, D-06120 Halle, Germany
| | - Jörg Kressler
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, D-06120 Halle, Germany
| |
Collapse
|
13
|
Brehm M, Thomas M, Gehrke S, Kirchner B. TRAVIS—A free analyzer for trajectories from molecular simulation. J Chem Phys 2020; 152:164105. [DOI: 10.1063/5.0005078] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- M. Brehm
- Institut für Chemie, Martin-Luther-Universität Halle–Wittenberg, von-Danckelmann-Platz 4, D-06120 Halle (Saale), Germany
| | - M. Thomas
- Institut für Chemie, Martin-Luther-Universität Halle–Wittenberg, von-Danckelmann-Platz 4, D-06120 Halle (Saale), Germany
| | - S. Gehrke
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstr. 4+6, D-53115 Bonn, Germany
| | - B. Kirchner
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstr. 4+6, D-53115 Bonn, Germany
| |
Collapse
|
14
|
Kapoor U, Jayaraman A. Self-Assembly of Allomelanin Dimers and the Impact of Poly(ethylene glycol) on the Assembly: A Molecular Dynamics Simulation Study. J Phys Chem B 2020; 124:2702-2714. [DOI: 10.1021/acs.jpcb.0c00226] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Utkarsh Kapoor
- Department of Chemical and Biomolecular Engineering, Colburn Laboratory, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
| | - Arthi Jayaraman
- Department of Chemical and Biomolecular Engineering, Colburn Laboratory, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
15
|
Brehm M, Pulst M, Kressler J, Sebastiani D. Triazolium-Based Ionic Liquids: A Novel Class of Cellulose Solvents. J Phys Chem B 2019; 123:3994-4003. [DOI: 10.1021/acs.jpcb.8b12082] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Martin Brehm
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, D-06120 Halle (Saale), Germany
| | - Martin Pulst
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, D-06120 Halle (Saale), Germany
| | - Jörg Kressler
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, D-06120 Halle (Saale), Germany
| | - Daniel Sebastiani
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, D-06120 Halle (Saale), Germany
| |
Collapse
|
16
|
Brehm M, Thomas M. An Efficient Lossless Compression Algorithm for Trajectories of Atom Positions and Volumetric Data. J Chem Inf Model 2018; 58:2092-2107. [PMID: 30223650 DOI: 10.1021/acs.jcim.8b00501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present our newly developed and highly efficient lossless compression algorithm for trajectories of atom positions and volumetric data. The algorithm is designed as a two-step approach. In the first step, efficient polynomial extrapolation schemes reduce the information entropy of the data by exploiting both spatial and temporal continuity. The second step processes the data by a series of transformations (Burrows-Wheeler, move-to-front, run length encoding) and finally compresses the stream with multitable canonical Huffman coding. Our approach reaches a compression ratio of around 15:1 for typical position trajectories in the XYZ format. For volumetric data trajectories in Gaussian Cube format (such as electron density), even a compression ratio of around 35:1 is yielded, which is by far the smallest size of all formats compared here. At the same time, compression and decompression are still reasonably fast for everyday use. The precision of the data can be selected by the user. For storage of the compressed data, we introduce the BQB file format, which is very robust, flexible, and efficient. In contrast to most archiving formats, it allows fast random access to individual trajectory frames. Our method is implemented in C++ and provided as free software under the GNU LGPL license. It has been included in the TRAVIS program package but is also available as stand-alone tool and as a library ("libbqb") for use in other projects.
Collapse
Affiliation(s)
- Martin Brehm
- Institut für Chemie - Theoretische Chemie , Martin-Luther-Universität Halle-Wittenberg , Von-Danckelmann-Platz 4 , 06120 Halle (Saale) , Germany
| | - Martin Thomas
- Institut für Chemie - Theoretische Chemie , Martin-Luther-Universität Halle-Wittenberg , Von-Danckelmann-Platz 4 , 06120 Halle (Saale) , Germany
| |
Collapse
|
17
|
Saielli G. Computational Spectroscopy of Ionic Liquids for Bulk Structure Elucidation. ADVANCED THEORY AND SIMULATIONS 2018. [DOI: 10.1002/adts.201800084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Giacomo Saielli
- CNR Institute on Membrane Technology; Unit of Padova; Via Marzolo 1-35131 Padova Italy
- Department of Chemical Sciences; University of Padova; Via Marzolo 1-35131 Padova Italy
| |
Collapse
|
18
|
Perkin S, Kirchner B, Fayer MD. Preface: Special Topic on Chemical Physics of Ionic Liquids. J Chem Phys 2018; 148:193501. [DOI: 10.1063/1.5039492] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Susan Perkin
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Barbara Kirchner
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstr. 4, D-53115 Bonn, Germany
| | - Michael D. Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| |
Collapse
|