1
|
Huang J. Zooming into the Inner Helmholtz Plane of Pt(111)-Aqueous Solution Interfaces: Chemisorbed Water and Partially Charged Ions. JACS AU 2023; 3:550-564. [PMID: 36873696 PMCID: PMC9975841 DOI: 10.1021/jacsau.2c00650] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
The double layer on transition metals, i.e., platinum, features chemical metal-solvent interactions and partially charged chemisorbed ions. Chemically adsorbed solvent molecules and ions are situated closer to the metal surface than electrostatically adsorbed ions. This effect is described tersely by the concept of an inner Helmholtz plane (IHP) in classical double layer models. The IHP concept is extended here in three aspects. First, a refined statistical treatment of solvent (water) molecules considers a continuous spectrum of orientational polarizable states, rather than a few representative states, and non-electrostatic, chemical metal-solvent interactions. Second, chemisorbed ions are partially charged, rather than being electroneutral or having integral charges as in the solution bulk, with the coverage determined by a generalized, energetically distributed adsorption isotherm. The surface dipole moment induced by partially charged, chemisorbed ions is considered. Third, considering different locations and properties of chemisorbed ions and solvent molecules, the IHP is divided into two planes, namely, an AIP (adsorbed ion plane) and ASP (adsorbed solvent plane). The model is used to study how the partially charged AIP and polarizable ASP lead to intriguing double-layer capacitance curves that are different from what the conventional Gouy-Chapman-Stern model describes. The model provides an alternative interpretation for recent capacitance data of Pt(111)-aqueous solution interfaces calculated from cyclic voltammetry. This revisit brings forth questions regarding the existence of a pure double-layer region at realistic Pt(111). The implications, limitations, and possible experimental confirmation of the present model are discussed.
Collapse
|
2
|
Huang J, Zhang Y. Essays on Conceptual Electrochemistry: I. Bridging Open-Circuit Voltage of Electrochemical Cells and Charge Distribution at Electrode–Electrolyte Interfaces. Front Chem 2022; 10:938064. [PMID: 35958239 PMCID: PMC9358007 DOI: 10.3389/fchem.2022.938064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
We ponder over how an electrochemical cell conforms itself to the open-circuit voltage (OCV) given by the Nernst equation, where properties of the electrodes play no role. We first show, via a pedagogical derivation of the Nernst equation, how electrode properties are canceled and then take a closer look into the electrode–electrolyte interface at one electrode by linking charge and potential distributions. We obtain an equilibrium Poisson–Nernst equation that shows how the charge distribution across an electrode–electrolyte interface can be dictated by the chemical potentials of redox species. Taking a H2/O2 fuel cell as an example, we demystify the formal analysis by showing how the two electrodes delicately regulate their “electron tails” to abide by the Nernst equation. In this example, we run into a seemingly counterintuitive phenomenon that two electrodes made of the same transition metal display two distinct potentials of zero charge. This example indicates that the double layer at transition metals with chemisorption can display distinct behaviors compared to ideally polarizable double layers at sp metals.
Collapse
|
3
|
Bui JC, Lees EW, Pant LM, Zenyuk IV, Bell AT, Weber AZ. Continuum Modeling of Porous Electrodes for Electrochemical Synthesis. Chem Rev 2022; 122:11022-11084. [PMID: 35507321 DOI: 10.1021/acs.chemrev.1c00901] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Electrochemical synthesis possesses substantial promise to utilize renewable energy sources to power the conversion of abundant feedstocks to value-added commodity chemicals and fuels. Of the potential system architectures for these processes, only systems employing 3-D structured porous electrodes have the capacity to achieve the high rates of conversion necessary for industrial scale. However, the phenomena and environments in these systems are not well understood and are challenging to probe experimentally. Fortunately, continuum modeling is well-suited to rationalize the observed behavior in electrochemical synthesis, as well as to ultimately provide recommendations for guiding the design of next-generation devices and components. In this review, we begin by presenting an historical review of modeling of porous electrode systems, with the aim of showing how past knowledge of macroscale modeling can contribute to the rising challenge of electrochemical synthesis. We then present a detailed overview of the governing physics and assumptions required to simulate porous electrode systems for electrochemical synthesis. Leveraging the developed understanding of porous-electrode theory, we survey and discuss the present literature reports on simulating multiscale phenomena in porous electrodes in order to demonstrate their relevance to understanding and improving the performance of devices for electrochemical synthesis. Lastly, we provide our perspectives regarding future directions in the development of models that can most accurately describe and predict the performance of such devices and discuss the best potential applications of future models.
Collapse
Affiliation(s)
- Justin C Bui
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States.,Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Eric W Lees
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemical and Biological Engineering, University of British Columbia Vancouver, British Columbia V6T 1Z3, Canada
| | - Lalit M Pant
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Sustainable Energy Engineering, Indian Institute of Technology, Kanpur, Kanpur-208016, India
| | - Iryna V Zenyuk
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Alexis T Bell
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States.,Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Adam Z Weber
- Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
4
|
Balu B, Khair AS. The electrochemical impedance spectrum of asymmetric electrolytes across low to moderate frequencies. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Li P, Liu Y, Chen S. Microscopic EDL Structures and Charge-Potential Relation on Stepped Platinum Surface: Insights from the Ab Initio Molecular Dynamics Simulations. J Chem Phys 2022; 156:104701. [DOI: 10.1063/5.0080104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Peng Li
- College of Chemistry and Molecular Sciences, Wuhan University, China
| | | | | |
Collapse
|
6
|
Eslamibidgoli MJ, Huang J, Kowalski PM, Eikerling MH, Groß A. Deprotonation and cation adsorption on the NiOOH/water interface: A grand-canonical first-principles investigation. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Xiao Y, Liu J, Lin J, Yu H, Pang R, Wu D, Tian Z. Adsorption and Co‐adsorption of Chlorine and Water‐Chlorine Complexes on Au(111) Surfaces: First‐Principles DFT Study. ChemElectroChem 2021. [DOI: 10.1002/celc.202100583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuan‐Hui Xiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry College of Chemistry and Chemical Engineering Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) Xiamen University Xiamen 361005 Fujian China
| | - Jia Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry College of Chemistry and Chemical Engineering Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) Xiamen University Xiamen 361005 Fujian China
| | - Jian‐De Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry College of Chemistry and Chemical Engineering Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) Xiamen University Xiamen 361005 Fujian China
| | - Huan‐Huan Yu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry College of Chemistry and Chemical Engineering Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) Xiamen University Xiamen 361005 Fujian China
| | - Ran Pang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry College of Chemistry and Chemical Engineering Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) Xiamen University Xiamen 361005 Fujian China
| | - De‐Yin Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry College of Chemistry and Chemical Engineering Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) Xiamen University Xiamen 361005 Fujian China
| | - Zhong‐Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry College of Chemistry and Chemical Engineering Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) Xiamen University Xiamen 361005 Fujian China
| |
Collapse
|
8
|
Huang J, Li M, Eslamibidgoli MJ, Eikerling M, Groß A. Cation Overcrowding Effect on the Oxygen Evolution Reaction. JACS AU 2021; 1:1752-1765. [PMID: 34723278 PMCID: PMC8549051 DOI: 10.1021/jacsau.1c00315] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Indexed: 05/05/2023]
Abstract
The influence of electrolyte ions on the catalytic activity of electrode/electrolyte interfaces is a controversial topic for many electrocatalytic reactions. Herein, we focus on an effect that is usually neglected, namely, how the local reaction conditions are shaped by nonspecifically adsorbed cations. We scrutinize the oxygen evolution reaction (OER) at nickel (oxy)hydroxide catalysts, using a physicochemical model that integrates density functional theory calculations, a microkinetic submodel, and a mean-field submodel of the electric double layer. The aptness of the model is verified by comparison with experiments. The robustness of model-based insights against uncertainties and variations in model parameters is examined, with a sensitivity analysis using Monto Carlo simulations. We interpret the decrease in OER activity with the increasing effective size of electrolyte cations as a consequence of cation overcrowding near the negatively charged electrode surface. The same reasoning could explain why the OER activity increases with solution pH on the RHE scale and why the OER activity decreases in the presence of bivalent cations. Overall, this work stresses the importance of correctly accounting for local reaction conditions in electrocatalytic reactions to obtain an accurate picture of factors that determine the electrode activity.
Collapse
Affiliation(s)
- Jun Huang
- Institute
of Theoretical Chemistry, Ulm University, 89069 Ulm, Germany
- Institute
of Energy and Climate Research, IEK-13: Theory and Computation of
Energy Materials, Forschungszentrum Jülich
GmbH, 52425 Jülich, Germany
| | - Mengru Li
- Institute
of Theoretical Chemistry, Ulm University, 89069 Ulm, Germany
| | - Mohammad J. Eslamibidgoli
- Institute
of Energy and Climate Research, IEK-13: Theory and Computation of
Energy Materials, Forschungszentrum Jülich
GmbH, 52425 Jülich, Germany
| | - Michael Eikerling
- Institute
of Energy and Climate Research, IEK-13: Theory and Computation of
Energy Materials, Forschungszentrum Jülich
GmbH, 52425 Jülich, Germany
- Jülich
Aachen Research Alliance: JARA-Energy, 52425 Jülich, Germany
| | - Axel Groß
- Institute
of Theoretical Chemistry, Ulm University, 89069 Ulm, Germany
- Helmholtz
Institute Ulm (HIU) Electrochemical Energy Storage, 89069 Ulm, Germany
| |
Collapse
|
9
|
Zhang L, Cai J, Chen Y, Huang J. Modelling electrocatalytic reactions with a concerted treatment of multistep electron transfer kinetics and local reaction conditions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33. [PMID: 34525456 DOI: 10.1088/1361-648x/ac26fb] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/15/2021] [Indexed: 05/17/2023]
Abstract
A physicochemical model is developed for electrocatalytic reactions involving multiple electron transfer steps occurring in the electric double layer (EDL). The local reaction conditions are calculated using a mean-field EDL model, which is derived from a comprehensive grand potential that considers the steric effects, solvent polarization, and chemisorption-induced surface dipoles. Macroscopic mass transport in the so-called diffusion layer is controlled by the same set of controlling equations of the EDL model, without imposing the electroneutrality assumption as usual. The Gerischer's formulation of electron transfer theory, corrected with local reaction conditions, is used to describe the kinetics of elementary steps. Multistep kinetics of the electrocatalytic reaction is treated using microkinetics modelling, without resorting to the usual rate-determining step approximation. In formal analysis of the model, we retrieve canonical models with additional assumptions. Self-consistent numerical implementation of the model is demonstrated for oxygen reduction reaction (ORR) at Pt(111) in acidic solution, and the aptness of the model is verified by comparison with experimental data. A comparative study of the full model and its simplified versions allows us to examine how the ORR is influenced by asymmetric steric effects, finite concentration of ions, solvent polarization, surface charge effects, and metal electronic structure effects. We find that the difference in terms of the overpotential between the full model and the simplest model can be up to ∼0.1 V at a current density of -6 mAcm-2.
Collapse
Affiliation(s)
- Lulu Zhang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Jun Cai
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Yanxia Chen
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Jun Huang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People's Republic of China
| |
Collapse
|
10
|
Huang J, Attard G. Can hydrogen anion be a possible intermediate of the hydrogen electrode reaction? J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Liu J, Huang J, Peng Z, Dong S. Nonisothermal model for the electric double layer under constant-charge condition. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
12
|
Tesch R, Kowalski PM, Eikerling MH. Properties of the Pt(111)/electrolyte electrochemical interface studied with a hybrid DFT-solvation approach. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:444004. [PMID: 34348250 DOI: 10.1088/1361-648x/ac1aa2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Self-consistent modeling of the interface between solid metal electrode and liquid electrolyte is a crucial challenge in computational electrochemistry. In this contribution, we adopt the effective screening medium reference interaction site method (ESM-RISM) to study the charged interface between a Pt(111) surface that is partially covered with chemisorbed oxygen and an aqueous acidic electrolyte. This method proves to be well suited to describe the chemisorption and charging state of the interface at controlled electrode potential. We present an in-depth assessment of the ESM-RISM parameterization and of the importance of computing near-surface water molecules explicitly at the quantum mechanical level. We found that ESM-RISM is able to reproduce some key interface properties, including the peculiar, non-monotonic charging relation of the Pt(111)/electrolyte interface. The comparison with independent theoretical models and explicit simulations of the interface reveals strengths and limitations of ESM-RISM for modeling electrochemical interfaces.
Collapse
Affiliation(s)
- Rebekka Tesch
- Institute of Energy and Climate Research, Theory and Computation of Energy Materials (IEK-13), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Chair of Theory and Computation of Energy Materials, Faculty of Georesources and Materials Engineering, RWTH Aachen University, 52062 Aachen, Germany
- Jülich Aachen Research Alliance, JARA-CSD and JARA-ENERGY, 52425 Jülich, Germany
| | - Piotr M Kowalski
- Institute of Energy and Climate Research, Theory and Computation of Energy Materials (IEK-13), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Jülich Aachen Research Alliance, JARA-CSD and JARA-ENERGY, 52425 Jülich, Germany
| | - Michael H Eikerling
- Institute of Energy and Climate Research, Theory and Computation of Energy Materials (IEK-13), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Chair of Theory and Computation of Energy Materials, Faculty of Georesources and Materials Engineering, RWTH Aachen University, 52062 Aachen, Germany
- Jülich Aachen Research Alliance, JARA-CSD and JARA-ENERGY, 52425 Jülich, Germany
| |
Collapse
|
13
|
Li Y, Liu ZF. Cross-Sphere Electrode Reaction: The Case of Hydroxyl Desorption during the Oxygen Reduction Reaction on Pt(111) in Alkaline Media. J Phys Chem Lett 2021; 12:6448-6456. [PMID: 34236872 DOI: 10.1021/acs.jpclett.1c01800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hydroxide ion is a common electrolyte when electrode reactions take place in alkaline media. In the case of oxygen reduction reaction on Pt(111), we demonstrate by ab initio molecular dynamics calculations that the desorption of hydroxyl (OH*) from the electrode surface to form a solvated OH- is a cross-sphere process, with the OH* reactant in the inner sphere and the OH- product directly generated in the aqueous outer sphere. Such a mechanism is distinct from the typical inner sphere and outer sphere reactions. It is dictated by the strong hydrogen bonding interactions between a hydroxide ion and water molecules and is facilitated by proton transfer through solvation layers. It should play a significant role whenever OH* desorption, or its reverse, OH- adsorption, is involved in an electrochemical reaction.
Collapse
Affiliation(s)
- Yuke Li
- Department of Chemistry and Centre for Scientific Modeling and Computation, Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Zhi-Feng Liu
- Department of Chemistry and Centre for Scientific Modeling and Computation, Chinese University of Hong Kong, Shatin, Hong Kong, China
- CUHK Shenzhen Research Institute, No. 10, 2nd Yuexing Road, Nanshan District, Shenzhen China
| |
Collapse
|
14
|
Huang J, Li CK. Impedance response of electrochemical interfaces: part II-chemisorption. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:164003. [PMID: 33730712 DOI: 10.1088/1361-648x/abef9d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Physical modeling helps to acquire fundamental insights from experimental data when electrochemical impedance spectroscopy is employed for mechanistic understandings of electrocatalytic reactions. Herein, we report an analytical model for chemisorption impedance with a consistent treatment of ion transport in the solution and electron transfer on the electrode surface. Our formulation avoids botha prioridecoupling of double-layer charging and electron transfer reaction, and a strict separation of double-layer charging and ion transport. Ion transport in the entire solution region is described by the Poisson-Nernst-Planck theory and electron transfer kinetics on the electrode surface by the Frumkin-Butler-Volmer theory. Surface dipoles caused by partially charged chemisorbates are considered. The classical Frumkin-Melik-Gaikazyan model for chemisorption is retrieved as a limiting case. The obtained formula is validated using experimental data of hydrogen adsorption at Pt(111). Characteristic frequencies and asymptotic behaviors of chemisorption impedance are analyzed.
Collapse
Affiliation(s)
- Jun Huang
- Institute of Energy and Climate Research, Theory and Computation of Energy Materials (IEK-13), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Chen-Kun Li
- College of Chemistry and Chemical Engineering, Central South University, 410083 Changsha, People's Republic of China
| |
Collapse
|
15
|
Huang J, Chen S, Eikerling M. Grand-Canonical Model of Electrochemical Double Layers from a Hybrid Density-Potential Functional. J Chem Theory Comput 2021; 17:2417-2430. [PMID: 33787259 DOI: 10.1021/acs.jctc.1c00098] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A hybrid density-potential functional of an electrochemical interface that encompasses major effects in the contacting metal and electrolyte phases is formulated. Variational analysis of this functional yields a grand-canonical model of the electrochemical double layer (EDL). Specifically, metal electrons are described using the Thomas-Fermi-Dirac-Wigner theory of an inhomogeneous electron gas. The electrolyte solution is treated classically at the mean-field level, taking into account electrostatic interactions, ion size effects, and nonlinear solvent polarization. The model uses parametrizable force relations to describe the short-range forces between metal cationic cores, metal electrons, and electrolyte ions and solvent molecules. Therefore, the gap between the metal skeleton and the electrolyte solution, key to properties of the EDL, varies consistently as a function of the electrode potential. Partial charge transfer in the presence of ion specific adsorption is described using an Anderson-Newns type theory. This model is parametrized with density functional theory calculations, compared with experimental data, and then employed to unravel several interfacial properties of fundamental significance in electrochemistry. In particular, a closer approach of the solution phase toward the metal surface, for example, caused by a stronger ion specific adsorption, decreases the potential of zero charge and elevates the double-layer capacitance curve. In addition, the ion specific adsorption can lead to surface depolarization of ions. The present model represents a viable framework to model (reactive) EDLs under the constant potential condition, which can be used to understand multifaceted EDL effects in electrocatalysis.
Collapse
Affiliation(s)
- Jun Huang
- Institute of Energy and Climate Research, Theory and Computation of Energy Materials (IEK-13), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Shengli Chen
- Hubei Key Laboratory of Electrochemical Power Sources, Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Michael Eikerling
- Institute of Energy and Climate Research, Theory and Computation of Energy Materials (IEK-13), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Chair of Theory and Computation of Energy Materials, Faculty of Georesources and Materials Engineering, RWTH Aachen University, Aachen 52062, Germany
| |
Collapse
|
16
|
Tang YL, Chen W, Xu ML, Wei Z, Cai J, Chen YX. Unravelling hydrogen adsorption kinetics on Ir(111) electrode in acid solutions by impedance spectroscopy. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2006105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Yan-li Tang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Wei Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Mian-le Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Zhen Wei
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Jun Cai
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yan-xia Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
17
|
Ryzhkov II, Shchurkina MA, Mikhlina EV, Simunin MM, Nemtsev IV. Switchable ionic selectivity of membranes with electrically conductive surface: Theory and experiment. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137970] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Le JB, Fan QY, Li JQ, Cheng J. Molecular origin of negative component of Helmholtz capacitance at electrified Pt(111)/water interface. SCIENCE ADVANCES 2020; 6:6/41/eabb1219. [PMID: 33028519 PMCID: PMC7541063 DOI: 10.1126/sciadv.abb1219] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 08/20/2020] [Indexed: 05/17/2023]
Abstract
Electrified solid/liquid interfaces are the key to many physicochemical processes in a myriad of areas including electrochemistry and colloid science. With tremendous efforts devoted to this topic, it is unexpected that molecular-level understanding of electric double layers is still lacking. Particularly, it is perplexing why compact Helmholtz layers often show bell-shaped differential capacitances on metal electrodes, as this would suggest a negative capacitance in some layer of interface water. Here, we report state-of-the-art ab initio molecular dynamics simulations of electrified Pt(111)/water interfaces, aiming at unraveling the structure and capacitive behavior of interface water. Our calculation reproduces the bell-shaped differential Helmholtz capacitance and shows that the interface water follows the Frumkin adsorption isotherm when varying the electrode potential, leading to a peculiar negative capacitive response. Our work provides valuable insight into the structure and capacitance of interface water, which can help understand important processes in electrocatalysis and energy storage in supercapacitors.
Collapse
Affiliation(s)
- Jia-Bo Le
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qi-Yuan Fan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jie-Qiong Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jun Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
19
|
Huang J. On obtaining double-layer capacitance and potential of zero charge from voltammetry. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Liu J, Huang J. A mean-field model for the double layer of stepped platinum single-crystal electrodes. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.05.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Investigation of the interfacial properties of platinum stepped surfaces using peroxodisulfate reduction as a local probe. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.03.198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Pfisterer JHK, Zhumaev UE, Cheuquepan W, Feliu JM, Domke KF. Stark effect or coverage dependence? Disentangling the EC-SEIRAS vibrational shift of sulfate on Au(111). J Chem Phys 2019; 150:041709. [DOI: 10.1063/1.5047941] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Jonas H. K. Pfisterer
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Ulmas E. Zhumaev
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - William Cheuquepan
- Instituto de Electroquímica, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| | - Juan M. Feliu
- Instituto de Electroquímica, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| | - Katrin F. Domke
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|