1
|
Khoroshyy P, Martinez-Seara H, Myšková J, Lazar J. Dynamics of transition dipole moment orientation in representative fluorescent proteins. Phys Chem Chem Phys 2023; 25:22117-22123. [PMID: 37560975 DOI: 10.1039/d3cp01242e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Molecules of fluorescent proteins (FPs) exhibit distinct optical directionality. This optical directionality is characterized by transition dipole moments (TDMs), and their orientation with respect to the molecular structures. Although our recent observations of FP crystals allowed us to determine the mean TDM directions with respect to the framework of representative FP molecules, the dynamics of TDM orientations within FP molecules remain to be ascertained. Here we describe the results of our investigations of the dynamics of TDM directions in the fluorescent proteins eGFP, mTurquoise2 and mCherry, through time-resolved fluorescence polarization measurements and microsecond time scale all-atom molecular dynamics (MD) simulations. The investigated FPs exhibit initial fluorescence anisotropies (r0) consistent with significant differences in the orientation of the excitation and emission TDMs. However, based on MD data, we largely attribute this observation to rapid (sub-nanosecond) fluorophore motions within the FP molecular framework. Our results allow improved determinations of orientational distributions of FP molecules by polarization microscopy, as well as more accurate interpretations of fluorescence resonance energy transfer (FRET) observations.
Collapse
Affiliation(s)
- Petro Khoroshyy
- Inst. of Organic Chemistry and Biochemistry CAS, Flemingovo nám. 2, 160 00, Prague 6, Czech Republic
- 1st Faculty of Medicine, Charles University, Albertov 4, 128 00, Prague 2, Czech Republic.
| | - Hector Martinez-Seara
- Inst. of Organic Chemistry and Biochemistry CAS, Flemingovo nám. 2, 160 00, Prague 6, Czech Republic
| | - Jitka Myšková
- 1st Faculty of Medicine, Charles University, Albertov 4, 128 00, Prague 2, Czech Republic.
| | - Josef Lazar
- Inst. of Organic Chemistry and Biochemistry CAS, Flemingovo nám. 2, 160 00, Prague 6, Czech Republic
- 1st Faculty of Medicine, Charles University, Albertov 4, 128 00, Prague 2, Czech Republic.
| |
Collapse
|
2
|
Andrews DL. Symmetry-based identification and enumeration of independent tensor properties in nonlinear and chiral optics. J Chem Phys 2023; 158:034101. [PMID: 36681645 DOI: 10.1063/5.0129636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
For many laser-based methods of material characterization and analysis, a tensor formulation of theory is necessary, especially in techniques that exploit nonlinear or chiral optics. The fundamental interactions that underpin such methods offer various levels of approach to theory, but the most rigorous often lead to equations of considerable complexity. To compute the values for individual material parameters frequently demands making assumptions of extreme simplicity, overly dependent on calculational method, yet still providing unsatisfactory results. A pragmatic and entirely rigorous symmetry-based approach to the irreducible tensorial structures circumvents many of these problems, securing reliable results and guiding the pathway to applications. Instead of focusing on individual tensor components, such an approach can rapidly determine the number of linearly independent quantities-and hence the number of operationally different setups necessary for full characterization. By such means, one can directly ascertain how variations of optical polarization and beam geometry can reliably capture the response of any material system. The use of an irreducible tensor method operates independently of any means that might be chosen to calculate material properties. It removes the need for common simplifying assumptions, such as the approximation of tensorial structure by a scalar representation, adoption of a two-state model, or disregarding near-resonance damping. It also obviates any dependence on a choice of simulation package or quantum-calculational software. In this paper, the principles are set down and illustrated by application to experiments of varying degrees of complexity, including interactions of growing significance in the realm of chiral nonlinear optics. Limitations of this approach are also critically assessed.
Collapse
Affiliation(s)
- David L Andrews
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
3
|
Drobizhev M, Molina RS, Callis PR, Scott JN, Lambert GG, Salih A, Shaner NC, Hughes TE. Local Electric Field Controls Fluorescence Quantum Yield of Red and Far-Red Fluorescent Proteins. Front Mol Biosci 2021; 8:633217. [PMID: 33763453 PMCID: PMC7983054 DOI: 10.3389/fmolb.2021.633217] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/06/2021] [Indexed: 12/17/2022] Open
Abstract
Genetically encoded probes with red-shifted absorption and fluorescence are highly desirable for imaging applications because they can report from deeper tissue layers with lower background and because they provide additional colors for multicolor imaging. Unfortunately, red and especially far-red fluorescent proteins have very low quantum yields, which undermines their other advantages. Elucidating the mechanism of nonradiative relaxation in red fluorescent proteins (RFPs) could help developing ones with higher quantum yields. Here we consider two possible mechanisms of fast nonradiative relaxation of electronic excitation in RFPs. The first, known as the energy gap law, predicts a steep exponential drop of fluorescence quantum yield with a systematic red shift of fluorescence frequency. In this case the relaxation of excitation occurs in the chromophore without any significant changes of its geometry. The second mechanism is related to a twisted intramolecular charge transfer in the excited state, followed by an ultrafast internal conversion. The chromophore twisting can strongly depend on the local electric field because the field can affect the activation energy. We present a spectroscopic method of evaluating local electric fields experienced by the chromophore in the protein environment. The method is based on linear and two-photon absorption spectroscopy, as well as on quantum-mechanically calculated parameters of the isolated chromophore. Using this method, which is substantiated by our molecular dynamics simulations, we obtain the components of electric field in the chromophore plane for seven different RFPs with the same chromophore structure. We find that in five of these RFPs, the nonradiative relaxation rate increases with the strength of the field along the chromophore axis directed from the center of imidazolinone ring to the center of phenolate ring. Furthermore, this rate depends on the corresponding electrostatic energy change (calculated from the known fields and charge displacements), in quantitative agreement with the Marcus theory of charge transfer. This result supports the dominant role of the twisted intramolecular charge transfer mechanism over the energy gap law for most of the studied RFPs. It provides important guidelines of how to shift the absorption wavelength of an RFP to the red, while keeping its brightness reasonably high.
Collapse
Affiliation(s)
- Mikhail Drobizhev
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT, United States
| | - Rosana S Molina
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT, United States
| | - Patrik R Callis
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | | | - Gerard G Lambert
- Department of Neurosciences, UC San Diego, San Diego, CA, United States
| | - Anya Salih
- Antares & Fluoresci Research, Dangar Island, NSW, Australia
| | - Nathan C Shaner
- Department of Neurosciences, UC San Diego, San Diego, CA, United States
| | - Thomas E Hughes
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT, United States
| |
Collapse
|
4
|
Blacker TS, Nicolaou N, Duchen MR, Bain AJ. Polarized Two-Photon Absorption and Heterogeneous Fluorescence Dynamics in NAD(P)H. J Phys Chem B 2019; 123:4705-4717. [PMID: 31021092 DOI: 10.1021/acs.jpcb.9b01236] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Two-photon absorption (2PA) finds widespread application in biological systems, which frequently exhibit heterogeneous fluorescence decay dynamics corresponding to multiple species or environments. By combining polarized 2PA with time-resolved fluorescence intensity and anisotropy decay measurements, we show how the two-photon transition tensors for the components of a heterogeneous population can be separately determined, allowing structural differences between the two fluorescent states of the redox cofactor NAD(P)H to be identified. The results support the view that the two states correspond to alternate configurations of the nicotinamide ring, rather than folded and extended conformations of the entire molecule.
Collapse
Affiliation(s)
- Thomas S Blacker
- Department of Physics & Astronomy , University College London , Gower Street , London WC1E 6BT , United Kingdom.,Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX) , University College London , Gower Street , London WC1E 6BT , United Kingdom.,Research Department of Cell & Developmental Biology , University College London , Gower Street , London WC1E 6BT , United Kingdom
| | - Nick Nicolaou
- Department of Physics & Astronomy , University College London , Gower Street , London WC1E 6BT , United Kingdom
| | - Michael R Duchen
- Research Department of Cell & Developmental Biology , University College London , Gower Street , London WC1E 6BT , United Kingdom
| | - Angus J Bain
- Department of Physics & Astronomy , University College London , Gower Street , London WC1E 6BT , United Kingdom.,Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX) , University College London , Gower Street , London WC1E 6BT , United Kingdom
| |
Collapse
|
5
|
Masters TA, Robinson NA, Marsh RJ, Blacker TS, Armoogum DA, Larijani B, Bain AJ. Time-resolved stimulated emission depletion and energy transfer dynamics in two-photon excited EGFP. J Chem Phys 2018; 148:134312. [DOI: 10.1063/1.5011643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- T. A. Masters
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
- CoMPLEX, University College London, London WC1E 6BT, United Kingdom
| | - N. A. Robinson
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
| | - R. J. Marsh
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
| | - T. S. Blacker
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
- CoMPLEX, University College London, London WC1E 6BT, United Kingdom
| | - D. A. Armoogum
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
| | - B. Larijani
- Cell Biophysics Laboratory, Ikerbasque, Basque Foundation for Science and Unidad de Biofisica (CSIC-UPV/EHU), Bilbao, Spain
| | - A. J. Bain
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
- CoMPLEX, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|