1
|
Ma M, Szavits-Nossan J, Singh A, Grima R. Analysis of a detailed multi-stage model of stochastic gene expression using queueing theory and model reduction. Math Biosci 2024; 373:109204. [PMID: 38710441 PMCID: PMC11536769 DOI: 10.1016/j.mbs.2024.109204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/03/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024]
Abstract
We introduce a biologically detailed, stochastic model of gene expression describing the multiple rate-limiting steps of transcription, nuclear pre-mRNA processing, nuclear mRNA export, cytoplasmic mRNA degradation and translation of mRNA into protein. The processes in sub-cellular compartments are described by an arbitrary number of processing stages, thus accounting for a significantly finer molecular description of gene expression than conventional models such as the telegraph, two-stage and three-stage models of gene expression. We use two distinct tools, queueing theory and model reduction using the slow-scale linear-noise approximation, to derive exact or approximate analytic expressions for the moments or distributions of nuclear mRNA, cytoplasmic mRNA and protein fluctuations, as well as lower bounds for their Fano factors in steady-state conditions. We use these to study the phase diagram of the stochastic model; in particular we derive parametric conditions determining three types of transitions in the properties of mRNA fluctuations: from sub-Poissonian to super-Poissonian noise, from high noise in the nucleus to high noise in the cytoplasm, and from a monotonic increase to a monotonic decrease of the Fano factor with the number of processing stages. In contrast, protein fluctuations are always super-Poissonian and show weak dependence on the number of mRNA processing stages. Our results delineate the region of parameter space where conventional models give qualitatively incorrect results and provide insight into how the number of processing stages, e.g. the number of rate-limiting steps in initiation, splicing and mRNA degradation, shape stochastic gene expression by modulation of molecular memory.
Collapse
Affiliation(s)
- Muhan Ma
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | | | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware, Newark DE 19716, USA
| | - Ramon Grima
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK.
| |
Collapse
|
2
|
Shin S, Chae SJ, Lee S, Kim JK. Beyond homogeneity: Assessing the validity of the Michaelis-Menten rate law in spatially heterogeneous environments. PLoS Comput Biol 2024; 20:e1012205. [PMID: 38843305 PMCID: PMC11185478 DOI: 10.1371/journal.pcbi.1012205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/18/2024] [Accepted: 05/24/2024] [Indexed: 06/19/2024] Open
Abstract
The Michaelis-Menten (MM) rate law has been a fundamental tool in describing enzyme-catalyzed reactions for over a century. When substrates and enzymes are homogeneously distributed, the validity of the MM rate law can be easily assessed based on relative concentrations: the substrate is in large excess over the enzyme-substrate complex. However, the applicability of this conventional criterion remains unclear when species exhibit spatial heterogeneity, a prevailing scenario in biological systems. Here, we explore the MM rate law's applicability under spatial heterogeneity by using partial differential equations. In this study, molecules diffuse very slowly, allowing them to locally reach quasi-steady states. We find that the conventional criterion for the validity of the MM rate law cannot be readily extended to heterogeneous environments solely through spatial averages of molecular concentrations. That is, even when the conventional criterion for the spatial averages is satisfied, the MM rate law fails to capture the enzyme catalytic rate under spatial heterogeneity. In contrast, a slightly modified form of the MM rate law, based on the total quasi-steady state approximation (tQSSA), is accurate. Specifically, the tQSSA-based modified form, but not the original MM rate law, accurately predicts the drug clearance via cytochrome P450 enzymes and the ultrasensitive phosphorylation in heterogeneous environments. Our findings shed light on how to simplify spatiotemporal models for enzyme-catalyzed reactions in the right context, ensuring accurate conclusions and avoiding misinterpretations in in silico simulations.
Collapse
Affiliation(s)
- Seolah Shin
- Department of Applied Mathematics, Korea University, Sejong, Republic of Korea
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon, Republic of Korea
| | - Seok Joo Chae
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon, Republic of Korea
- Department of Mathematical Sciences, KAIST, Daejeon, Republic of Korea
| | - Seunggyu Lee
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon, Republic of Korea
- Division of Applied Mathematical Sciences, Korea University, Sejong, Republic of Korea
| | - Jae Kyoung Kim
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon, Republic of Korea
- Department of Mathematical Sciences, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
3
|
Stochastic enzyme kinetics and the quasi-steady-state reductions: Application of the slow scale linear noise approximation à la Fenichel. J Math Biol 2022; 85:3. [PMID: 35776210 DOI: 10.1007/s00285-022-01768-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/17/2022] [Accepted: 06/02/2022] [Indexed: 10/17/2022]
Abstract
The linear noise approximation models the random fluctuations from the mean-field model of a chemical reaction that unfolds near the thermodynamic limit. Specifically, the fluctuations obey a linear Langevin equation up to order [Formula: see text], where [Formula: see text] is the size of the chemical system (usually the volume). In the presence of disparate timescales, the linear noise approximation admits a quasi-steady-state reduction referred to as the slow scale linear noise approximation (ssLNA). Curiously, the ssLNAs reported in the literature are slightly different. The differences in the reported ssLNAs lie at the mathematical heart of the derivation. In this work, we derive the ssLNA directly from geometric singular perturbation theory and explain the origin of the different ssLNAs in the literature. Moreover, we discuss the loss of normal hyperbolicity and we extend the ssLNA derived from geometric singular perturbation theory to a non-classical singularly perturbed problem. In so doing, we disprove a commonly-accepted qualifier for the validity of stochastic quasi-steady-state approximation of the Michaelis -Menten reaction mechanism.
Collapse
|
4
|
Song YM, Hong H, Kim JK. Universally valid reduction of multiscale stochastic biochemical systems using simple non-elementary propensities. PLoS Comput Biol 2021; 17:e1008952. [PMID: 34662330 PMCID: PMC8562860 DOI: 10.1371/journal.pcbi.1008952] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 11/02/2021] [Accepted: 10/04/2021] [Indexed: 11/19/2022] Open
Abstract
Biochemical systems consist of numerous elementary reactions governed by the law of mass action. However, experimentally characterizing all the elementary reactions is nearly impossible. Thus, over a century, their deterministic models that typically contain rapid reversible bindings have been simplified with non-elementary reaction functions (e.g., Michaelis-Menten and Morrison equations). Although the non-elementary reaction functions are derived by applying the quasi-steady-state approximation (QSSA) to deterministic systems, they have also been widely used to derive propensities for stochastic simulations due to computational efficiency and simplicity. However, the validity condition for this heuristic approach has not been identified even for the reversible binding between molecules, such as protein-DNA, enzyme-substrate, and receptor-ligand, which is the basis for living cells. Here, we find that the non-elementary propensities based on the deterministic total QSSA can accurately capture the stochastic dynamics of the reversible binding in general. However, serious errors occur when reactant molecules with similar levels tightly bind, unlike deterministic systems. In that case, the non-elementary propensities distort the stochastic dynamics of a bistable switch in the cell cycle and an oscillator in the circadian clock. Accordingly, we derive alternative non-elementary propensities with the stochastic low-state QSSA, developed in this study. This provides a universally valid framework for simplifying multiscale stochastic biochemical systems with rapid reversible bindings, critical for efficient stochastic simulations of cell signaling and gene regulation. To facilitate the framework, we provide a user-friendly open-source computational package, ASSISTER, that automatically performs the present framework.
Collapse
Affiliation(s)
- Yun Min Song
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- Biomedical Mathematics Group, Institute for Basic Science, Daejeon, Republic of Korea
| | - Hyukpyo Hong
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- Biomedical Mathematics Group, Institute for Basic Science, Daejeon, Republic of Korea
| | - Jae Kyoung Kim
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- Biomedical Mathematics Group, Institute for Basic Science, Daejeon, Republic of Korea
| |
Collapse
|
5
|
Padoan A, Forni F, Sepulchre R. Balanced truncation for model reduction of biological oscillators. BIOLOGICAL CYBERNETICS 2021; 115:383-395. [PMID: 34382116 PMCID: PMC8382660 DOI: 10.1007/s00422-021-00888-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Model reduction is a central problem in mathematical biology. Reduced order models enable modeling of a biological system at different levels of complexity and the quantitative analysis of its properties, like sensitivity to parameter variations and resilience to exogenous perturbations. However, available model reduction methods often fail to capture a diverse range of nonlinear behaviors observed in biology, such as multistability and limit cycle oscillations. The paper addresses this need using differential analysis. This approach leads to a nonlinear enhancement of classical balanced truncation for biological systems whose behavior is not restricted to the stability of a single equilibrium. Numerical results suggest that the proposed framework may be relevant to the approximation of classical models of biological systems.
Collapse
Affiliation(s)
- Alberto Padoan
- Department of Engineering, University of Cambridge, Cambridge, UK
| | - Fulvio Forni
- Department of Engineering, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
6
|
Bokes P, Hojcka M, Singh A. MicroRNA Based Feedforward Control of Intrinsic Gene Expression Noise. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:272-282. [PMID: 31484129 DOI: 10.1109/tcbb.2019.2938502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Intrinsic noise, which arises in gene expression at low copy numbers, can be controlled by diverse regulatory motifs, including feedforward loops. Here, we study an example of a feedforward control system based on the interaction between an mRNA molecule and an antagonistic microRNA molecule encoded by the same gene, aiming to quantify the variability (or noise) in molecular copy numbers. Using linear noise approximation, we show that the mRNA noise is sub-Poissonian in case of non-bursty transcription, and exhibits a nonmonotonic response both to the species natural lifetime ratio and to the strength of the antagonistic interaction. Additionally, we use the Chemical Reaction Network Theory to prove that the mRNA copy number distribution is Poissonian in the absence of spontaneous mRNA decay channel. In case of transcriptional bursts, we show that feedforward control can attenuate the super-Poissonian gene-expression noise that is due to bursting, and that the effect is more considerable at the protein than at the mRNA level. Our results indicate that the strong coupling between mRNA and microRNA in the sense of burst stoichiometry and also of timing of production events renders the microRNA based feedforward motif an effective mechanism for the control of gene expression noise.
Collapse
|
7
|
Holehouse J, Sukys A, Grima R. Stochastic time-dependent enzyme kinetics: Closed-form solution and transient bimodality. J Chem Phys 2020; 153:164113. [PMID: 33138415 DOI: 10.1063/5.0017573] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We derive an approximate closed-form solution to the chemical master equation describing the Michaelis-Menten reaction mechanism of enzyme action. In particular, assuming that the probability of a complex dissociating into an enzyme and substrate is significantly larger than the probability of a product formation event, we obtain expressions for the time-dependent marginal probability distributions of the number of substrate and enzyme molecules. For delta function initial conditions, we show that the substrate distribution is either unimodal at all times or else becomes bimodal at intermediate times. This transient bimodality, which has no deterministic counterpart, manifests when the initial number of substrate molecules is much larger than the total number of enzyme molecules and if the frequency of enzyme-substrate binding events is large enough. Furthermore, we show that our closed-form solution is different from the solution of the chemical master equation reduced by means of the widely used discrete stochastic Michaelis-Menten approximation, where the propensity for substrate decay has a hyperbolic dependence on the number of substrate molecules. The differences arise because the latter does not take into account enzyme number fluctuations, while our approach includes them. We confirm by means of a stochastic simulation of all the elementary reaction steps in the Michaelis-Menten mechanism that our closed-form solution is accurate over a larger region of parameter space than that obtained using the discrete stochastic Michaelis-Menten approximation.
Collapse
Affiliation(s)
- James Holehouse
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Augustinas Sukys
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Ramon Grima
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
8
|
Kim JK, Tyson JJ. Misuse of the Michaelis-Menten rate law for protein interaction networks and its remedy. PLoS Comput Biol 2020; 16:e1008258. [PMID: 33090989 PMCID: PMC7581366 DOI: 10.1371/journal.pcbi.1008258] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
For over a century, the Michaelis-Menten (MM) rate law has been used to describe the rates of enzyme-catalyzed reactions and gene expression. Despite the ubiquity of the MM rate law, it accurately captures the dynamics of underlying biochemical reactions only so long as it is applied under the right condition, namely, that the substrate is in large excess over the enzyme-substrate complex. Unfortunately, in circumstances where its validity condition is not satisfied, especially so in protein interaction networks, the MM rate law has frequently been misused. In this review, we illustrate how inappropriate use of the MM rate law distorts the dynamics of the system, provides mistaken estimates of parameter values, and makes false predictions of dynamical features such as ultrasensitivity, bistability, and oscillations. We describe how these problems can be resolved with a slightly modified form of the MM rate law, based on the total quasi-steady state approximation (tQSSA). Furthermore, we show that the tQSSA can be used for accurate stochastic simulations at a lower computational cost than using the full set of mass-action rate laws. This review describes how to use quasi-steady state approximations in the right context, to prevent drawing erroneous conclusions from in silico simulations.
Collapse
Affiliation(s)
- Jae Kyoung Kim
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - John J. Tyson
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
- Division of Systems Biology, Virginia Tech, Blacksburg, Virginia, United States of America
| |
Collapse
|
9
|
Patsatzis DG, Goussis DA. A new Michaelis-Menten equation valid everywhere multi-scale dynamics prevails. Math Biosci 2019; 315:108220. [PMID: 31255632 DOI: 10.1016/j.mbs.2019.108220] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022]
Abstract
The Michaelis-Menten reaction scheme is among the most influential models in the field of biochemistry, since it led to a very popular expression for the rate of an enzyme-catalysed reaction. After the realisation that this expression is valid in a limited region of the parameter space, two additional expressions were later introduced. The range of validity of these three expressions has been studied thoroughly, since the significance of a reliable rate is not based only on the accuracy of its predictive abilities but also on the physical insight that is acquired in the process of its construction. Here a new expression for the rate is introduced that is valid in practically the full parameter space and reduces to the expressions in the literature, when considering appropriate limits. The new expression is produced by employing algorithmic tools for asymptotic analysis, so that its construction is not hindered by the dimensional form and the complexity of the full model or by a wide parameter range of interest. These tools can be employed for the derivation of enzyme rate expressions of much more complex kinetics mechanisms.
Collapse
Affiliation(s)
- Dimitris G Patsatzis
- School of Mathematical and Physical Sciences, National Technical University of Athens, Athens, 15780, Greece
| | - Dimitris A Goussis
- Department of Mechanical Engineering, Khalifa University, Abu Dhabi,127788, United Arab Emirates.
| |
Collapse
|