1
|
Glebov IO, Poddubnyy VV, Khokhlov D. Perturbation theory in the complete degenerate active space (CDAS-PT2). J Chem Phys 2024; 161:024114. [PMID: 38995081 DOI: 10.1063/5.0211210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Abstract
Methods based on the multireference perturbation theory (MRPT) with the one-electron zeroth-order Hamiltonian are widely used for the description of excited states, for example, due to their relatively low computational cost. However, current methods have a common drawback-use of a model space with low size. In this article, we propose the MRPT method with the model space extended to the complete active space. The one-electron zeroth-order Hamiltonian suitable for this extension is formulated. The proposed method was applied to common models, such as LiF, ethylene, and trans-butadiene. It was shown to have accuracy superior to XMCQDPT2 in most cases, especially in the case of the small active space.
Collapse
Affiliation(s)
- Ilya O Glebov
- Chemistry Department, Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Vladimir V Poddubnyy
- Chemistry Department, Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | | |
Collapse
|
2
|
Nath M, Joshi S, Mishra S. Ab initio calculation of magnetic anisotropy and thermal spin transition in the variable temperature crystal conformations of [Co(terpy) 2] 2. Phys Chem Chem Phys 2024; 26:15405-15416. [PMID: 38747204 DOI: 10.1039/d4cp00591k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The structure-property correlation of [Co(terpy)2]2+, which shows a spin crossover at 270 K, has been computationally investigated based on its variable temperature crystal structures. Among the employed DFT functionals, only the re-parametrized hybrid B3LYP* functional could describe the correct spin transition temperature. Explicit consideration of metal-ligand sigma bonding with dynamic electron correlation is found to be necessary for an accurate determination of the SCO temperature with multi-reference calculations. The metal-ligand axial bond distances are found to be the most significant internal coordinates in deciding SCO. A small structural change along the axial distance causes a change in the t2g orbital splitting pattern and a reorientation of the magnetization axes at the SCO temperature. The complex shows an unusual triaxial magnetic anisotropy, with an easy axis of magnetization developing at higher temperatures. The strong coupling of low-frequency wagging motion of the two terpyridine ligands with the spin states of the complex provides an effective pathway for the relaxation of magnetization, resulting in a small magnetic anisotropy barrier.
Collapse
Affiliation(s)
- Moromi Nath
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India.
| | - Shalini Joshi
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India.
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
3
|
Hamon N, Godec L, Jourdain E, Lucio-Martínez F, Platas-Iglesias C, Beyler M, Charbonnière LJ, Tripier R. Synthesis and Photophysical Properties of Lanthanide Pyridinylphosphonic Tacn and Pyclen Derivatives: From Mononuclear Complexes to Supramolecular Heteronuclear Assemblies. Inorg Chem 2023; 62:18940-18954. [PMID: 37935007 DOI: 10.1021/acs.inorgchem.3c02522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Synthetic methodologies were developed to achieve the preparation of ligands L1 and L2 consisting of tacn- and pyclen-based chelators decorated with pyridinylphosphonic pendant arms combined with ethylpicolinamide or acetate coordinating functions, respectively. Phosphonate functions have been selected for their high affinity toward Ln3+ ions compared to their carboxylated counterparts and for their steric hindrance that favors the formation of less-hydrated complexes. Thanks to regiospecific N-functionalization of the macrocyclic backbones, the two ligands were isolated with good yields and implicated in a comprehensive photophysical study for the complexation of Eu3+, Tb3+, and Yb3+. The coordination behavior of L1 and L2 with these cations has been first investigated by means of a combination of UV-vis absorption spectroscopy, steady-state and time-resolved luminescence spectroscopy, and 1H and 31P NMR titration experiments. Structural characterization in solution was assessed by NMR spectroscopy, corroborated by theoretical calculations. Spectroscopic characterization of the Ln3+ complexes of L1 and L2 was done in water and D2O and showed the effective sensitization of the lanthanide metal-centered emission spectra, each exhibiting typical lanthanide emission bands. The results obtained for the phosphonated ligands were compared with those reported previously for the corresponding carboxylated analogues.
Collapse
Affiliation(s)
- Nadège Hamon
- Univ Brest, UMR CNRS 6521 CEMCA, 6 Avenue Victor Le Gorgeu, Brest 29200, France
| | - Léna Godec
- Equipe de Synthèse pour l'analyse, Institut Pluridisciplinaire Hubert Curien, UMR 7178, CNRS/Université de Strasbourg, ECPM, 25 rue Becquerel, Strasbourg 67087, Cedex 2, France
| | - Elsa Jourdain
- Equipe de Synthèse pour l'analyse, Institut Pluridisciplinaire Hubert Curien, UMR 7178, CNRS/Université de Strasbourg, ECPM, 25 rue Becquerel, Strasbourg 67087, Cedex 2, France
| | - Fátima Lucio-Martínez
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, A Coruña 15008, Spain
| | - Carlos Platas-Iglesias
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, A Coruña 15008, Spain
| | - Maryline Beyler
- Univ Brest, UMR CNRS 6521 CEMCA, 6 Avenue Victor Le Gorgeu, Brest 29200, France
| | - Loïc J Charbonnière
- Equipe de Synthèse pour l'analyse, Institut Pluridisciplinaire Hubert Curien, UMR 7178, CNRS/Université de Strasbourg, ECPM, 25 rue Becquerel, Strasbourg 67087, Cedex 2, France
| | - Raphaël Tripier
- Univ Brest, UMR CNRS 6521 CEMCA, 6 Avenue Victor Le Gorgeu, Brest 29200, France
| |
Collapse
|
4
|
Glebov IO, Poddubnyy VV, Khokhlov DV. Perturbative Expansion of Nonorthogonal Product Approach for Charge Transfer States. J Phys Chem A 2022; 126:5800-5813. [PMID: 35998639 DOI: 10.1021/acs.jpca.2c02612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Modeling of the excited states of multichromophoric systems is crucial for the understanding of photosynthesis functioning. The excitonic Hamiltonian method is widely used for such calculations. Excited states of the combined system are constructed from the wave functions of individual chromophores while their interactions are described by excitonic couplings. In the current study, we enhance a previously proposed nonorthogonal product approach to incorporate dynamic correlation effects accounted for by the multireference perturbation theory. We discuss the problems of constructing the excitonic Hamiltonian including charge transfer states for the molecular systems where the overlap contribution to the excitonic couplings is non-negligible. The benchmark calculations were performed for a model system. It was shown that the overlap component of the excitonic coupling is of great importance. The enhanced method provides an accurate description of the excited state energies and other properties.
Collapse
Affiliation(s)
- Ilya O Glebov
- Chemistry Department, Moscow State University, Leninskie gory 1-3, Moscow 119991, Russia
| | - Vladimir V Poddubnyy
- Chemistry Department, Moscow State University, Leninskie gory 1-3, Moscow 119991, Russia
| | - Daniil V Khokhlov
- Chemistry Department, Moscow State University, Leninskie gory 1-3, Moscow 119991, Russia
| |
Collapse
|
5
|
Straatsma TP, Broer R, Sánchez-Mansilla A, Sousa C, de Graaf C. GronOR: Scalable and Accelerated Nonorthogonal Configuration Interaction for Molecular Fragment Wave Functions. J Chem Theory Comput 2022; 18:3549-3565. [PMID: 35640094 DOI: 10.1021/acs.jctc.2c00266] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
GronOR is a program package for nonorthogonal configuration interaction calculations. Electronic wave functions are constructed in terms of antisymmetrized products of multiconfiguration molecular fragment wave functions. The computational complexity of the nonorthogonal methodologies implemented in GronOR applied to large molecular assemblies requires a design that takes full advantage of massively parallel supercomputer architectures and accelerator technologies. This work describes the implementation strategy and resulting performance characteristics. In addition to parallelization and acceleration, the software development strategy includes aspects of fault resiliency and heterogeneous computing. The program was designed for large-scale supercomputers but also runs effectively on small clusters and workstations for small molecular systems. GronOR is available as open source to the scientific community.
Collapse
Affiliation(s)
- T P Straatsma
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6373, United States.,Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | - R Broer
- Theoretical Chemistry Group, Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - A Sánchez-Mansilla
- Department of Physical and Inorganic Chemistry, Universitat Rovira i Virgili, C. Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - C Sousa
- Department of Physical Chemistry and Institut de Química Teòrica i Computacional, Universitat de Barcelona, 08028 Barcelona, Spain
| | - C de Graaf
- Theoretical Chemistry Group, Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands.,Department of Physical and Inorganic Chemistry, Universitat Rovira i Virgili, C. Marcel·lí Domingo 1, 43007 Tarragona, Spain.,ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
6
|
Boyn JN, Mazziotti DA. Elucidating the molecular orbital dependence of the total electronic energy in multireference problems. J Chem Phys 2022; 156:194104. [PMID: 35597644 DOI: 10.1063/5.0090342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The accurate resolution of the chemical properties of strongly correlated systems, such as biradicals, requires the use of electronic structure theories that account for both multi-reference and dynamic correlation effects. A variety of methods exist that aim to resolve the dynamic correlation in multi-reference problems, commonly relying on an exponentially scaling complete-active-space self-consistent-field (CASSCF) calculation to generate reference molecular orbitals (MOs). However, while CASSCF orbitals provide the optimal solution for a selected set of correlated (active) orbitals, their suitability in the quest for the resolution of the total correlation energy has not been thoroughly investigated. Recent research has shown the ability of Kohn-Shan density functional theory to provide improved orbitals for coupled cluster (CC) and Møller-Plesset perturbation theory (MP) calculations. Here, we extend the search for optimal and more cost effective MOs to post-configuration-interaction [post-(CI)] methods, surveying the ability of the MOs obtained with various density functional theory (DFT) functionals, as well as Hartree-Fock and CC and MP calculations to accurately capture the total electronic correlation energy. Applying the anti-Hermitian contracted Schrödinger equation to the dissociation of N2, the calculation of biradical singlet-triplet gaps, and the transition states of bicylobutane isomerization, we demonstrate that DFT provides a cost-effective alternative to CASSCF in providing reference orbitals for post-CI dynamic correlation calculations.
Collapse
Affiliation(s)
- Jan-Niklas Boyn
- The James Franck Institute and The Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
| | - David A Mazziotti
- The James Franck Institute and The Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
7
|
Sánchez-Mansilla A, Sousa C, Kathir RK, Broer R, Straatsma TP, de Graaf C. On the role of dynamic electron correlation in non-orthogonal configuration interaction with fragments. Phys Chem Chem Phys 2022; 24:11931-11944. [PMID: 35521680 DOI: 10.1039/d2cp00772j] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two different approaches have been implemented to include the effect of dynamic electron correlation in the Non-Orthogonal Configuration Interaction for Fragments (NOCI-F) method. The first is based on shifting the diagonal matrix elements of the NOCI matrix, while the second incorporates the dynamic correlation explicitly in the fragment wave functions used to construct the many-electron basis functions of the NOCI. The two approaches are illustrated for the calculation of the electronic coupling relevant in singlet fission and the coupling of spin moments in organic radicals. Comparison of the calculated diabatic couplings, the NOCI energies and wave functions shows that dynamic electron correlation is not only efficiently but also effectively incorporated by the shifting approach and can largely affect the coupling between electronic states. Also, it brings the NOCI coupling of the spin moments in close agreement with benchmark calculations.
Collapse
Affiliation(s)
- A Sánchez-Mansilla
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Tarragona, Spain
| | - C Sousa
- Departament de Ciència de Materials i Química Física and Institut de Química Teòrica i Computacional, Universitat de Barcelona, Spain.
| | - R K Kathir
- Zernike Institute of Advanced Materials, University of Groningen, The Netherlands
| | - R Broer
- Zernike Institute of Advanced Materials, University of Groningen, The Netherlands
| | - T P Straatsma
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6373, USA.,Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL 35487-0336, USA
| | - C de Graaf
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Tarragona, Spain.,Zernike Institute of Advanced Materials, University of Groningen, The Netherlands.,ICREA, Pg. Lluís Companys 23, Barcelona, Spain.
| |
Collapse
|
8
|
Abstract
The electronic structure of coordination compounds with lanthanide ions is studied by means of density functional theory (DFT) calculations. This work deals with the electronic structure and properties of open-shell systems based on the calculation of multiplet structure and ligand-field interaction, within the framework of the Ligand–Field Density-Functional Theory (LFDFT) method. Using effective Hamiltonian in conjunction with the DFT, we are able to reasonably calculate the low-lying excited states of the molecular [Eu(NO3)3(phenanthroline)2] complex, subjected to the Eu3+ configuration 4f6. The results are compared with available experimental data, revealing relative uncertainties of less than 5% for many energy levels. We also demonstrate the ability of the LFDFT method to simulate absorption spectrum, considering cerocene as an example. Ce M4,5 X-ray absorption spectra are simulated for the complexes [Ce(η8−C8H8)2] and [Ce(η8−C8H8)2][Li(tetrahydrofurane)4], which are approximated by the Ce oxidation states 4+ and 3+, respectively. The results showed a very good agreement with the experimental data for the Ce3+ compound, unlike for the Ce4+ one, where charge transfer electronic structure is still missing in the theoretical model. Therefore this presentation reports the benefits of having a theoretical method that is primarily dedicated to coordination chemistry, but it also outlines limitations and places the ongoing developmental efforts in the broader context of treating complex molecular systems.
Collapse
|
9
|
Wu D, Zhou C, Bao JJ, Gagliardi L, Truhlar DG. Zero-Field Splitting Calculations by Multiconfiguration Pair-Density Functional Theory. J Chem Theory Comput 2022; 18:2199-2207. [PMID: 35319874 DOI: 10.1021/acs.jctc.1c01115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Zero-field splitting (ZFS) is a fundamental molecular property that is especially relevant for single-molecule magnets (SMMs), electron paramagnetic resonance spectra, and quantum computing. Developing a method that can accurately predict ZFS parameters can be very powerful for designing new SMMs. One of the challenges is to include external correlation in an inherently multiconfigurational open-shell species for the accurate prediction of magnetic properties. Previously available methods depend on expensive multireference perturbation theory calculations to include external correlation. In this paper, we present spin-orbit-inclusive multiconfiguration and multistate pair-density functional theory (MC-PDFT) calculations of ZFSs; these calculations have a cost comparable to complete-active-space self-consistent field (CASSCF) theory, but they include correlation external to the active space. We found that combining a multistate formulation of MC-PDFT, namely, compressed-state multistate pair-density functional theory, with orbitals optimized by weighted-state-averaged CASSCF, yields reasonably accurate ZFS results.
Collapse
Affiliation(s)
- Dihua Wu
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Chen Zhou
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Jie J Bao
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, The James Franck Institute, and Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States.,Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
10
|
Neese F. Software update: The
ORCA
program system—Version 5.0. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1606] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Frank Neese
- Max Planck Institut für Kohlenforschung Mülheim an der Ruhr Germany
| |
Collapse
|
11
|
Krstić M, Fink K, Sharapa DI. The Adsorption of Small Molecules on the Copper Paddle-Wheel: Influence of the Multi-Reference Ground State. Molecules 2022; 27:912. [PMID: 35164179 PMCID: PMC8840508 DOI: 10.3390/molecules27030912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 11/16/2022] Open
Abstract
We report a theoretical study of the adsorption of a set of small molecules (C2H2, CO, CO2, O2, H2O, CH3OH, C2H5OH) on the metal centers of the "copper paddle-wheel"-a key structural motif of many MOFs. A systematic comparison between DFT of different rungs, single-reference post-HF methods (MP2, SOS-MP2, MP3, DLPNO-CCSD(T)), and multi-reference approaches (CASSCF, DCD-CAS(2), NEVPT2) is performed in order to find a methodology that correctly describes the complicated electronic structure of paddle-wheel structure together with a reasonable description of non-covalent interactions. Apart from comparison with literature data (experimental values wherever possible), benchmark calculations with DLPNO-MR-CCSD were also performed. Despite tested methods show qualitative agreement in the majority of cases, we showed and discussed reasons for quantitative differences as well as more fundamental problems of specific cases.
Collapse
Affiliation(s)
- Marjan Krstić
- Institute for Theoretical Solid State Physics (TFP), Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Str. 1, 76131 Karlsruhe, Germany;
| | - Karin Fink
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany;
| | - Dmitry I. Sharapa
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
12
|
Atanasov M, Andreici Eftimie EL, Avram NM, Brik MG, Neese F. First-Principles Study of Optical Absorption Energies, Ligand Field and Spin-Hamiltonian Parameters of Cr 3+ Ions in Emeralds. Inorg Chem 2021; 61:178-192. [PMID: 34930002 DOI: 10.1021/acs.inorgchem.1c02650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we study the electronic structure, energies, and vibronic structure of optical d-d transitions of Cr3+ ions doped in beryl (Be3Si6Al2O18:Cr3+, emerald). A computational protocol is developed that combines periodic density functional theory (for modeling of the bulk crystalline lattice of emerald) and the multireference configuration interaction complete active space self-consistent field method supplemented with n-electron valence second-order perturbation theory (for the calculation of the energy levels, wave functions, and spin-Hamiltonian and ligand-field parameters of the trigonal Cr3+ centers in the [CrO6]9- clusters embedded in an extended point charge field). Ligand-field parameters were extracted from mapping the effective ligand-field Hamiltonian onto the full many-particle Hamiltonian from one side and from a direct fit to energies of computed d-d transitions on the other side. These have been analyzed using ab initio ligand-field theory. The quality of the theoretical predictions is critically assessed through a detailed comparison with the available experimental data.
Collapse
Affiliation(s)
- Mihail Atanasov
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr D-45470, Germany.,Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | | | - Nicolae M Avram
- Department of Physics, West University of Timisoara, Bd.V. Parvan No. 4, Timisoara 300223, Romania.,Academy of Romanian Scientists, Ilfov 3, Bucharest 050044, Romania
| | - Mikhail G Brik
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, Tartu 50411, Estonia.,CQUPT-BUL Innovation Institute & College of Sciences, Chongqing University of Posts and Telecommunications, Chongqing 400065, People's Republic of China.,Faculty of Science and Technology, Jan Długosz University, Armii Krajowej 13/15, Częstochowa PL-42200, Poland.,Academy of Romanian Scientists, Ilfov 3, Bucharest 050044, Romania
| | - Frank Neese
- Department of Molecular Theory and Spectroscopy, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr D-45470, Germany
| |
Collapse
|
13
|
Song Y, Guo Y, Lei Y, Zhang N, Liu W. The Static-Dynamic-Static Family of Methods for Strongly Correlated Electrons: Methodology and Benchmarking. Top Curr Chem (Cham) 2021; 379:43. [PMID: 34724123 DOI: 10.1007/s41061-021-00351-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/15/2021] [Indexed: 11/28/2022]
Abstract
A series of methods (SDSCI, SDSPT2, iCI, iCIPT2, iCISCF(2), iVI, and iCAS) is introduced to accurately describe strongly correlated systems of electrons. Born from the (restricted) static-dynamic-static (SDS) framework for designing many-electron wave functions, SDSCI is a minimal multireference (MR) configuration interaction (CI) approach that constructs and diagonalizes a [Formula: see text] matrix for [Formula: see text] states, regardless of the numbers of orbitals and electrons to be correlated. If the full molecular Hamiltonian H in the QHQ block (which describes couplings between functions of the first-order interaction space Q) of the SDSCI CI matrix is replaced with a zeroth-order Hamiltonian [Formula: see text] before the diagonalization is taken, we obtain SDSPT2, a CI-like second-order perturbation theory (PT2). Unlike most variants of MRPT2, SDSPT2 treats single and multiple states in the same way and is particularly advantageous in the presence of near degeneracy. On the other hand, if the SDSCI procedure is repeated until convergence, we will have iterative CI (iCI), which can converge quickly from the above to the exact solutions (full CI) even when starting with a poor guess. When further combined with the selection of important configurations followed by a PT2 treatment of dynamic correlation, iCI becomes iCIPT2, which is a near-exact theory for medium-sized systems. The microiterations of iCI for relaxing the coefficients of contracted many-electron functions can be generalized to an iterative vector interaction (iVI) approach for finding exterior or interior roots of a given matrix, in which the dimension of the search subspace is fixed by either the number of target roots or the user-specified energy window. Naturally, iCIPT2 can be employed as the active space solver of the complete active space (CAS) self-consistent field, leading to iCISCF(2), which can further be combined with iCAS for automated selection of active orbitals and assurance of the same CAS for all states and all geometries. The methods are calibrated by taking the Thiel set of benchmark systems as examples. Results for the corresponding cations, a new set of benchmark systems, are also reported.
Collapse
Affiliation(s)
- Yangyang Song
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, Shandong, China
| | - Yang Guo
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, Shandong, China
| | - Yibo Lei
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Shaanxi key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an, 710127, Shaanxi, China
| | - Ning Zhang
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Wenjian Liu
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, Shandong, China.
| |
Collapse
|
14
|
Chakravarti D, Hazra K, Kayal R, Sasmal S, Mukherjee D. Exploration of interlacing and avoided crossings in a manifold of potential energy curves by a unitary group adapted state specific multi-reference perturbation theory (UGA-SSMRPT). J Chem Phys 2021; 155:014101. [PMID: 34241385 DOI: 10.1063/5.0054731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Unitary Group Adapted State-Specific Multi-Reference Perturbation Theory (UGA-SSMRPT2) developed by Mukherjee et al. [J. Comput. Chem. 36, 670 (2015)] has successfully realized the goal of studying bond dissociation in a numerically stable, spin-preserving, and size-consistent manner. We explore and analyze here the efficacy of the UGA-SSMRPT2 theory in the description of the avoided crossings and interlacings between a manifold of potential energy curves for states belonging to the same space-spin symmetry. Three different aspects of UGA-SSMRPT2 have been studied: (a) We introduce and develop the most rigorous version of UGA-SSMRPT2 that emerges from the rigorous version of UGA-SSMRCC utilizing a linearly independent virtual manifold; we call this the "projection" version of UGA-SSMRPT2 (UGA-SSMRPT2 scheme P). We compare and contrast this approach with our earlier formulation that used extra sufficiency conditions via amplitude equations (UGA-SSMRPT2 scheme A). (b) We present the results for a variety of electronic states of a set of molecules, which display the striking accuracy of both the two versions of UGA-SSMRPT2 with respect to three different situations involving weakly avoided crossings, moderate/strongly avoided crossings, and interlacing in a manifold of potential energy curves (PECs) of the same symmetry. Accuracy of our results has been benchmarked against IC-MRCISD + Q.
Collapse
Affiliation(s)
- Dibyajyoti Chakravarti
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Koustav Hazra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Riya Kayal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Sudip Sasmal
- Physikalisch-Chemisches Institut, Universität Heidelberg, Heidelberg, Germany
| | - Debashis Mukherjee
- Centre for Quantum Engineering, Research, and Education (CQuERE), TCG-CREST, Kolkata, India
| |
Collapse
|
15
|
Lechner MH, Izsák R, Nooijen M, Neese F. A perturbative approach to multireference equation-of-motion coupled cluster. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1939185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Marvin H. Lechner
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - Róbert Izsák
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
- Department of Chemistry and Biochemistry, Middlebury College, Middlebury, USA
| | - Marcel Nooijen
- Department of Chemistry, University of Waterloo, Waterloo, Canada
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| |
Collapse
|
16
|
Teusch T, Klüner T. Photodesorption mechanism of water on WO 3(001) - a combined embedded cluster, computational intelligence and wave packet approach. Phys Chem Chem Phys 2020; 22:19267-19274. [PMID: 32815960 DOI: 10.1039/d0cp02809f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work we investigate the mechanism of photodesorption of water from a WO3(001) surface by theoretical calculations, applying an embedded cluster model. Using the CASSCF method, we have calculated both the ground state as well as the energetically preferred charge-transfer state in three degrees of freedom of the water molecule on the surface. The calculated potential energy surfaces were afterwards fitted with a neural network optimized by a genetic algorithm. A final quantum dynamic wave packet study provided insight into the photodesorption mechanism.
Collapse
Affiliation(s)
- Thomas Teusch
- Department of Chemistry, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany.
| | - Thorsten Klüner
- Department of Chemistry, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany.
| |
Collapse
|
17
|
Zahradníková E, Herchel R, Šalitroš I, Císařová I, Drahoš B. Late first-row transition metal complexes of a 17-membered piperazine-based macrocyclic ligand: structures and magnetism. Dalton Trans 2020; 49:9057-9069. [PMID: 32568334 DOI: 10.1039/d0dt01392g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A 17-membered piperazine-based macrocyclic ligand LdiProp (1,5,13,17,22-pentaazatricyclo[15.2.2.17,11]docosa-7,9,11(22)-triene) was resynthesized in high yield by using a linear pump. Its Mn(ii), Fe(ii), Co(ii) and Ni(ii) complexes of the general formula [MnLdiProp(ClO4)2] (1), [FeLdiProp(CH3CN)](ClO4)2 (2), [CoLdiProp(CH3CN)](ClO4)2 (3), [NiLdiProp](ClO4)2 (4) were prepared and thoroughly characterized. X-ray diffraction analysis confirmed that Mn(ii) complex 1 has capped trigonal prismatic geometry with a coordination number of seven, Fe(ii) and Co(ii) complexes 2 and 3 are trigonal prismatic with a coordination number of six and Ni(ii) complex 4 has square pyramidal geometry with a coordination number of five. The decrease of the coordination number is accompanied by a shortening of M-N distances and an increase of torsion of the piperazine ring from the equatorial plane. Magnetic measurement reveals moderate anisotropy for 4 and rather large magnetic anisotropy for 2 and 3 (axial zero-field splitting parameter D(Ni) = 9.0 cm-1, D(Fe) = -14.4 cm-1, D(Co) = -25.8 cm-1, together with rather high rhombicity). Co(ii) complex 3 behaves as a field-induced SMM with a combination of Raman and direct or Orbach and direct relaxation mechanisms. Obtained magnetic data were extensively supported by theoretical CASSCF calculations. The flexibility and rather large 17-membered macrocyclic cavity of ligand LdiProp could be responsible for the variation of coordination numbers and geometries for the investigated late-first row transition metals.
Collapse
Affiliation(s)
- Eva Zahradníková
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic.
| | | | | | | | | |
Collapse
|
18
|
Neese F, Wennmohs F, Becker U, Riplinger C. The ORCA quantum chemistry program package. J Chem Phys 2020; 152:224108. [DOI: 10.1063/5.0004608] [Citation(s) in RCA: 697] [Impact Index Per Article: 174.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Frank Neese
- Max Planck Institut für Kohlenforschung, Kaiser-Wilhelm Platz 1, D-45470 Mülheim an der Ruhr, Germany
- FAccTs GmbH, Rolandstr. 67, 50677 Köln, Germany
| | - Frank Wennmohs
- Max Planck Institut für Kohlenforschung, Kaiser-Wilhelm Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Ute Becker
- Max Planck Institut für Kohlenforschung, Kaiser-Wilhelm Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | | |
Collapse
|
19
|
Ghosh S, Kamilya S, Das M, Mehta S, Boulon ME, Nemec I, Rouzières M, Herchel R, Mondal A. Effect of Coordination Geometry on Magnetic Properties in a Series of Cobalt(II) Complexes and Structural Transformation in Mother Liquor. Inorg Chem 2020; 59:7067-7081. [DOI: 10.1021/acs.inorgchem.0c00538] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Subrata Ghosh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C. V. Raman Road, Bangalore 560012, India
| | - Sujit Kamilya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C. V. Raman Road, Bangalore 560012, India
| | - Mayurika Das
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C. V. Raman Road, Bangalore 560012, India
| | - Sakshi Mehta
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C. V. Raman Road, Bangalore 560012, India
| | - Marie-Emmanuelle Boulon
- Photon Science Institute, Alan Turing Building, office 3.315, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Ivan Nemec
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic
- Central European Institute of Technology, CEITEC BUT, Technická 3058/10, 61600 Brno, Czech Republic
| | - Mathieu Rouzières
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, CRPP, UMR 5031, 33600 Pessac, France
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic
| | - Abhishake Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C. V. Raman Road, Bangalore 560012, India
| |
Collapse
|
20
|
Drahoš B, Císařová I, Laguta O, Santana VT, Neugebauer P, Herchel R. Structural, magnetic, redox and theoretical characterization of seven-coordinate first-row transition metal complexes with a macrocyclic ligand containing two benzimidazolyl N-pendant arms. Dalton Trans 2020; 49:4425-4440. [PMID: 32176762 DOI: 10.1039/d0dt00166j] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A structurally new heptadentate derivative of a 15-membered pyridine-based macrocycle containing two benzimidazol-2-yl-methyl N-pendant arms (L = 3,12-bis((1H-benzimidazol-2-yl)methyl)-6,9-dioxa-3,12,18-triazabicyclo[12.3.1]octadeca-1(18),14,16-triene) was synthesized and its complexes with the general formula [M(L)](ClO4)2·1.5CH3NO2 (M = MnII (1), FeII (2), CoII (3) and NiII (4)) were thoroughly investigated. X-ray crystal structures confirmed that all complexes are seven-coordinate with axially compressed pentagonal bipyramidal geometry having the largest distortion for NiII complex 4. FeII, CoII and NiII complexes 2, 3 and 4 show rather large magnetic anisotropy manifested by moderate to high obtained values of the axial zero-field splitting parameter D (7.9, 40.3, and -17.2 cm-1, respectively). Magneto-structural correlation of the FeII, CoII and NiII complexes with L and with previously studied structurally similar ligands revealed a significant impact of the functional group in pendant arms on the magnetic anisotropy especially that of the CoII and NiII complexes and some recommendations concerning the ligand-field design important for anisotropy tuning in future. Furthermore, complex 3 showed field-induced single-molecule magnet behavior described with the Raman (C = 507 K-n s-1 for n = 2.58) relaxation process. The magnetic properties of the studied complexes were supported by theoretical calculations, which very well correspond with the experimental data of magnetic anisotropy. Electrochemical measurements revealed high positive redox potentials for M3+/2+ couples and high negative redox potentials for M2+/+ couples, which indicate the stabilization of the oxidation state +ii expected for the σ-donor/π-acceptor ability of benzimidazole functional groups.
Collapse
Affiliation(s)
- Bohuslav Drahoš
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 771 46, Olomouc, Czech Republic.
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 00, Prague, Czech Republic
| | - Oleksii Laguta
- Central European Institute of Technology, CEITEC BUT, Purkyňova 656/123, 61200, Brno, Czech Republic
| | - Vinicius T Santana
- Central European Institute of Technology, CEITEC BUT, Purkyňova 656/123, 61200, Brno, Czech Republic
| | - Petr Neugebauer
- Central European Institute of Technology, CEITEC BUT, Purkyňova 656/123, 61200, Brno, Czech Republic
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 771 46, Olomouc, Czech Republic.
| |
Collapse
|
21
|
Straatsma TP, Broer R, Faraji S, Havenith RWA, Suarez LEA, Kathir RK, Wibowo M, de Graaf C. GronOR: Massively parallel and GPU-accelerated non-orthogonal configuration interaction for large molecular systems. J Chem Phys 2020; 152:064111. [PMID: 32061226 DOI: 10.1063/1.5141358] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
GronOR is a program package for non-orthogonal configuration interaction calculations for an electronic wave function built in terms of anti-symmetrized products of multi-configuration molecular fragment wave functions. The two-electron integrals that have to be processed may be expressed in terms of atomic orbitals or in terms of an orbital basis determined from the molecular orbitals of the fragments. The code has been specifically designed for execution on distributed memory massively parallel and Graphics Processing Unit (GPU)-accelerated computer architectures, using an MPI+OpenACC/OpenMP programming approach. The task-based execution model used in the implementation allows for linear scaling with the number of nodes on the largest pre-exascale architectures available, provides hardware fault resiliency, and enables effective execution on systems with distinct central processing unit-only and GPU-accelerated partitions. The code interfaces with existing multi-configuration electronic structure codes that provide optimized molecular fragment orbitals, configuration interaction coefficients, and the required integrals. Algorithm and implementation details, parallel and accelerated performance benchmarks, and an analysis of the sensitivity of the accuracy of results and computational performance to thresholds used in the calculations are presented.
Collapse
Affiliation(s)
- T P Straatsma
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6373, USA
| | - R Broer
- Theoretical Chemistry Group, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - S Faraji
- Theoretical Chemistry Group, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - R W A Havenith
- Theoretical Chemistry Group, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - L E Aguilar Suarez
- Theoretical Chemistry Group, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - R K Kathir
- Theoretical Chemistry Group, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - M Wibowo
- Theoretical Chemistry Group, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - C de Graaf
- Theoretical Chemistry Group, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
22
|
Brachňaková B, Matejová S, Moncol J, Herchel R, Pavlik J, Moreno-Pineda E, Ruben M, Šalitroš I. Stereochemistry of coordination polyhedra vs. single ion magnetism in penta- and hexacoordinated Co(ii) complexes with tridentate rigid ligands. Dalton Trans 2020; 49:1249-1264. [PMID: 31904039 DOI: 10.1039/c9dt04592a] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A tridentate ligand L (2,6-bis(1-(3,5-di-tert-butylbenzyl)-1H-benzimidazol-2-yl)pyridine) was synthesized and used for the preparation of three pentacoordinated Co(ii) complexes of formula [Co(L)X2] (where X = NCS- for 1, X = Cl- for 2 and X = Br- for 3) and one ionic compound 4 ([Co(L)2]Br2·2CH3OH·H2O) containing a hexacoordinated Co(ii) centre. Static magnetic data were analysed with respect to the spin (1-3) or the Griffith-Figgis (4) Hamiltonian. Ab initio calculations enable us to identify the positive axial magnetic anisotropy parameter D accompanied by a significant degree of rhombicity in the reported complexes. Also, magneto-structural correlation was outlined for this class of compounds. Moreover, all four compounds exhibit slow relaxation of magnetisation at an applied static magnetic field with either both low- and high-frequency relaxation channels (3) or a single high-frequency relaxation process (1, 2 and 4). The interplay between the stereochemistry of coordination polyhedra, magnetic anisotropy and the relaxation processes was investigated and discussed in detail.
Collapse
Affiliation(s)
- Barbora Brachňaková
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia.
| | - Simona Matejová
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia.
| | - Ján Moncol
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia.
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Ján Pavlik
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia.
| | - Eufemio Moreno-Pineda
- Institut für Nanotechnologie, Karlsruher Institut für Technologie, Postfach 3640, Karlsruhe 76021, Germany
| | - Mario Ruben
- Institut für Nanotechnologie, Karlsruher Institut für Technologie, Postfach 3640, Karlsruhe 76021, Germany and Institute de Physique et Chimie de Matériaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg, 23, rue du Loess, BP 43, 67034 Strasbourg cedex 2, France
| | - Ivan Šalitroš
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia. and Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic and Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| |
Collapse
|
23
|
Lang L, Atanasov M, Neese F. Improvement of Ab Initio Ligand Field Theory by Means of Multistate Perturbation Theory. J Phys Chem A 2020; 124:1025-1037. [PMID: 31977214 PMCID: PMC7307914 DOI: 10.1021/acs.jpca.9b11227] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
![]()
Over
the last few years, ab initio ligand field theory (AILFT)
has evolved into an important tool for the extraction of ligand field
models from ab initio calculations. The inclusion of dynamic correlation
on top of complete active space self-consistent field (CASSCF) reference
functions, which is important for accurate results, was so far realized
at the level of second-order N-electron valence state perturbation
theory (NEVPT2). In this work, we introduce two alternative methods
for the inclusion of dynamic correlation into AILFT calculations,
the second-order dynamic correlation dressed complete active space
method (DCD-CAS(2)) and the Hermitian quasi-degenerate NEVPT2 (HQD-NEVPT2).
These methods belong to the class of multistate perturbation theory
approaches, which allow for the mixing of CASSCF states under the
effect of dynamic correlation (state-mixing). The two new versions
of AILFT were tested for a diverse set of transition-metal complexes.
It was found that the multistate methods have, compared to NEVPT2,
an AILFT fit with smaller root mean square deviations (rmsds) between
ab initio and AILFT energies. A comparison of AILFT excitation energies
with the experiment shows that for some systems, the agreement gets
better at the multistate level because of the smaller rmsds. However,
for some systems, the agreement gets worse, which could be attributed
to a cancellation of errors at the NEVPT2 level that is partly removed
at the multistate level. An investigation of trends in the extracted
ligand field parameters shows that at the multistate level, the ligand
field splitting Δ gets larger, whereas the Racah parameters B and C get smaller and larger, respectively.
An investigation of the reasons for the observed improvement for octahedral
CrIII halide complexes shows that the possibility of state-mixing
relaxes constraints that are present at the NEVPT2 level and that
keep Δ and B from following their individual
preferences.
Collapse
Affiliation(s)
- Lucas Lang
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , 45470 Mülheim an der Ruhr , Germany
| | - Mihail Atanasov
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , 45470 Mülheim an der Ruhr , Germany.,Institute of General and Inorganic Chemistry , Bulgarian Academy of Sciences , Akad. Georgi Bontchev Street 11 , 1113 Sofia , Bulgaria
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , 45470 Mülheim an der Ruhr , Germany
| |
Collapse
|
24
|
Lang L, Sivalingam K, Neese F. The combination of multipartitioning of the Hamiltonian with canonical Van Vleck perturbation theory leads to a Hermitian variant of quasidegenerate N-electron valence perturbation theory. J Chem Phys 2020; 152:014109. [DOI: 10.1063/1.5133746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Lucas Lang
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Kantharuban Sivalingam
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
25
|
Kotrle K, Herchel R. Are Inorganic Single-Molecule Magnets a Possibility? A Theoretical Insight into Dysprosium Double-Deckers with Inorganic Ring Systems. Inorg Chem 2019; 58:14046-14057. [DOI: 10.1021/acs.inorgchem.9b02039] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Kamil Kotrle
- Department of Inorganic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| |
Collapse
|
26
|
Qin T, Xue J, Huo D, Zu L. Direct observation of the intermediate radical in the photodissociation of 1,3-cyclohexane dinitrite. Phys Chem Chem Phys 2019; 21:19359-19364. [PMID: 31455949 DOI: 10.1039/c9cp03895g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A two-step photodissociation mechanism was proposed in the literature for dinitrites in the absence of direct evidence of the intermediate species. In this work, photodissociation dynamics of cis and trans 1,3-cyclohexane dinitrites are investigated by laser-induced fluorescence (LIF) spectroscopy and theoretical calculation methods. Observation of the fluorescence spectra of the 3-nitrosooxy cyclohexoxy radical provides direct experimental evidence that the intermediate species exists. The results indicate that photodissociation of dinitrites indeed follows a two-step mechanism, i.e. one of the O-NO bonds of the molecule breaks first upon 355 nm laser photolysis and generates an alkoxy radical (RO) plus NO; the alkoxy radical further dissociates in the secondary dissociation step and produces small fragments such as vinoxy etc.
Collapse
Affiliation(s)
- Tai Qin
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China.
| | - Junfei Xue
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China.
| | - Dayujia Huo
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China.
| | - Lily Zu
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China.
| |
Collapse
|
27
|
Gomez JA, Henderson TM, Scuseria GE. Polynomial-product states: A symmetry-projection-based factorization of the full coupled cluster wavefunction in terms of polynomials of double excitations. J Chem Phys 2019; 150:144108. [PMID: 30981260 DOI: 10.1063/1.5085314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Our goal is to remedy the failure of symmetry-adapted coupled-cluster theory in the presence of strong correlation. Previous work along these lines has taken us from a diagram-level analysis of the coupled-cluster equations to an understanding of the collective modes which can occur in various channels of the coupled-cluster equations to the exploration of non-exponential wavefunctions in efforts to combine coupled-cluster theory with symmetry projection. In this manuscript, we extend these efforts by introducing a new, polynomial product wavefunction ansatz that incorporates information from symmetry projection into standard coupled-cluster theory in a way that attempts to mitigate the effects of the lack of size extensivity and size consistency characteristic of symmetry-projected methods. We describe the new approach in detail within the context of our previous efforts, explore some illustrative calculations, and consider one route for reducing the computational cost of the new method.
Collapse
Affiliation(s)
- John A Gomez
- Applied Physics Graduate Program, Rice University, Houston, Texas 77005, USA
| | | | | |
Collapse
|
28
|
Lang L, Neese F. Spin-dependent properties in the framework of the dynamic correlation dressed complete active space method. J Chem Phys 2019; 150:104104. [DOI: 10.1063/1.5085203] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Lucas Lang
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
29
|
Schriber JB, Hannon KP, Li C, Evangelista FA. A Combined Selected Configuration Interaction and Many-Body Treatment of Static and Dynamical Correlation in Oligoacenes. J Chem Theory Comput 2018; 14:6295-6305. [DOI: 10.1021/acs.jctc.8b00877] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jeffrey B. Schriber
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Kevin P. Hannon
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Chenyang Li
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Francesco A. Evangelista
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
30
|
Garniron Y, Scemama A, Giner E, Caffarel M, Loos PF. Selected configuration interaction dressed by perturbation. J Chem Phys 2018; 149:064103. [DOI: 10.1063/1.5044503] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Yann Garniron
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Anthony Scemama
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Emmanuel Giner
- Laboratoire de Chimie Théorique, Université Pierre et Marie Curie, Sorbonne Université, CNRS, Paris, France
| | - Michel Caffarel
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
31
|
Sand AM, Hoyer CE, Truhlar DG, Gagliardi L. State-interaction pair-density functional theory. J Chem Phys 2018; 149:024106. [DOI: 10.1063/1.5036727] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Andrew M. Sand
- Department of Chemistry, Chemical Theory Center, and The Minnesota Supercomputing Institute, The University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| | - Chad E. Hoyer
- Department of Chemistry, Chemical Theory Center, and The Minnesota Supercomputing Institute, The University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, and The Minnesota Supercomputing Institute, The University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center, and The Minnesota Supercomputing Institute, The University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| |
Collapse
|